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summary

The location of a distribution for a numerical variable can be measured by its mean or by
its median. The mean gives the center of gravity of the distribution and is calculated as the
sum of all measurements divided by the number of measurements. The median gives the
middle value.

The standard deviation measures the spread of a distribution for a numerical variable. It is
a measure of the typical distance between observations and the mean. The variance is the
square of the standard deviation.

The quartiles break the ordered observations into four equal parts. The inter-quartile
range, the difference between the first and third quartiles, is another measure of the spread
of a frequency distribution.

The mean and median yield similar information when the frequency distribution of the
measurements is symmetric and unimodal. The mean and standard deviation become less
informative about the location and spread of typical observations than the median and
interquartile range when the data include extreme observations.

The percentile of a measurement specifies the percentage of observations less than or
equal to it. The quantile of a measurement specifies the fraction of observations less than
or equal to it.

All the quantiles of a sample of data can be shown using a graph of the cumulative
frequency distribution.

The proportion is the most important descriptive statistic for a categorical variable. It is
calculated by dividing the number of observations in the category of interest by n, the total
number of observations in all categories combined.
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* range

* Quantiles

* interquartile range

* sample variance and standard deviation
* coefficient of variation



FROM HISTOGRAMS TO PROBABILITY DISTRIBUTIONS

modes of science: deduction, induction, abduction
modes of presenting data:

scatter plots

bar graphs

pie charts

strip charts

box plots

frequency tables/histograms

Binning/resolution

sampling the distribution of estimates (statistics)
the mean of means

self-averaging/non self-averaging quantities



Back i1ssue n 2 the scientific method in a nutshell

e Deduction/ Induction/Abduction/

e The structure of a scientific paper (ad nauseam)

* (make your ideas clear for a brief discussion next monday)
-Introduction

-Materials and methods

-Results

-Discussion



DEDUCTION
Rule.— All the beans from this bag are white.
Case.—These beans are from this bag.
Result.—These beans are white.
INDUCTION
Case.—These beans are from this bag.
Result.—These beans are white.
Rule.—All the beans from this bag are white.
HYPOTHESIS
Rule.— All the beans from this bag are white.
Result.—These beans are white.
Case.—These beans are from this bag.

[lustration of the
Logic of Science,
1878, 1893



DEFINITION 2.5 The range is the difference between the largest and smallest observations in a sample.

FIGURE 2.4 Two samples of cholesterol measurements on a given person using the Autoanalyzer
and Microenzymatic measurement methods

x =200
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I
I
I
I
I
. *—o—1 . ® Autoanalyzer method
177 193 195 | 209 226 (mg/dL)
I
I
I
I
I
I
- . ‘f - . Microenzymatic method
192 197/. 202 209 (mg/dL)
I
200 !

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



DEFINITION 2.6

Quantiles

Another approach that addresses some of the shortcomings of the range in quantify-
ing the spread in a data set is the use of quantiles or percentiles. Intuitively, the pth
percentile is the value V such that p percent of the sample points are less than or
equal to v, The median, being the 50th percentile, is a special case of a quantile. As
was the case for the median, a different definition is needed for the pth percentile,
depending on whether or not np/100 is an integer.

The pth percentile is defined by

(1) The (k + 1)th largest sample point if np/100 is not an integer (where k is the
largest integer less than np/100).

(2) The average of the (np/100)th and (np/100 + 1)th largest observations if np/100
is an integer.
Percentiles are also sometimes called quantiles.

The spread of a distribution can be characterized by specifying several percen-
tiles. For example, the 10th and 90th percentiles are often used to characterize
spread. Percentiles have the advantage over the range of being less sensitive to
outliers and of not being greatly affected by the sample size (n).

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



The interquartile range

Quartiles are values that partition the data into quarters. The first quartile is the middle value of
the measurements lying below the median. The second quartile is the median. The third quartile
is the middle value of the measurements larger than the median. The interquartile range (IQR)
is the span of the middle half of the data, from the first quartile to the third quartile:
Interquartile range=third quartile—first quarti]e.lnterquartile range = third quartile — first quartile.

