ONE_, OF THE GREAT STRENGTHS of population
ecology is that it is quantitative. If the survival rate
of adult bald eagles decreased 2% per year, would their
populations decline? If we could increase the survival
of juvenile salmon 0.5% in their first year, how many
more adults would reach maturity and be available for
fishermen? Itis possible to answer these questions pre-
cisely with some simple mathemates. Population
mathematics is not difficult, but it is sufficiently differ-
ent to merit some of your attention if you wish to
achieve a more precise understanding of how and why
populations change. The next two chapters provide this
quandragve background for populaton ecology.

Life Tables

*f\_iiortali.fji'is one of the four key parameter'.s that drive
population changes, as we saw in Chapter 9. We need

. a technique to summarize how mortality is occurring

| in a population. Is mortality high among juvenile
" organisms? Do older organisms have a higher mor-
y tality rate than younger organisms? We can answer
these kinds of questions by constructing a‘?_':'ﬂ'.m_bfé';i
conveéiient format for describing the mortality sched-
| ule of a population. Life tables were developed by
¢ himan demographers, particularly those working for
life insurance companies, which have a vested inter-
eSt'in knowinig Wow Tong people can be expected to
live. There is a correspondingly immense literaware:
_on human Jife tables, but few darta are available oy

other animals or on plants.

Plant and animal populations may be composed
of several types of individuals, and'in any given analy-
sis a demographer may group them together or may
keep them separate. A'Tife insurance company offers
to males a policy different from the one they give to
females for good demographic reasons, and thus it
may be useful for some purposes to classify individu-
als by sex or age.

A life table is an age-specific summary of the
mortality rates operating on a cobort of individuals. A
cohort may include the entire population, or it may
include only males, or only individuals born in a given
xear An example of a cohort life table for song spar-

rows is given in Table 10.1. The columns of this life -

table are assigned the following symbols, which are
consistently used in ecology:

x = age
n, = number alive at age x
I, = proportion of organisms surviving fromn the
start of the life table w0 age »

. = number dying during the age interval x o
x+1
'per capita rate of mortality during the age
interval v tox + 1

.}

(]

%

To set up a life table, we must decide on age inter-
vals in which to group the data. For humans or trees
the ige interval may be five years; f'olr"'_"d::er, birds, or
peréhnial plints one year, and for annnal plants or
field mice one month. By making the age interval
shorter, we increase the detail of the mortality picture

shown by the life table.
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bia."
TABLE 10.1 Cohort life table for the song sparrow on Mandarte island, British Columbia.

; bt Rate of
Observed Proportion sl._rrw'ving at j .'\r'iredg:gjg :1.:;.&:1* X brtalts
Age in years no. of birds alive start of ”{.‘E'lf 3"“-" valx Aast (d,) (a.)
(I} n, X - -
(n,) %0 0.78
0 115 1.0 6 0.24
1 25 0.217 5 037
2 19 0.165 10 0.83
3 12 0.104 1 % 0.50
4 2 0.017 1.0
5 1 0.009 1 il
6 0 0.0 S

* Males hatched in 1976 were followed from hatching until all had died six years Jater. Source: From Smith (1 968).

Note that if you are given any onc of the columns
of the life table, you can calculate the rest. Put another
way, there is nothing “new” in each of the three
columns /,, 4, and g, they are just different ways of.
SUMUMAriZIng onié set of data. The columns are related

n,=n_—d, (10.1)

g. &%= (10.2)

Jale (10.3)

For example, from Table 10.1,

d n
ny=n,—d, ?z=;’; '*'4=;‘;
=19 -7=12 =T?5=0‘37 =%=0.01?

The rate of mortality g7, is expressed as a rate for
the time interval between successive census stages of
the life table, For example, g, for the song sparrows in
Table 10.1 is 0.78 for the interval between egg and
one year, or per year. Thus 78% of the birds are lost
in the nest or during their first year of life,

“The most frequently used part of the life table (see
‘Table 10.1) is the r, column, the number of survivors
at age x. This is often expressed from a starting cohort
of 1000, but some human demographers prefer a start-
ing cohort of 100,000. Other_%ﬁ@rkﬁrsf.pr't_:fer_;tbfﬂw(q
the /, column to show the proportion surviving. The
n, (or L) data are plotted as a survivorship mwe)ﬁl:
ure 10.1 presents the survivorship curves for the
human populadon of the United States in 1998, Note

that ﬂ'}e n, values are plotted on a logarithmic scale,

No. alive

a0 ] 1 L |
0 20 40 60 80 100
Age (years)
FIGURE 10.1

Survivorship curves for all males (red) and fermales (blue

n t._be_ United States, 1998, for a starting cobort of I(b 000)
mdividuals. Life expectancy from birth Jor mnales is 73 years
and for females 80 years. (Data from the U.S, National
Center for Health Statistics 1 999.)

jr"‘q_pu_l_adon data should be plotted this way when one
is interested in per @pimﬁggg?mﬁﬂ{éfﬂu}l
absolute numerical l:hange,s:@‘c;;}i"ﬁl) e
The life table was introduced to ecologists in
1921 by Raymond Pear], one of memosiunglortaht
population ecologists in,thg?ff Eﬁ?&tﬁsd E: thi
first four decades of the twennethﬂggnamnfg’ " l;
(1928} described mee_'mzzm%mﬁp
curves (Figure 10.2). Type : isti
of popul_atg;; with)lbgﬂlmﬁf ks 'Cha'mcmn's'uc
of the life span and then high Jogs

' : . Osses. A
g.T,S;.Th&hﬂQH survivorship .Curvafs. %%j_grgan
Fanstant per capita rate of mgrt:-ﬂi £ mplies
igs("fﬁ%‘cqms indicate high poy -0 s pendent of

] S s eee oo L DEF Capita i
B‘-‘El}’;_!.l'l life, followed by a perloﬁm?ﬁmny
I'Clat‘l".?&[yhegr{smﬂ-t ]055— . T .el.:-.,,,a.‘nd

© population has a surviv i
. : ’ orshlp C '
o . F e i T g - £ .
like these idealized ones, and zgal Sirves :r’é"c'cm"gos"“ |
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FIGURE 10.2

(a) Hypotbetbical survivorship curves (n,). (5) Mortality
rate (d,) curves corvesponding to these bypotbetical
survivorship curves. Type 2 curves show constant survival
rate with respect to age. Type 1 curves show increasing -
mortality late s life, and Type 3 curves show the highest
mortality early in life. (After Pearl 1928)

populations would fall in the area intermediate
between types 1 and 2. Often a period of high loss in
the early juvenile stages alters these ideal type 1 and
2 curves. Type 3 curves occur in many fishes, marine
invertebrates, and parasites. '
Now that we have seen what a life rable looks like,
how do we get the data to construct one? The answer™
is: it depends, because there are two very different
ways of gathering data for life tables, and they pro-
duce two different types of life tables: the cohort life
table (which we have already seen in table 10.1) and
the static life table, These two life tables are different

(except for the first few days of [ife). Many birm__mQﬁ.' except under ﬁnﬂsﬁ:ii“cifEﬁrhstﬁncés,-mdﬁE-

always quite different in meaning (Caughley 1977)."

