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3 Basic definitions

Let us consider just finite sets of events, this is, conceptually, not a big
limitation. All the events we shall consider can be , formally, as subsets
of a reference container set {2, which contains every possible outcome of an
experiment; e.g.

(2 = {head, tail}

in the case of the toss of a coin. x € (2 means “z is an element of (2”7, or
“r is an event, a subset belonging to (2”. We shall associate to each event
x € Q) a probability p(x), that is a positive measure normalized to 1. In the
discrete case, whre Q2 is made by IV events the set of the p(z) is a set of N
non negative numbers p(z) > 0 (each one associated to one of the x € Q)
and such that tali che ) _,p(z) = 1. In the simple case of a tossed coin
we just have two possible events: z = head e z = tail and the probability
distribution is p(head) = 1/2, p(tail) = 1/2 (for a fair coin).



Here are some elementary properties that can be derived using Venn
diagrams of the type shown in figure 2.

p(4) >0 , p@) =0 , p(Q)=1

p(AU B) = p(A) +p(B) — p(AN B)
ANB=0 = p(AUB) = p(A) + p(B)

Given a set of N events in Q: {A,, Ay, ..., Ay} they are mutually ezclu-
sive if the occurrence of one of them precludes the occurence of the rest of
the others. In particular, if the N mutually exclusive events are a partition
of Q then P(A;) = 1 — P(UA;), withj # ¢). N events in Qare independent
if the occurrence of each one of them does not interfere with the occurrence
of the others; in this case P(M;A;) = [[; P(A:). Two events that are not
independent are said to be correlated and to express the degree of this cor-
relation one introduces conditional probabilities. Correlated events have,
quite intuitively, a non empty intersection. Let us then denote with p(A|B)
the probability of the occurrence of A, provided that B occurred, that is
the conditional probability of A given B. We can consistently express the
intersection of two correlated events A and B as:

p(AN B) = p(B)p(A|B)

that is, the probability of the co-occurrence of the correlated events A and B
is given by the probability of A times the conditional probability of A given
B. One has also:

p(AN B) = p(A)p(B|A)

, it is worth noting also that:

_ p(ANB) _ p(B)p(AlB)
PBIA =" =7 )

and then, in general one has:

p(B|A) # p(A|B);

they are equal just in the case when p(A) = p(B). If the occurrence of A is
independent from the occurrence of B, then one has p(A|B) = p(A) and the
co-occurrenece of uncorrelated events A and B is just:

p(AN B) = p(A)p(B)

-



Let us make this point clear: if A and B are correlated events then
p(AN B) = p(B)p(A|B) whereas p(AN B) = p(B)p(A) when A and B
are independent .

Now let us go back to the reference ensemble €2 that can be used to express
the probability of a generic event, using a base of events, that is a partition.
A partition or base of 2 is a collection of M mutually exclusive events H;
(¢=1,...,M) such as H; N H; = 0 when i # j) and such as their union
reconstructs the whole Q (U,_; H; = Q). Using a partition the probability
of a generic event A can be expressed as the sum of the probabilities of its
intersections with the base events (figura 3):

p(A) =) p(AN H)

i=1

Warning: the degree of correlation of two events g(A,B)=P(AIB)/P(A)
1S a symmetric notion, whereas

causal relations require asymmetry
Correlation is required for Causation but is not sufficient for




5 Bayes’ Theorem

Let us consider the methodological setting. Suppose you have a fact, an
event to consider, £ that you want to explain, to interpret, not making use
of senses nor by concotting opoinions, but in a possibly transparent way,
based on a quantitative analysis. Consider the "total” reference event of
the calculus of probability (2, we have introduced above. Then introduce a
proper partition made by parts {H;} of 2, to be used as a causative base to
interpret E. In other words we want to determine the relative correlation of
each one of the mutually exclusive H; events in the partition with the event
E. We shall express these correlation through conditional probabilities: of
the form: p(H;|E). Let us start again from the general formula defining
conditional probabilities, using events E and H;: p(H;|E)p(E) = p(ENH;) =
p(E|H;)p(H;) and then, isolating p(H;|E). we get:

p(H;)p(E|H;)
p(E)

which is equal to: ’%ﬁ%}, having used the projection of p(E) over the

base {H;}, that is: p(E) =} . p(E N H;).

p(Hi)p(E|H;)
> p(H;)p(E|H;)

p(Hi|E) =

Introducing the normalization aka partition function: Z =}, p(H;)p(E|H;),
we eventually get Bayes’ formula in compact form:

p(H|E) = -, p(H)p(E|H)



Introducing the normalization aka partition function: Z =} p(H;)p(E|H;),
we eventually get Bayes’ formula in compact form:

p(H|E) = -, p(H)p(E|H)



Eikosograms (RW Oldford )