The interquartile range is the difference between the third and first quartiles of the data. It is
the span of the middle 50% of the data.

Figure 3.2-1 shows the meaning of the median, first quartile, third quartile, and interquartile
range for the spider data set (before amputation).

Interquartile range

First quartile Median Third quartile

l l l

1.25 1.64 191 231 237 238 284 287 293 294 298 3.00 3.09 3.22 341 3.55

Figure 3.2-1
Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman and Company



DEFINITION 2.2

The Median REVISITED

An alternative measure of location, perhaps second in popularity to the arithmetic
mean, is the median or, more precisely, the sample median.

Suppose there are n observations in a sample. If these observations are ordered
from smallest to largest, then the median is defined as follows:

The sample median is
(1) The (nTHJth largest observation if n is odd

(2) The average of the % ith and | Z+1 |th largest observations if 7 is even
& 2 2 8

The rationale for these definitions is to ensure an equal number of sample points
on both sides of the sample median. The median is defined differently when #n is
even and odd because it is impossible to achieve this goal with one uniform defini-
tion. Samples with an odd sample size have a unique central point; for example,
for samples of size 7, the fourth largest point is the central point in the sense that
3 points are smaller than it and 3 points are larger. Samples with an even sample size
have no unique central point, and the middle two values must be averaged. Thus,
for samples of size 8 the fourth and fifth largest points would be averaged to obtain
the median, because neither is the central point.



The Variance and Standard Deviation

The main difference between the Autoanalyzer- and Microenzymatic-method data
in Figure 2.4 is that the Microenzymatic-method values are closer to the center of
the sample than the Autoanalyzer-method values. If the center of the sample is
defined as the arithmetic mean, then a measure that can summarize the difference
(or deviations) between the individual sample points and the arithmetic mean is
needed; that is,

x1_i’x2_i’ .. .’xn_i

One simple measure that would seem to accomplish this goal is

d — z:;l(xi _i)

n

Unfortunately, this measure will not work, because of the following principle:

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)
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The sum of the deviations of the individual observations of a sample about the
sample mean is always zero.

Compute the sum of the deviations about the mean for the Autoanalyzer- and
Microenzymatic-method data in Figure 2.4.

Solution: For the Autoanalyzer-method data,

d= (177 - 200) + (193 - 200) + (195 - 200) + (209 - 200) + (226 — 200)
=-23-7-5+9+26=0

For the Microenzymatic-method data,

d = (192 - 200) + (197 — 200) + (200 — 200) + (202 — 200) + (209 — 200)
=8-3+0+2+9=0

Thus, d does not help distinguish the difference in spreads between the two methods.
A second possible measure is

n
Ylx,-xl/n
i=1

which is called the mean deviation. The mean deviation is a reasonable measure
of spread but does not characterize the spread as well as the standard deviation
(see Definition 2.8) if the underlying distribution is bell-shaped.

A third idea is to use the average of the squares of the deviations from the sam-
ple mean rather than the deviations themselves. The resulting measure of spread,
denoted by s?, is

2 _ 2?:1("1' - %)’

n

)

The more usual form for this measure is with n — 1 in the denominator rather than
n. The resulting measure is called the sample variance (or variance).

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



The most common measures of spread:
VARIANCE & SDEV

DEFINITION 2.7 The sample variance, or variance, is defined as follows:

n -2
§2 = 2i=1(xi -X)

n-1

A rationale for using n — 1 in the denominator rather than » is presented in the
discussion of estimation in Chapter 6.

Another commonly used measure of spread is the sample standard deviation.

DEFINITION 2.8 The sample standard deviation, or standard deviation, is defined as follows:

s=\/2:’=l<x,-—f>2

n-1

= /sample variance

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



Solution: Autoanalyzer Method
52 = [(177- 200)° +(193-200)° + (195-200)" + (209-200)° + (226 -200)° } /4
= (529+49 +25+81+676)/4 = 1360/4 = 340
s=+/340 =184
Microenzymatic Method
52 = [(192 ~200)” + (197 -200)° + (200 - 200)” +(202 - 200)” +(209 - zoo)z] /4
=(64+9+0+4+81)/4=158/4=39.5

§=+39.5=63

Thus the Autoanalyzer method has a standard deviation roughly three times as large
as that of the Microenzymatic method.