TR N MY R T ——
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. TABLE 10.2 Static life table for the Human Female Population of Canada, 1996.

Mortality rate
Age group (yr) No. in each age group Deaths in each age group per 1000 persons (1000 q,)

04 955,000 1211 1.28
5-9 984,500 159 0.16
10-14 ' 987,700 \ 162 0.16
15-19 976,500 179 0.18
20-24 1,002,900 377 0.38
25-29 1,102,100 525 0.48
30-34 1,297,200 633 0.49
35-39 1,322,500 804 0.61
40-44 1,195,700 1031 0.86
4549 1,074,700 1422 1.32
50-54 834,000 1899 2.28
§5-59 670,700 ‘ 2444 3.64
6064 616,900 3820 6.19
6569 593,100 5900 92.95
70-74 547,100 8642 15.80
75-79 415,100 10,789 25.99
80-84 292,700 14,226 48.60
85-90 162,300 15,739 96.97
90 and above 88,000 28,763 326.85

Source: Statistics Canada (1999),

The static life table (also called a stationary, time-
specific, current, or vertical life table) is calculated on
the basis of a cross section of a population at a specific
| tme. Table 10.2 is a static life table composed from the
census data and mortality data for human females in
Canada in 1996. A cross section of the female popula-
ton in 1996 provides the number of deaths (d,) in each
age group and the number of individuals in that age
group. This allows us to estimate a set of mortality rates
(g.) for each age group, and the ¢, values can be used to
- calculate a complete life table in the way ountlined pre-
| viously, if we assume thar the population is stationary.

The cobort fife life table (also called a generaton or
horizontal life table) is calculated on the basis of a
cohort of organisms followed throughout life. For
example, we could, in principle, get all the birth
records from New York City for 1931 and trace the
history of all these people throughout their lives, fol-
lowing those that move out of town a very tedious task.

Raymond Pearl (1879-7940) Professor of Biometry, Johns
Hopkins University

'For hurnan populations, unlike those of other animals and plants,
itis posible to construct cohort life tables indirectly from mortal-
ity rate (g,) data. To construcy a cohort life table for the 1931 New

We could then tabulate the number surviving at each

Yark City cohort, we can obmain the mortality statistics for the O- age interval. V‘?r}’ few d"_“a like these are available for
to 1—-year—olds for 1931, the 1-to 5= year-oidS for 1932-1915, the human POPUJ'&UUH$1. This pl"DCEdLll’ﬁ waould gi\'ﬂ us the
6-to—10-year-olds for 1936-1940, and so on, and use these g, rates  survivorship curve directly, and we could calculate the

to estimare the life-table funcrions. other life-table functons, as previgusly describgd 5
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FIGURE 10.3
Survivorship curves of the barnacle
Chtharmalus stellatas, which bad
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Balanus not removed
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serrled naturally on the shore at
Mitlport, Scotland, in the aurumn of
1953, The survival of Chthamalus
growing without contact with
Balanus is compared with survival
in an area with both species. Balanus
crowds out Chthamalus when the
two species are side by side. (Data

—
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1954 1955

These two types of life table will be identical if
and only if the environment does not change from
year to year and the population is at equilibrium. But
normally birth rates and death rates do vary from year
to_year, and conscquenﬂ\ large differences exist
between the fwo forms of ife table; These differences
can b iMustrated most easily Tor buman jopdauom
For example, a static life mble for bumans born ir i
1200 in_the United States would show whart the sur-
ershlp curve would have been if the population had
cqgunued su.runng at the rates observed in 1900 But

same 1900 rates. The continual i unprovement in med-
icine and sanitation in the past 100 years has increased
survival rates and life expectancy by more than 15
years, and the peopIe born in 1900 had a cohort or
genératon survivorship curve unlike that of any of the
years through which they lived. Stadic life tables
assume static (stationary) populatons.

* Instrance companies would-like to have daa
from cohort life tables covering the > fature, bat these
data are obviously impossible to get. Insurers are def—
initely not interested in cohort life rables covering the
past—the life table for the 1900 cohort would be of
[itfle use for predicting mortality patterns today. So_
insurers use static life tables and correct them at each
census. These predictions will never be compTetely
accurare but will be close enough for their purposes.

Life mbles from nonhuman populations are more
d.lﬁmlt to come by In general, ecologists use three
types of data to construct life tables:

. Sm‘uwor_rb:p directly observed. The information
on survival ('uﬁf a Iarge cohort born at thg
same time, followed at close intervals r.hrough-
out its_existence, is I:ht‘: best to have, since it
generates 2 cohnrt hfc tﬂblc dlrecﬂx and does

e e m—

. from Connell 19614 and personal

comrmunication.,)

not involve the assumption that the population
is stable over time. A good example of data of
this type is that of Connell (1961a) on the bar-
nacle Chthamalus stellatus in Scotland. This bar-
nacle settles on rocks during the autumn. _
Connell did several experiments in which hc
removed a ‘competing barnacle, Balanus bal-
anoides, from some rocks but not from others,
and then about once a month counrted the
Chthamalus surviving on these defined areas
(F:gu.re 10.3). Barnacles that disappeared had
cemm}y died; they could not emigrate.

> Age at a'earﬁ obsmed.: Data on age at death may
be used to estimate the life-table functions for
a static ife table. Tn such cases we must assume
that the population size is constant over fime
and that the birth and death rates of each age
gToup remain constant. A good example of this
type of data comes from the work of Sinclair
(1977) on the African buffalo (Syncerus caffer) in
the Serenged area of east Africa. On his study
area Sinclair collected 584 skulls of buffalo that
had died from natural causes and classified
them by age and sex. The age at death was
deterrmned by examining the annular rings on
the horns. Young animals were difficult to sam-
ple properly because their fragile skulls were
more susceptible to damage by weather and
carfitvores. Sinchir estimated the losses dunng
the first two years of life by direct observations
on the herd and obtained the mortality esti-
mates shown in Flg‘u_rc 10.4.

l{ Agg structure directly aém'v.‘ad Ecological infor-
mation on age structure, fm:ucularly of rees,
blrd,s and fishes, i is C(_inszde['able and in some
cases can be used to construct a static life table.