Marginal, conditional and joint probabilities
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Figure 1 | Marginal, joint and conditional probabilities for independent

and dependent events. Probabilities are shown by plots3, where columns
correspond to coins and stacked bars within a column to coin toss outcomes,
and are given by the ratio of the blue area to the area of the red outline. The
choice of one of two fair coins (C, C') and outcome of a toss are independent
events. For independent events, marginal and conditional probabilities

are the same and joint probabilities are calculated using the product of
probabilities. If one of the coins, C,, is biased (yields heads (H) 75% of the
time), the events are dependent, and joint probability is calculated using
conditional probabilities. From: N. Altman’s Bayes” Theorem



a Bayes theorem
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Figure 2 | Graphical interpretation of Bayes’ theorem and its application
to iterative estimation of probabilities. (a) Relationship between
conditional probabilities given by Bayes’ theorem relating the probability
of a hypothesis that the coin is biased, P(C,), to its probability once the
data have been observed, P(C,|H). (b) The probability of the identity of
the chosen coin can be inferred from the toss outcome. Observing a head
increases the chances that the coin is biased from P(C,) = 0.5 to 0.6, and
further to 0.69 if a second head is observed.




a Marker b Disease prediction C Disease prediction
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Figure 3 | Disease predictions based on presence of markers.

(a) Independent conditional probabilities of observing each marker (A, B)
given a disease (X, Y, Z) (e.g., P(A|Y) = 0.9). (b) Posterior probability of
each disease given a single observation that confirms the presence of one
of the markers (e.g., P(Y|A) = 0.66). (c) Evolution of disease probability
predictions with multiple assays. For a given disease, each path traces (left
to right) the value of the posterior that incorporates all the assay results up
to that point, beginning at the prior probability for the disease (blue dot).
The assay result is encoded by an empty (marker absent) or a solid (marker
present) dot. The red path corresponds to presence of A and B. The highest
possible posterior is shown in bold.




The relevance of Bayes theorem: see DILL &
BROMBERG: EXAMPLE1.11 ...BIOINFORMATIC CONTEXT

S OIIU f1 y JUM W e e

:, EXAMPLE 1.11 Applying Bayes’ rule: Predicting protein properties. Bayes’
rule, a combination of Equations (1.11) and (1.15), can help you compute hard-
to-get probabilities from ones that are easier to get. Here’s a toy example. Let’s
figure out a protein’s structure from its amino acid sequence. From modern
genomics, it is easy to learn protein sequences. It’s harder to learn protein
structures. Suppose you discover a new type of protein structure, call it a heli-
coil h. It's rare; you've searched 5000 proteins and found only 20 helicoils, so
p(h) =0.004. If you could discover some special amino acid sequence feature,
call it sf, that predicts the h structure, you could search other genomes to find
other helicoil proteins in nature. It's easier to turn this around. Rather than
looking through 5000 sequences for patterns, you want to look at the 20 heli-
coil proteins for patterns. How do you compute p (sf | h)? You take the 20 given
helicoils and find the fraction of them that have your sequence feature. If your
sequence feature (say alternating glycine and lysine amino acids) appears in 19
out of the 20 helicoils, you have p(sf | h) = 0.95. You also need p(sf|h), the
fraction of non-helicoil proteins (let’s call those h) that have your sequence fea-
ture. Suppose you find p (sf | ) = 0.001. Combining Equations (1.1 1) and (1.15)
gives Bayes’ rule for the probability you want:

_pGsflph) _ p(sflh)p(h)
phish == ) p(sf|h)p(h) +p(stlh)p(h)
(0.95)(0.004) = .0.70. (x:1.0)

~ 10.95)(0.004) + (0.001) (0.996)

In short, if a protein has the sf sequence, it will have the h structure about 80%
of the time.



Realistic example of bayesian methodology
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ABSTRACT

Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under
physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular
eukaryotes, and is responsible for important protein functions including regulation and signaling. Many
disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this
paper, a new predictor model based on the Bayesian classification methodology is introduced to predict
for a given protein or protein region if it is intrinsically disordered or ordered using only its primary
sequence. The method allows to incorporate length-dependent amino acid compositional differences of
disordered regions by including separate statistical representations for short, middle and long
disordered regions. The predictor was trained on the constructed data set of protein regions with
known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for
disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when
evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to
predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438].
Further strength of our approach is the ease of implementation.

© 2008 Elsevier Ltd. All rights reserved.




Indicators to evaluate methods

TP TP
TP+ FN N,

Sensitivity (or recall) : S, (1)
is the number of correctly identified disordered proteins normalized to the total
number of disordered proteins in the sample

TN TN

TN +FP N, )

Specificity : S, =

is the ratio between the number correctly identified ordered proteins and the total
number of ordered proteins in the sample;

FP
Rate of false positives : f, = TN < FP 1-5, (3)

is the ratio between the number of ordered proteins predicted as disordered and the
total number of ordered proteins in the sample;

S, +5,
2

Accuracy : ACC = (4)
that is the average between sensitivity and specificity. It measures the overall
performance of the predictor. Then,

TP TP
TP+ FP  n,

(5)

Precision (or selectivity) : Pr =
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