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



Two theorems on the variance (see
[R]Rosner: par 2.5)

1) If a constant is added to a sample of
data then the sample variance is not
changed.

2) If a sample of data is multiplyied by a
constant ¢ then the sample variance is
multiplyied by c?



et us make an exercise in Excel

Use Microsoft Excel to compute the mean and standard deviation for the Autoana-
lyzer and Microenzymatic-method data in Figure 2.4.

Solution: We enter the Autoanalyzer and Microenzymatic data in cells B3-B7 and
C3-C7, respectively. We then use the Average and StDev functions to evaluate the
mean and standard deviation as follows:

Autoanalyzer Microenzymatic
Method Method
177 192
193 197
195 200
209 202
226 209
Average 200 200
StDev 18.4 6.3

In Excel, if we make B8 the active cell and type = Average(B3:B7) in that cell,
then the mean of the values in cells B3, B4, . . ., B7 will appear in cell B8. Similarly,
specifying = Stdev(B3:B7) will result in the standard deviation of the Autoanalyzer
Method data being placed in the active cell of the spreadsheet.

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



A dataset to practice with (you have also BMI.txt)

TABLE 2.1 Sample of birthweights (g) of live-born infants born at a private hospital in San Diego,
California, during a 1-week period

i X i X i X ] X

1 3265 6 3323 11 2581 16 2759
2 3260 7 3649 12 2841 17 3248
3 3245 8 3200 13 3609 18 3314
4 3484 9 3031 14 2838 19 3101
5 4146 10 2069 15 3541 20 2834

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



Precision of a measurement (sampling):
relative uncertainty as measured by:

26 THE COEFFICIENT OF VARIATION

It is useful to relate the arithmetic mean and the standard deviation to each other
because, for example, a standard deviation of 10 means something different concep-
tually if the arithmetic mean is 10 versus if it is 1000. A special measure, the coef-
ficient of variation, is often used for this purpose.

DEFINITION 2.9 The coefficient of variation (CV) is defined by

100% x (s/X)

This measure remains the same regardless of what units are used because if the units
change by a factor ¢, then both the mean and standard deviation change by the
factor ¢; while the CV, which is the ratio between them, remains unchanged.

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)



At this point go to [R] Rosner’s textbook and illustrate the concepts in detail

Then connect to Di Leonardo’s course Data Analysis:
lecture n. 3 where you can find a notebook you can download and put in the .ipynb
format



HOW TO ORGANIZE DATA 1
(see WS chapter 2 (read all)

THE SCATTER PLOT
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Figure 2.3-3
Whitlock et al., The Analysis of Biological Data, 2e,
© 2015 W. H. Freeman and Company

FIGURE 2.3-3 Scatter plot showing the relationship between the ornamentation of
male guppies and the average attractiveness of their sons. Total number of families: n
= 36.
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 2.2-1 Bar graph showing the activities of people at the time they were
attacked and killed by tigers near Chitwan National Park, Nepal, between 1979 and
2006. Total number of deaths: n = 88. The frequencies are taken from Table 2.2-1,
which also gives more detailed labels of activities.



PIE CHARTS

Walking Toilet
Sleeping in house

Fuelwood/timber
Disturbing tiger kill

Herding Grass/fodder

Fishing

Forest products

Figure 2.2-2
Whitlock et al., The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 2.2-2 Pie chart of the activities of people at the time they were attacked and
killed by tigers near Chitwan National Park, Nepal. The frequencies are taken from
Table 2.2-1. Total number of deaths: n = 88.