T T
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Females

0 2 4 6 8 10 12 14 16 18
Age {years)

FIGURE 10.4

Morzality rate per year (q,) for each one year age
mgerval for the African buffalo. Age at death was
determined from skulls of dead buffalo collected during
a period of steady population increase. (Data from
Sinclair 1977.) '

In these cases, we can often determine how
many individuals of each age are living in the

population. For example, if we fish a lake, we

can get a sample of fish and determine the age
of each from annular rings on the scales. (The
same type of data can be obtained from tree
rings.) The difficulty is that to produce a life
table from such data, we must assume a con-
stant age distribution, something that is rare for
many populations. Consequently, data of this
type are not always suitable for constructing a
life table. i

Attempts to gather life-table data on organisms
other than humans and to establish a general theory
of senescence have suggested that, except for early
ages when mortality is high, mortality rates (g,)
iricrease inexorably with age, so that for all organisms
the mortality curve is ronghly U-shaped, as illustrated
in Figure 10.4. But this commonly accepted idea of
senescence of mortality rares increasing inexorably
with age, has been challenged in recent years by large-
scale experiments on Mediterranean fruit flies (Cer-
atitis capieata) conducted by Carey ét al. (1992) and by
extensive summaries of human data by Vaupel et al,
(1998). Figure 10.5 plots mortality rates for a labora-
tory cohort of 1.7 million Mediterranean fruir flies,
The death rate for flies that survive beyond 60 days
falls instead of rising, as senescence theory would pre-
dict. The implication is that our simple ideas of senes-
cence of organisms are not correct, even for humans
(Vaupel et al, 1998). E:
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FIGURE 10.5

Age-specific mortality vates in a cobort of 1.2 milliom
Mediterranean fruit flies (Ceratitis capitata) raised in
laboratory cages. A large initial cohort size was needed in
order to insure that adequate sample sizes would be
available for old flies. Note that the mortality rate does
not increase continuously with age, as most models of
aging bave assumed, but declines after age 60 days
(arrow). (Data from Carey et al. 1992)

Intrinsic Capacity for
Increase in Numbers

A life table summarizes the mortality schedule of 2
population, and we have just seen several ::xamplés.
We must now consider the reproductve rate of a pop-'
ulation and techniques by which we can combine
reproduction and mortality estimates ro detercnine
net population changes. Students of human pbpul.a-»
tons were the first to appreciate and solve these prob-
lems. One way of combining reproduction and
mortality data for populations urilizes 2 demogrnpl:;ic
parameter called the intrinsic capacity for increasa
derived by Alfred Lotka in 1925,

Any population in a particular environment wil] _
have a mea:i'l longevity or survival rate, a mean natal-
1ty rate, and 2 mean growth rate or speed of devolor™
ment of individuals.gff'he." ﬂﬁé;?ﬂfiﬁ%ﬁ
determined in part by the environment and jn partb
the innate ‘_qyalitic_s of the Drganisms tl':1.‘.:fnst:hrvz:s)f
These qualities of an organism canngt be measured
simply because they are not a constane, but by mea.
suring their expression under specified boﬁ&idyans we
can define for each population jts merinsic capacity for

mc[ﬂﬂ_ {also called the

——

————— =
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TABLE 10.3 Survivorship schedule (f,) and fertility schedule (b,)

For women in the United States, 1996,

Midpoint or Proportion surviving No. fernale offspring per female Product of
Age group prvotal age x to pivotal age |, aged x per S-year period (b} |, and b,
0-9 5.0 (0.9932 0.0 0.00
10--14 12.5 0.9921 0.003 0.0030
15-19 17.5 0.9905 0.137 0.1357
20-24 22,5 0.9883 0.278 0.2747
25-29 27.5 0.9860 0.285 0.2810
30-64 328 0.9829 0.211 0.2074
35-39 375 0.9785 0.089 0.0871
4044 42.5 0.9725 0.017 0.0145
45-49 47.5 0.9636 0.0007 0.0007
50 + s — 0.0 0.00

Ro= 1.5, = 1.006]
0

Sourze: Starictical Abstract of the United Stater 1998,

usucal population characteristic that depends on envi-
ronmental conditions.

“Environments in nature vary continually. They
are never consistently favorable or consistently unfa-
vorable but fluctuate between these two extremes for
cxampie from winter to summer. When conditions
are favorable, numbers increase; whem condmcm.s are:
unfavorable, numbers decrease. [t is elear thatna. pop-
ulation goes on increasing forever Darwin (1859,

- Chapter 3) recognized the contrast between a high

potential rate of increase and an observed approxi-
mare balance in nature. He illustrated this problem by
asking why there were not more elephants, given his
estimate that two elephants could give rise to 19 mil-
lion elephants in 750 years.

Therefore, in nature we observe an acmsz;,gf
population change that i CDI’ltllll‘.la]l} varying from
positive to negative in response to changes within ¢k the
population in age distribution, social structure, and
genetic composition, and in response to changes in
environmental factors. We can, however, ask What
would happen 1o a popu!auon if it persisted in its cur-
rent conﬁgurauon of bu'ths and deaths, Thl}_aﬁsmaa
tion is the ecologist’s version of the perfect vacuum of
introductory physics: we ask what would happen in
terms of population increase if conditions remained
unchanged for 2 'Icmg dmeina paru-::u!ar ermmnment,

" An organism’ innate or intrinsic capacity for
increase depends on irs fertility, longevity, and speed
of de:velupmenr For any populadon, lhese processes

the death rate. When the natality rate exceeds the
cfeath rate, the population will increase. 1f we wish to
estiffiate cp.al:mtltaI:m:l']F the rate at which the popula-_
tion Tncteases or decreases, we need to descnbe how
both the natality rate and the death rate vary with age.
“How can we express the variations of natality and
mortality rates with age? We have just discussed the
method of expressing survival rates as a function Df
age. The Iife table includes a table of age-specific sur-
vu:gi. rates. The portion of the life table needed to
compute the capacity for increase is the l’,l column, the
proportion of the populaton surviving to age x. Sim-
ilarly, the natality rate of a population is best described
by an age schedule of ‘births, seed productmn egg pro-
ducuan, or fission. T]:us is a table that gives (for sex-
ual species) the number of femnale offspring produced
per female aged x t0 x+] and is called afertility scheq-

"_'::Té, or'b, “‘Function. Usually only females are counted,
-and the demographer typically views Eopuianons as”

females giving rise to more females. Table 10.3 gives
the survivorship table the I, séhedule with which we
are familiar and the fersihsy schedule for women in the
United States in 1996. In this case, the great majority
of women live through the childbearing ages. The fer-,
tility schedule gives the expected number of female off-
spring for each woman living through the five years of
each age group. For exarriple, slightly fewer than three
women in 10 between the ages of 25 and 29 will, on
average, have a female baby.

le_n these da.ta, we can obtain 2 useful stat:stn:,




140 PART THREE The Problem of Abundance: Populations

U.S. women, 1996
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FIGURE 10.6

Expected number of female offspring per five year period
for each female in the United States in 1996, Data are
from the final column in Table 10.3. The area under the
bistogram is the net reproductive rate Ry, (Data from the
Statistical Abstract of the United States 1998.)

lives its entire reproductive life at the sarvival and fer-
tility rates given in Table 10.3, what will this cohort
or generation leave as its female offspring? We define
as the net reproductive rate as follows: ~2

e —

Net reproductive rate = R, (10.4)
Number of daughters
produced in
generaton t + 1

~ "Number of daughters
produced in
generaton t

— S ——
o Ll ed e

(R, is thus the multiplication rate per generation? and

* is ‘obtained by multiplying together the /, and &,
schedules and summing over all age groups, as shown
in Table 10.3:

R,=S1 b, (10.5)
D

i L

Thus we temper the natality rate by the fraction
of expected survivors to each age. If survival werg
100%. Ro, would just be the sum of the ¥, column. In
this example (see Table 10.3), if the human population
of the United States continued at these 1996 rates, it

2 generation is defined as the mean period clapsing between the bisth

would multiply 1.006 times in each gencration. If the
net reproductive rate is 1.0, the population is repﬁg{_
ing itself exactly; when the net reprqduc‘:twe rate is
below 1.0, the population is not replacing itself; and if
the rates in the example continue for a long time, the _
population will increase about 0.6 percent cs.mh gen-
eration in the absence of immigration or emigration.
The net reproductive rate is ilustrated in Figure 10.6.

Given these two schedules expressing the age-
specific rates of survival and fertility, we may inquire
at what rate a population subject to these rates would
increase, assuming {1) that these rates remain constant
and (2) that no limit is placed on population growth.
Because these survival and fertility rates vary with age, /
the actual natality and mortality rates of the papula-
tion will depend on the existing age distribution. If
the whole population were over 50 ycars of age, it
would not increase. Similarly, if all females were
between 20 and 25, the rate of increase would be
much higher than if they were all between 35 and 39.
Before we can calculate the population’s rate of
increase, it would seem that we must specify (1) age-
specific survival rates (), (2) age-specific natality rates
(b.), and (3) age distribution.

This intuitive conclusion is not correct. Contrary
to intuition, we do not need to know the age stmacture
of the population. Lotka (1922) showed that a popu-
lation that is subject to a constant schedule of natality
and mortality rates will gradually approach a fixed or
stable age distribution, whatever the inidal age distrib-
ution may have been, and will then maintain this age
distribution indefinitely. This theorem is one of the
most important discoveries in mathematical demog-
raphy. When the population has reached this stable
age distribution, it will increase in numbers according
to the differendal equation

dN

e {10.6)

.

or, as rewritten in integral form:

——

N, =Ny "

where N = number of individuals at time 0

(10.7)

N, . namber of individuals at me ¢
¢ = 2.71828 ( a constany)

¥ = intrinsic capacity for increase for the
particular environmental conditions

—of partnts and the Birth of offspring; see page 141 and Figure 10.9.

t=time
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{a) Logarithmic scale

FIGURE 10.7

Geomnetric growth of a bypothetical population when
Ng = 100 and v = 0.5, according to Egquation (10.7).
(@) On a logarithmic scale, geometric population growth
appears as a straight line. (6) On an arithmetic scale,

geomelric population growth is a curve that rises more
rapidly with time.

{b) Arithmetic scale

This equation describes the curve of geometric
increase in an expanding population (or geometric
decrease to zero if 7 is negative}.

A simple example illustrates this equation. Let the

starting population (Ng) be 100 and let r = 0.5 per '

fernale PEF year. The successive populations would be:

Year Population size
0 100
1 (100)(e%%) = 165
2 (100)(e* 0y = 272
3 (100)(e' %) = 448
4 (L00)e*% = 739
5 (100)e2%) = 1218

This hypothetical population growth is plotted in
Figure 10.7. Note that on a logarithmic scale the
increase is linear, but on an arithmetic scale the curve
swings upward at an accelerating rate.

To summarize to this point: {1} Any population
subject to a fixed age schedule of natality and mortyl.-
ity will increase in 2 geomemic way, and (2) this geo-
metric increase will dictate 3, Gxed and vachanging
age distribution called the &abls age distributions

T_'._f:_tl_us_ invent a simple b}'-p;-_a.sl'leﬁcal Organism to
illustrate these points. Suppgse that we have a
parthenogenetic animal that ].ives three years anc[th;n

dies. It produces two young at exactly one year bf'é"g.g,
one young at exactly two years of age, and na youn;
at year 3. The life table and fertility table for thig

hypothetcal animal are thus extremely SJI'TPH_‘—

A il o i S e S 2
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X l, b, b,  (x)(4) (B
0 1 0 0 0
1 1 2 2 2
2 1 1 1 2
3 1 0 0 0
4 0 - - -

4

R'G‘ = Zfr b.r =
il

If a population of this organism starts with one indi-
vidual at age 0, the population growth will be as
shawn in Figire 10.8 (page 142), or, in tabular form,
as follows: '

Number at Ages  Total population % Age 0 in total
Year 0 1 2 3 size popuiation

0 1 0 0 0 1 100.0
1 2 1 0 0o 3 66.7

2 § 2 1 10 8 62.50
a: 2 53 2 1 20 60.00
4 29 12 § 2 48 60.42
5 70 29 12 5 116 60.34
6 169 10 29 12 280 60.36
7 408 169 70 29 676 60.36
B8 983 408 169 70 1632 60.36

Note that the age distribution quickly becomes fixed
or stable with about 60%at age 0, 25% at age 1, 10%
at age 2, and 4 %at age 3. This demonstrates Lotkas
(1922) conclusion thata population growing geomet-
rically develops a stable age dismbuton.