Let us start with a dirty exercise

Quick Formula Summary

Table of formulas for descriptive statistics

Quantity Formula

Sample
size
Mean Y =yvn' = e
¥ (vi-¥)*

Variance Szzz(Yi_Y_)zn_l 8 = P

o Shorteut o (Yi2)-nY 2n-1
Standard (s w7y
deviation s=y(Yi-Y )2n-1° VT
shortcut | $(¥2)-n¥?
formula:  s=y(Yi2)-nY 2n-1° Vo7
f:lﬂgs S(Yi-Y)2=5(Yi2)ny 2% (¥ - V)" = £ () ¥
Coefficient
of CV=sY x100%"" = ¥ * 100%
variation
Y([n+1]/2) (if nis odd)[Y(n/2)+Y (1/2+1)]/2 (if nis odd)where Y(1),Y(2),
Yinin2  (ifnisodd)
Median [Yins2) + Yinj241)] /2 (ifnis odd)
.. .,Y(Il) are the ordered observations whereY(}),Ys),...,Y(n)are the ordered observations

Number in category

Proportion p=Number in categoryn? ~



Dirty exercise n.2

Effect of arithmetic operations on descriptive statistics

The table below lists the effect on the descriptive statistics of adding or multiplying all the
measurements by a constant. The rules listed in the table are useful when converting
measurements from one system of units to another, such as English to metric or degrees

Fahrenheit to degrees Celsius.

Adding a constantcto  Multiplying all the

Statistic Value all the measurements, measurements by a
Y'=sY+cY' =Y +c¢ constant c, Y'=cYY' = ¢Y¥
Mean Y~ Y '=Y +cY =Y +¢ Y '=¢Y Y =cY
Standard deviation S s'=s s'=|c|s
Variance s2 §2=g2 52 = 0252
Median M M=M+c M =cM

Interquartile range IOR IQR' = IQR IQR' = |c|IQR




HOW TO ORGANIZE DATA
(see WS chapter 2 (read all))

THE SCATTER PLOT
1.5+
g 1.0+ ®*eop ’ T
% o0sd P e }
b e * o
. « * 3 "8
.g O-e ° " -
-0.5 : T T T T 1

|
0 0.2 04 06 08 1.0 1.2
Father’s ornamentation

Figure 2.3-3
Whitlock et al., The Analysis of Biological Data, 2e,
© 2015 W. H. Freeman and Company

FIGURE 2.3-3 Scatter plot showing the relationship between the ornamentation of
male guppies and the average attractiveness of their sons. Total number of families: n
= 36.
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015
W. H. Freeman and Company

FIGURE 2.2-1 Bar graph showing the activities of people at the time they were
attacked and killed by tigers near Chitwan National Park, Nepal, between 1979 and
2006. Total number of deaths: n = 88. The frequencies are taken from Table 2.2-1,
which also gives more detailed labels of activities.
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FIGURE 2.2-2 Pie chart of the activities of people at the time they were attacked and
killed by tigers near Chitwan National Park, Nepal. The frequencies are taken from
Table 2.2-1. Total number of deaths: n = 88.



Anatomy of a BOXPLOT
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(IQR)

Outliers | Outliers
O OI OO
"Minimum" "Maximum"
(Q1 - 1.5*IQR) Q1 Median Q3 (Q3 + 1.5*IQR)
(25th Percentile) (75th Percentile)

—3 —2 ~1 0 1 2 3
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The strip chart is a graphical display of a numerical variable and a categorical variable in
which each observation is represented as a dot.
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman and Company

FIGURE 2.3-4 Strip chart (left) and box plot (right) showing hemoglobin
concentration in males living at high altitude in three different parts of the world: the
Andes (71), Ethiopia (128), and Tibet (59). A fourth population of 1704 males living at
sea level (USA) is included as a control.

A box plot is a graph that uses lines and a rectangular box to display the median, quartiles,
range, and extreme measurements of the data.



Showing numerical data: frequency table and histogram

A frequency distribution for a numerical variable can be displayed either in a frequency table or

in a histogram. A histogram uses area of rectangular bars to display frequency. The data values
are split into consecutive intervals, or “bins,” usually of equal width, and the frequency of

observations falling into each bin is displayed.

A histogram uses the area of rectangular bars to display the frequency distribution (or
relative frequency distribution) of a numerical variable.

We discuss how histograms are made in greater detail using the data in Example 2.2B.