We may also use our hypothetical animal to illus-
trate how the intrinsic capacity for increase r can be
calculated from biological dara, The data of the /, and
b, rables are sufficient to allow the calculation of r,
the intrinsic capacity fot ficrease in numbers. To do
this, we first need to calculate the net reproductive
rate {Roﬁ, explained earlier. For our hypothetical ani-
mal, B, = 3.0, which means that the population can
triple its size each generation. But how long is a gen-
eration? The mean length of g generation (G) is the
mean period efapsing_ between the production gr
“birth” of parents and the production or “birth” of
offspring. This is only an approximate definition,
becavse offspring are produced over a period of time
and not all at once. The mean length of a generation
is defined approximately as follows (Dublin and
Lotka“wrs}’:ﬂ* g (D

i
oo 2l b x 5 ZI;!!,r

4 b T Y

(10.8)

Lt ety o i
o S |
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Time 0

Time 1 ]
i

Time 2

Time 3 {h

FIGURE 10.8

Population growth of a simple bypothetical organism that
is parthenogenetic. Start at the top of the diagram with
one green mdividual (each box represents one individual).
At time 1 this individual gives birth to two young
(yellow, red), so that there ave now three individuals at
time 1. As time 2 the two young mdividuals (red and
yellow) grve birth to rwo young cach and the old green
mdrvidual gives birth to one young, o at timé 2 there are
o eight mdiciduals. The green individual then dies
and the others reproduce, so thar at time 3 there ave 19
mdividuals, Solid lines indicate reproduction and dashed
kines indicate the aging of mdividuals from one time tp’
the next. Three of the individuals ave color-coded to show
their presence through rime, N

For our model organism, G = 4.0/3.0 = 1.33 years.
Figure 10.9 uses the metaphor of a balance to illus-
trate the approximate meaning of generation time for
2 humnan population. Leslie (1966) has discussed some
of the difficuldes of applying the concept of genera-
tion dme to 2 continuously breeding population with
overlapping peneratons. For organisms such as
annual Plﬂﬂ.ﬁ and many insects with a fixed 1»::Ilg‘l‘._l’l.mt:)fl
life cycle, the mean length of a generation is simple to
measure and to understand. '
Knowing the multiplication rate per generation
(Ro) and the length of a generation (G), we can now
determine r directy as an instantaneous rate:

lﬁ%@ﬁ (10.9)

For our hypothetical organism,

r= i l' %ﬂ) =0.824 per individual per year

Because the generation time G is an approximate esti-
mate’, this value of r is only an approximate estimate
when generations overlap.

The capacity for increase is an instantaneous rate,
and can be converted to the more familiar finite ratet

FIGURE 10.9

A mechanical balance to illustrate the idea of the mean
length of one generation. Histogram of daugbhters from a
cobort of 100,000 mothers starting life together (right
side) is balanced by sums of total daughters (116,760) at

exactly 28.46 years from the fulcrum. The mean length
of a generation (G,) is thus 28.46 years for these data.
Data from the U.S. population of 1920, R = 1.168.

Finite rate of increase=A=¢"  (10.11)

= S a—

Box 10.2 illustrates how to calculate the intrin-
sic capacity for increase from survivorship and fer-
tility schedules.

It should now be clear why the intrinsic capacity
for increase T iumbers cannot be expressed quant-
tatively except for a particular environment. Any com-
ponent of the environment, such as temperature,”
hisimidity, or rainfall, might affect the watalify ad _
mortality rates and hence r.

- Charles Birch, working at the University of Syd-
ney, did some of the classic early research applying
these quantitative demographic technigues to Insects.
One illustration of the effect of the environment on
the capacity for increase was developed by Birch
(1953a) in his work on Calandra oryzae, a beetle pest
that lives in stored grain. The capacity for increase in
this species varied with the temperature afid with the
moisture content of the wheat, as shdwx_; inF igufe
10.10. The practical implications of these results are
that wheat should be stored where it is cool and dry
to prevent losses from C. oryzae. ' '

?Generation time has also been defined by Caughley (1977) as:
Z(J‘,b,.u*“']

et K A
M)

This will not give exactly the same value for generation time as

defined in Equation (10.8); see Gregory (1997).

‘Appendix II1 gives a general discussion of instantaneous and

by the formula™

E ii=2m
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T

_'_-H-c_:w much will the whooping crane population
- 1 X grow in the next two years? What will the ATDS
epidemic do to the population of Africa between now
- and 2050? To answer questions such as these, we can
use the demographic methods outlined in this chap-
- ter; but in doing so it is crucia) that we make one sub-
" de but important distinction: These methods can

- ‘predict the future; if you wint a prediction;, consultan’
astmloger or 3 Ouua board.) A dermographic projection
is a statement of what will happen to a population if
_certain assumptions are met, and. demographic pro-
]ectluns are correct only under very specific assump-
“tions. A demographer can pm]cct population changes

mto the future on the assumptlon that, say the age-

0.80 3
Moistura

content 14%

0.60

11%

Y

//‘\i‘*i

intrinsic capacity for Increase
o o
8 38
1 |

o
1

provlde projections—that something will"happen i
:conditions a and b are met—but not predictions that
spinethmg will happm, penod (Scientists cannot -

10 15
Temparntura (“C)

Grain beetles live in an almost ideal habitat, sur-
rounded by food, protected from mast enemies, and
with relatively constant physical conditions. They
are also easy to deal with in the laboratory and are
thus used extensively in ecology lab experiments.
When Birch (19532) studied two species, Calandra
oryzae (a temperate species) and Rbizopertha dominicq

(a wopical species), he found that in both species, »

DEMOGRAPHIC PROJECTIONS AND PREDICTIONS

speclﬁc birth and death rates will remain constant.
But in the real warld the simple assumption that
things will retnain as they are now is rarely a correct
one. Thus projections on the effects of AIDS on 2
population are most difficult because they require
some uncertain assumptions about future death rates.
Mareover, unpredictable changes such as catastrophic
environmental events are especially damaging to
demographic projections. No demaographer can fore-
see mortality to half of the whciupmg crafie popula-
tion caught in an episode of severe weather.

In spite of the fact that they canriot predict the
future, it is still useful for conservationists and resource
managers to make projections of what will happe,n if
specific assumptions arg fulfilted: Such projectons,
many of which we will examnine in the next several chap-
ter, can limit Gur optimism and pessimism alike.

FIGURE 10.10

Intrinsic capacity for increase (1)
of the grain beetle Calandra
oryzae living in wheat of different
moisture contents and at different
temperatures, The higher the
maoisture content of the wheat, the
maore rapidly these beetles can
increase in numbers. (After Birch
1953a)

Calandra
oryzae

varied with temperature and moisture (Figure
10.11). The lines » = 0 mark the limits of the possi-
ble ecological range for each species with respect to
temperature and moisture. Czlandra is more cold-
resistant; Rbizepertha can increase at higher temper-
atures and lower humidities. The distribution of the
two species in Australia agrees with these results:
Rbizopertha is a pest only in the warmer parts of the
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Calandra

Rhizopertha

10 20

30 40

Temperature (°C)

FIGURE 10.11

Intrinsic capacity for increase (v) of the two grain beetles Calandra oryzae and
Rhizopertha dominica fiving i whear of different moisture content and at different
fernperatures. The bigher the temperature and the dryer the wheat, the more

Rhizopertha is favored. (After Birch 19534 )

Charles Birch (1918-) Professor of Zoology, University of
Sydney

country and is absent from Tasmania, where Calan-
dra occurs a5 a pest. ]

In general, the intrinsic capacity for increase is
not correlated with the abundance of species: ?pecics
with a high 7 are not always common, and species with
4 low r are not always rare. Some species, such as the
bison in North America, the elephant in centra]
Africa, and the periodical cicadas, are (or were) quite
common and yet have a low r value. Many parasites

and other invertebrates with a high capacity for
increase are nevertheless quite rare. Darwin (1859)
pointed this out in The Origin of Species. From a con-
servation viewpoint species with a high r can recover
more quickly from disturbances, and these calcula-
tons will permit us to calculate exactly how fast they
might recover.

We can calculate how certain changes in the life
history of a species would affect its capacity for
increase in numbers. In general, three factors will
increase r: (1) reduction in age at first reproduction,
(2) increase in number of Progeny in each reproduc-
tive event, and (3) increase in number of reproductive
events (increased longevity). In many cases when r is
large, the most profound effects are achieved by
changing the age at first reproduction, For example,
Birch (1948) calculated for the grain beetle C. oryzae
the number of eggs needed to obtain r= .74 accord-
ing to the age at first reproduction:

Age at which breeding Total no, eggs that must
begins (weeks) be latd to produce r = 0.76
1 15
2 32
3 67
4 141 (actual life history)
5 297
6 564

e



The earlier the peak in reproductive output, the
larger the r value, as a rule. Lewontin (1965) provides
an excellent example to illustrate this in Drosophilz ser-
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survives poorly and lays fewer eggs than the Brisbane
race, but because it begins to reproduce at an earlier
age (11.7 days compared with 16.0 days) and has a
shorter generation length, its capacity for increase is
equal to that of the longer-living, more fertile Bris-
bane race.

Demographic analyses aggregate individuals inta.
statistical popu]auon measures such as r, the intrinsig
capacity for increase. One of the difficulties of this
approach is that it ignores individual variaton in per-
formance. Carey et al. (1996} developed a simple,
gtaphtca] technique for illustrating individual varia-
tion in demographic performance. F!gurc 10.13
shows the survival and Lifetime reproducuon for 1000
individual Mediterranean Fruit fly females. By color
coding the rate of egg laying and rank-ordering the,
individual lifedmes, these individual g:ap.hs.aﬂmt us
to see the detailed life history pattern of the popula-
ton. The derails of individual life histories can shed
light on how population changes originate in the
propertes of individual organisms.

- To conclude: The concept of an intrinsic capac-_
ity for increase in numbers, which we have just dis-
cussed, 1s an oversimplification of nature. In nature,
we do-not find populatons with stable age distribu-
tions or with constant age-specific mortality and fer-
tlity rates. The actual rate of increase we observe in
natural populations varies in more complex ways than
the theoretical constant ». The importance of r lies
mostly in its use as a mode! for comparison with the
actual rates of increase we see in nature. The actual
rate of increase along with its components in the life
table and ferulity rable, can be used in the dtagnos1s
of em'u'onmental quality because they are sensitive to
environmental conditions.

-—— e —— - —————

Reproductive

Value

We can use life tables and fertility tables to determine
the contribution to the future population that an indi-
?ldual female will make. We call this the rerJucnve
value of a female aged x (Williams 1966), and_this is

mast easily expressed for for a population that is stable in
sme as fullows. I

——ram(Figure10.12). The Rabaul race of this kruit Hy
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B
=
1

FIGURE 10.12
. Observed |, b, functions for two races of
Drosophila serrata. Buth |, b, functions give
the same value of the innate capacity for
incyease (1) because of the overviding
grnportance of eariier veproduction and shorter
generation length of the Rabaul race. Brishane
females lay an average of 546 eggr at 20°C,
while Rabawul fermales lay only [ 5] eggs during
their life span. (After Lewontin 1965,)

L
o
]

]

Expected no. offspring per 4 days (I, b,
na
o

0 eggs/day
1-40 eggs/day
> 40 eggs/day

] , mi—r_ﬁ = =S ,
0 10 20 30 40 50 &0 70 BD 90
Age (days)

FIGURE 10.13

Graphical tecknique for displaying individual fertility
and survival data. The life spans of 1000 Mediterranean
fruit fly females is shown. Each horizontal eolored line
represents one individual. Individuals ave ranked from
the shortest life span at the top to the lomgest- kived
individual at the bottorm. (From Carey et al. 1998.)

where ¢ and x are age and v is the age of last repro-
duction. Note that as defined here, reproductive valye
at age 0 is the same as pet reproductive rate (Ry)
defined on page 140, '

Reproductive value can be pa:tjtl'_pncii__i:u_tgwt‘}v_.o
components (Pianka and Parker 1975):

Reproductive value at age x = present progeny +

expected future progeny T
L) jr p

Ve=bot X 5 (10.13)
"“'-l—a—--_._'ﬂ:..‘_‘,.-_._x

10 20 30 40 50 60 7O

Brisbane race
at 20°C

1 | J

B0 80 100

Time {days)

'We call the second term residual reproductive value,

because it measures the number of progeny on aver-
age that will be produced in the rest of an individ-
wal's lifespan, T
Reproductive value is more difficult to define if
the population is not stable (Roff 1992, Stearns 1992).
In this case we must discount future reproduction if
populfation growth is occurring because the value of
one progeny is less in a larger population. Figure
10.14 illuserates the change of Féproductive value with
age in a red deer population in Scotland. Red deer
stags defend harems, and their effective breeding span
is three to five years between the ages of sixand 11
years. By contrast, red deer hinds start to produce
calves at age 3 and breed until they are 15 years old or
older. These differences in reproductive biology
explain the shapes of the reproductive value curves in
Figure 10.14, N - o
Reproductive value is important in the evolution of
life-history traits, Watiiral selection acts more strongly
on age classes with high reproductive values and very
we:a_kly on age classes with low repraductive values,
Predators will have a greater cffect on a population if
they prefer individuals of high reproductive value,

Age

Distributions

We have already discussed the idea of age distribution,
in connection with the intrinsic capacity for UJCEEEL'&(‘..