EXAMPLE 2.2B Abundance of desert bird species

How many species are common in nature and how many are rare? One way to address this
question is to construct a frequency distribution of species abundance. The data in Table 2.2-2
are from a survey of the breeding birds of Organ Pipe Cactus National Monument in southern
Arizona, USA. The measurements were extracted from the North American Breeding Bird
Survey, a continent-wide data set of estimated bird numbers (Sauer et al. 2003).




Data: first part

TABLE 2.2-2 Data on the abundance of each species of bird encountered
during four surveys in Organ Pipe Cactus National Monument.

Species Abundance
Greater roadrunner 1
Black-chinned hummingbird 1
Western kingbird 1
Great-tailed grackle 1
Bronzed cowbird 1
Great horned owl 2
Costa’s hummingbird 2
Canyon wren 2
Canyon towhee 2
Harris's hawk 3
Loggerhead shrike 3
Hooded oriole 4
Northern mockingbird 5
American kestrel 7
Rock dove 7
Bell's vireo 10
Common raven 12
Northern cardinal 13
House sparrow 14
Ladder-backed woodpecker 15
Red-tailed hawk 16
Phainopepla 18
Turkey vulture 23
Violet-green swallow 23
Lesser nighthawk 25
Scott’s oriole 28
Purple martin 33
Black-throated sparrow 33
Brown-headed cowbird 59

Black vulture

[=2]
H



Data: 2nd part (binning)

Lucy’s warbler 67
Gilded flicker 77
Brown-crested flycatcher 128
Mourning dove 135
Gambel's qualil 148
Black-tailed gnatcatcher 152
Ash-throated flycatcher 173
Curve-billed thrasher 173
Cactus wren 230
Verdin 282
House finch 297
Gila woodpecker 300
White-winged dove 625

We treated each bird species in the survey as the unit of interest and the abundance of a
species in the survey as its measurement. The range of abundance values was divided into 13
intervals of equal width (0-50, 50-100, and so on), and the number of species falling into each
abundance interval was counted and presented in a frequency table to help see patterns (Table

2.2-3).




Make a frequency table out of the data

TABLE 2.2-3 Frequency distribution of bird species abundance at Organ Pipe Cactus National
Monument.

Abundance Frequency (Number of species)

0-50 T
50—100 Binning of the data

100-150
150-200
200-250

250-300
300-350
350-400
400-450
450-500
500-550
550-600

600-650

N
(o0}

P OO OOOFRNEFEFWWLAHN

n
w

Total

Source: Data are from Table 2.2-2.

Although the table shows the numbers, the shape of the frequency distribution is more
obvious in a histogram of these same data (Figure 2.2-3). Here, frequency (number of species)
in each abundance interval is perceived as bar area.



From table to histogram
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman
and Company

FIGURE 2.2-3 Histogram illustrating the frequency distribution of bird species

abundance at Organ Pipe Cactus National Monument. Total number of bird species: n
= 43.



The histogram reveals the shape of a frequency distribution. Some of the most common shapes
are displayed in Figure 2.2-4. Any interval of the frequency distribution that is noticeably more
frequent than surrounding intervals is called a peak. The mode is the interval corresponding to
the highest peak. For example, a bell-shaped frequency distribution has a single peak (the
mode) in the center of the range of observations. A frequency distribution having two distinct
peaks is said to be bimodal.

The mode is the interval corresponding to the highest peak in the frequency distribution.

Uniform Bell-shaped Asymmetric (skewed) Bimodal

mn b il A

Figure 2.2-4
Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman and Company

FIGURE 2.2-4 Some possible shapes of frequency distributions.