Vge_noted that a,,popuiétiﬁn.-.gmwing geometrically
with constant age-specific moreality and fertility rates
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Reproductive value (V)

would assume and maintain a stable age distribution.
The stable age disTibutiontan be cGltdlared forany
set of life tables and fertility tables. The stable age dis-
tribution is defined as follows:
C, = proportion of organisms in the age
= category x to x + 1 in a populaton
increasing geometrically

Mertz (1970) has shown that:
oL (10.14)
5 a1,

f’.n-.-.--"'—-
i

where A =¢" = finite rate of increase
_ Jf‘= survivorship function from life table
x, I = subscripts indicating age
Let us go through these calculations with our
hypothetical organism:

A=¢=e"*'=2413
Age (x) A A A,
0 1.0 1.0000 1.00001
1 1.0 0.4144 0.4144
2 1.0 0.1717 0.1717
3 1.0 0.0711 0.0711
4 0.0 0.0295 0.0000

4
Y A~ _=1.6572
x=0
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FIGURE 10.14 a5 mles) of
Reproductive value for red deer stags (maws) o
drjg'ermt ages, ramp-g':d with that of binds (females)
on the island of Rbum, Scotland. Reproductive value
is calculated in terms of the number of female
offipring surviving to one year of age that parents of
different ages can expect to produce in the future.
(From Clutton-Brock et al. 1982, p. 154.)

Thus to calculate C, the proportion of organisms
in the age category 0 to 1 in the stable age disuibu-

don, we have

A, _ (1L0)(3.0)

1.6572 =0.6033

C.=

S A,

i=0

For C;, we have

A7, (0.4149)(1.0)

Ci=— = =0.250
$ -1, 1.6572 i
i=0
In a similar way,
C,=0.104
C;=0.043

Compare these calculated values with those
obtairied empirically earlier (page 141). Carey (1993)
illustrates another method of calculating the stable
age distribution for a set of [, and b, schedules.

Populations that have reached a constant size, in
which the fertility rate equals the mortality rate, will
also assume a fixed age distribution, called a stationary
age distribution (or life-table age distribution) and will
maintain this distribution. The statonary age distri-
bution is a hypothetical one and illustrates what the
age composition of the population would be at a par-
ticulat set of mortality rates (g,) if the fertility rate
were exactly equal to the mortality rate. Figure 10.15
contrasts the stable and stationary age distributigns
for the short-tailed vole in a laboratory colony,

A constant age structure in a population.js
atained only if the /; and b, distributions are fixed and

Ty
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FIGURE 10.15 ‘ 60

(a) Stable age distribution ;md 50
" (B) stationary age distribution for £
the vole Microtus agrestis i the 40
laboratory. The stable age distvibution R0

shouid be observed when populations
ave growing rapidly, and the stationary
age distribution when populations are 10
constant in size. (After Leslie and

*Stable age distribution
Popuiation increasing rapidly

Ranson 1940.) 0 16 32 48 64 BO 96
Age (weeks)
(a)
40
0 Stationary age dislribution
Population constant
o0 BB

Population (%)

unchanging. This typically occurs in only two situa-
tions: (1) When the age-specific fertility and mortal-
ity rates are fixed and unchanging and the populatipn
grows exponentially, the population assumes a con-
stant age structure called the stable age distribution; and
(2) when the fertility rate exactly equals the mortality
rate and"the population does not change in size over
time, the population assumes a constant age structure
called the stationary age distribution which has the same
form as the /, distribution. Under any other circum-
stances, the populations age structure is not a constant
but the changes over time, In natural populations, the
age structure is thus almost constantly changing. We
rarely find a natural populaton that Ka% & stable agg™
structure because populations do not increase for long
in an unlimited fashion. Nor do we often find a sta-
tionary age distribution, because populations are
rarely in a stationary phase for long. We can illustrate
these relatonships as follows:

With proper care, information on age composi-
tion can be used to judge the status of a papulation.
Increasing populations typically have a predominance
of young organisms, whereas constant of declining
populations do not (see Figure 10.15). Figure TO.16™
illustrates this contrast among the human population
of Kenya, which was increasing at 2.1% per year in
1995 and had an average life expectation at birth of 49
years; that of the United States, which was increasing
at 0.6% per year in 1995 and had an average life
expectation of about 77 years; and that of Ttaly, which
had a zero rate of increase with an average life expec-
tation of 78 years. The age structure of human popu-
lations has been analyzéd in detaj] because of its
economic and sociological implications (Weeks 1996).
A country with a high fertility rate and a large pro-
portion of children such as Kenya, with 46% under
age 15 has a much greater demand for schools and
other child services than do countries such as the
United States, with 21%under age 15.

In populations of plants and animals, even more
variation in 4ge composition is apparent, In long-ﬁ:éd
species such as trees and fishes, o find domingny
y?mrfasﬂr:" Figire 10.17 illustrates this for Engel-
mann spruce and subalpine fir trees of the Ro
Mountains, in which some year-classes may be 100
times as numerous as others. In these situations, .the__

4ge composition can change greatly from one year to
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Siow growth Zara growth

Age . Unitad States Year of birth ftaly
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Age structure pyramids for the buman population of Kenya (growing at 2.1% per year),
the United States (growing at 0.6% per year), and Italy (zero growth) for 1995. (From

McFalls 1996.)

the next. Eberhardt (1988) chs,__k ses the use of  age
cnmposmon information in the Tianagement of
wildlife populations, and Ricker (1975, Chapter 2)

discusses this problem in E!plnlﬂ‘a fish populations.