A frequency distribution is symmetric if the pattern of frequencies on the left half of the
histogram is the mirror image of the pattern on the right half. The uniform distribution and the

Sample Skewness and Kurtosis (see e.g.Wikipedia)



It’s a matter of resolution ! Binning

. should match the information
How to draw a QOOd h'Stogram content in the data:...Trial & Error

When drawing a histogram, the choice of interval width must be made carefully because it can
affect the conclusions. For example, Figure 2.2-5 shows three different histograms that depict
the body mass of 228 female sockeye salmon (Oncorhynchus nerka) from Pick Creek, Alaska,
in 1996 (Hendry et al. 1999). The leftmost histogram of Figure 2.2-5 was drawn using a narrow
interval width. The result is a somewhat bumpy frequency distribution that suggests the
existence of two or even more peaks. The rightmost histogram uses a wide interval. The result
is a smoother frequency distribution that masks the second of the two dominant peaks. The
middle histogram uses an intermediate interval that shows two distinct body-size groups. The
fluctuations from interval to interval within size groups are less noticeable.
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Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman and Company

FIGURE 2.2-5 Body mass of 228 female sockeye salmon sampled from Pick Creek

in Alaska (Hendry et al. 1999). The same data are shown in each case, but the
interval widths are different: 0.1 kg (left), 0.3 kg (middle), and 0.5 kg (right).



The sampling distribution of an estimate

Estimation is the process of inferring a population parameter from sample data. The value of
an estimate calculated from data is almost never exactly the same as the value of the population
parameter being estimated, because sampling is influenced by chance. The crucial question is,
“In the face of chance, how much can we trust an estimate?” In other words, what is its
precision? To answer this question, we need to know something about how the sampling
process might affect the estimates we get. We use the sampling distribution of the estimate,
which is the probability distribution of all the values for an estimate that we might have
obtained when we sampled the population. We illustrate the concept of a sampling distribution
using samples from a known population, the genes of the human genome.



EXAMPLE 4.1 The length of human genes

The international Human Genome Project was the largest coordinated research effort in the
history of biology. It yielded the DNA sequence of all 23 human chromosomes, each consisting

of millions of nucleotides chained end to end.2 These encode the genes whose products—RNA
and proteins—shape the growth and development of each individual.
We obtained the lengths of all 20,290 known and predicted genes of the published genome

sequence (Hubbard et al. 2005).2 The length of a gene refers to the total number of nucleotides
comprising the coding regions. The frequency distribution of gene lengths in the population of
genes is shown in Figure 4.1-1. The figure includes only genes up to 15,000 nucleotides long; in

addition, there are 26 longer genes. 4

0.150 4

e This is the “real stuff”: an exaustive representation
§ 0100 of the length of all recognized human genes.
K That is an image of the population of human genes
e 0075+
2
% 0.050
H

0.025

0 T 1
0 5,000 10,000 15,000

Gene length (number of nucleotides)

Figure 4.1-1
Whitlock et al., The Analysis of Biological Data, 2e, © 2015 W. H. Freeman

and Company

FIGURE 4.1-1 Distribution of gene lengths in the known human genome. The graph
is truncated at 15,000 nucleotides; 26 larger genes are too rare to be visible in this
histogram.

The histogram in Figure 4.1-1 is like those we have seen before, except that it shows the
distribution of lengths in the population of genes, not simply those in a sample of genes.



Important remarks

Because it is the population distribution, the relative frequency of genes of a given length
interval in Figure 4.1-1 represents the probability of obtaining a gene of that length when
sampling a single gene at random. The probability distribution of gene lengths is positively
skewed, having a long tail extending to the right.

The population mean and standard deviation of gene length in the human genome are listed
in Table 4.1-1. These quantities are referred to as parameters because they are quantities that
describe the population.

TABLE 4.1-1 Population mean and standard deviation of
gene length in the known human genome.

Name Parameter Value (nucleotides)
Mean u 2622.0
Standard deviation o 2036.9

In real life, we would not usually know the parameter values of the study population, but in
this case we do. We’ll take advantage of this to illustrate the process of sampling.

HINT: relative frequency --> probability



Estimating mean gene length with a random sample

To begin, we collected a single random sample of n = 100 genes from the known human
genome.2 A histogram of the lengths of the resulting sample of genes is shown in Figure 4.1-2.
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FIGURE 4.1-2 Frequency distribution of gene lengths in a unique random sample of
n =100 genes from the human genome.

The frequency distribution of the random sample (Figure 4.1-2) is not an exact replica of

the population distribution (Figure 4.1-1), because of chance. The two distributions
nevertheless share important features, including approximate location, spread, and shape. For
example, the sample frequency distribution is skewed to the right like the true population
distribution.

The sample mean and standard deviation of gene length from the sample of 100 genes are
listed in Table 4.1-2. How close are these estimates to the population mean and standard



Further remarks

The sample mean and standard deviation of gene length from the sample of 100 genes are
listed in Table 4.1-2. How close are these estimates to the population mean and standard

deviation listed in Table 4.1-1? The sample mean is Y =2411.8,Y = 2411.8, which is about 200
nucleotides shorter than the true value, the population mean of py = 2622.0. The sample standard
deviation (s = 1463.5) is also different from the standard deviation of gene length in the
population (o = 2036.9). We shouldn’t be surprised that the sample estimates differ from the
parameter (population) values. Such differences are virtually inevitable because of chance in
the random sampling process.

TABLE 4.1-2 Mean and standard deviation of gene length Y in our unique
random sample of n = 100 genes from the human genome.

Name Statistic Sample value (number of nucleotides)

Mean Y VY 2411.8
Standard deviation S 1463.5




The sampling distribution of Y v

We obtained Y =2411.8Y - 2411.8 nucleotides in our single sample, but by chance we might
have obtained a different value. When we took a second random sample of 100 genes, we
found Y =2643.5.Y - 2643.5. Each new sample will usually generate a different estimate of the
same parameter. If we were able to repeat this sampling an infinite number of times, we could
create the probability distribution of our estimate. The probability distribution of values we
might obtain for an estimate make up the estimate’s sampling distribution.

The sampling distribution is the probability distribution of all values for an estimate that we
might obtain when we sample a population.

The sampling distribution represents the “population” of values for an estimate. It is not a
real population, like the squirrels in Muir Woods or all the retirees basking in the Florida
sunshine. Rather, the sampling distribution is an imaginary population of values for an
estimate. Taking a random sample of n observations from a population and calculating Y V is
equivalent to randomly sampling a single value of Y ¥ from its sampling distribution.

To visualize the sampling distribution for mean gene length, we used the computer to take a
vast number of random samples of n = 100 genes from the human genome. We calculated the
sample mean Y Y each time. The resulting histogram in Figure 4.1-3 shows the values of Y ¥
that might be obtained when randomly sampling 100 genes, together with their probabilities.
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FIGURE 4.1-3 The sampling distribution of mean gene length, Y, when n = 100. Note
the change in scale from Eigure 4.1-2.

Figure 4.1-3 makes plain that, although the population mean p is a constant (2622.0), its
estimate Y Y is a variable. Each new sample yields a different Y ¥ value from the one before.
We don’t ever see the sampling distribution of Y ¥ because ordinarily we have only one
sample, and therefore only one Y .Y Notice that the sampling distribution for Y ¥ is centered

exactly on the true mean, p. This means that Y ¥ is an unbiased estimate of .

The spread of the sampling distribution of an estimate depends on the sample size. The
sampling distribution of Y ¥ based on n = 100 is narrower than that based on n = 20, and that
based on n = 500 is narrower still (EFigure 4.1-4). The larger the sample size, the narrower the
sampling distribution. And the narrower the sampling distribution, the more precise the
estimate. Thus, larger samples are desirable whenever possible because they yield more precise
estimates. The same is true for the sampling distributions of estimates of other population
quantities, not just Y .Y.



Study materials

* Rossner [R] chapter 2
e Whitlock&Sluter [WS] chapter 2
 RDL lecture n. 3 in Data Analysis Moodle Course

e Read Naomi Altman’s article in  Nature Methods
Importance of being uncertain and write in word,
latex... a 1 page essay with a resume of it.

From: [JHZ]Jerrold H Zar - Biostatistical Analysis_ Pearson New International Edition-Pearson (2014).

From:[R]Bernard Rosner - Fundamentals of Biostatistics-Brooks Cole (2015)

From:[WS] M.C. Whitlock and D. Schluter - The Analysis of Biological Data-W. H. Freeman and Company (2015).









SEE YOU NEXT MONDAY'!
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