——— e

Evolution of

Demographic Traits

We can use the demographic technjques just described
to investigate one of the most interesting questions of
eyolutonary ecology: Why do organisms evolve one
type of life cycle rather thap another? Only Ertan
kinds of £ and b, schedules are penn1551ble if a popu-
lation is to avoid extinction. How does evolution act,
within the framewark of permissible demographic "
schedu]es, to determine the life cycle of 2 pnpulannnl'

Pacific salmon grow to adult size in the ocean ang

return t6 fresh water to spawn once and die. We may
call this !ug-bang r‘eprﬂdﬂfﬂﬂﬂ 5 Qak trees may bt:comc

*Big-bang reproduction = semelparity, and repeated reproduction
= iteroparity, for those who prefer the more classical terms derived
from Greek roots.

acorns fcr_zgg years or more. We call this repeated
reprodumm How have these life cycles evolved?
What adwnmge might be gained by salmon that
breed more than once, or by oak trees that drop ogly
one set of seeds and then die?

“The population consequences of life cycles were
first explored by Cole (1954), who asked a simple
question: What effect does repeated reproducunn
have on the intrinsic capacity for increase (r)?
Assume that we have an annual species that produces
offspring at the end of the year and then dies, has a
smlple survivorship of 0.5 per year, and has a fertil-
ity rate of 20 offspring. The life whle for this species

is as follows:

Pmpqr:f'on Product
Age (x) surviving (1) Fertility (b, (.bJ
0 1.0 0 0
1 0.5 20 10
2 0.0 - 0
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FIGURE 10.17 80 -
Age structure of (a) Engelmann spruce
and (b) subalpine fir in a forest stand
at 3150 m elevation in northern
Colorado. Neither of these tree species 40 -
bas an age distribution like those thown
in Figure 10.15 for stable or stationary
age distributions. (Data from Aplet et
ol 1988, Tuble 2) 20 +

20

20 -
()]

The net reproductive rate (Rp) is 10.0, which

means that the species could increase 10-fold in one
generation (= 1 year). We can determine » from the,

characteristic equation of Lotka: :
I
Reproductive value at age  =V_ = ¥ :—:!—i- (10.12)

from which we determine thar r=2.303 for the

annual species with big-bang reproduction. What

advantage could this species gain by continuing to

live and reproduce at years 2, 3,...° . Let us assume
the most favorable condition, no mortality after age
1 and survival to age 100. The life table now
becomes the following: o

0 25 50 75 100 125 1

Engeimann spruce

50 175 200 225 250 275

Age (years)

Subalpine fir

| L [ J

O 25 50 75 100 125 180 175 200 225 250 275

Age (years)
Proportion Product
Age (x) Surviving (1) Fertility (h,) a, bl:,‘J: \
0 1.0 0.0 0.0
2 0.5 20 10.0
3 0.5 20 10.0
4 0.5 20 10.0
5 0.5 20 10.0
99 0.5 20.0 10.6
100 0.0 0.0 0.0

Ry=3 15 =990.0




In the manner outlined above, we determine that
r=2.398 for the perennial species with repeated repro-
duction. If we adopt repeated reproduction in our
hypothetical organism, we raise the intrinsic capacity
for increase only about 4%:

it et L S

1,398 _
2.303 =10

Notr letus work backward. What fertlity rate at year
1 would equal the r of the perennial (2,398)? We can
solve this problem algebraically (Cole 1954) or by trial
and error. Suppose we increase the birth rate by one
individual. The annual life table is now:

-« Proportion Product
Age(x)  Survving(l) Fernlty(b) (kb))
0 1.0 0.0 0.0
1 0.5 21.0 10.5
2 0.0 - 0
Rp=10.%

This is almost the gain achieved by repeated
reproduction. If we increase the fertility rate by two
individuals, we get r = 2.398, equal to the r for the

perennial. This is obviously an ideal case, because we
assumeé no mortality after age 1 in the perennial form.
Cole (1954) generalized this ideal case to a surprising
conclusion: For an annval species, the maximum gain
- in the intrinsic capacity for increase (r) that could be
achieved by changing to the perennial reproductive
habit would be equivalent t6 4dding ofé diideaTE
the effective litter size (. b, for age 1). Cole assumed
for his ideal case perfect survival to reproductive age
(Charnov and Schaffer 1973). In our hypothetical
example we assurned that half of the organisms die
before reaching reproductive age.
™ This simple model for the evolution of big-
bang reproduction is unrealistic because it is 2 “cost-
free” model; present reproduction is assumed to
have no effect on future reproduction or future sur-
vival (Roff 1992, Bell 1980). Let us assume that an
organism can “decide” how much of its resources it
will devote to reproduction. If’it uses all igs
resources to reproduce, it will die and thus be a big-
bang reproducer. Big-bang reproduction will be
favored if the greater benefits of reproduction come
only evhigh levels of reproductive effort; conversely,
if good reproductive success can be achieved at low

-
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Reproductive success

Reproductive affort

FIGURE 10.18

The reproductive effort model for the evolution of big-
bang and repeated reproduction in plants and animals.
The trade-off for an organism involves how much it will
gain in reproductive success as it expends more and more
effort on reproduction. When reproductive effort is 1, the
organism breeds omce and then dies (big-bang or
semelparous reproduction). (Mod:fied Young 1990)

levels of effort, organisms will be selected to be
repeat reproducers. Figure 10.18 shows this trade-
off between reproductive effert and reproductive
success as implied in the reproductive effort model.
The key demographic effect of big-bang reproduc-

ton is higher reproductive rates. Plants that repro-

[ — e

duce only once typically produce 2-5 times as many
seeds as closely related species’ thac reproduce
repeatedly (Young 1990). Repeated reproduction
can also be favored when adult survival rates are
high and juvenile survival is highly variable. The
critica! division between big-bang (E_Elg'qd_f;;_é_tigl_}‘g;]:a-
répeated reproduction is set by the survival rate of
the juvenile stages. If survival of juveniles is very
poor or unpredictable, selection will usually favor
repeated reproduction (Roff 1992). Let us look at
one example to illustrate this theary. N

" “Two species of giant rosette plants occur abun-
dantly above treeline on Mount Kenya in Africa.
Lobelia telekii is a big-bang reproducer that lives on




FIGURE 10.19
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Giant lobelias (Lobelia telekii) in the alpine zone of Mount Kmyd, at 4200 72, The

inflorescences of this semelparous plant are 1.5-3 m tall, and all plan

ts die after flowering.

The other giant rosette plant to the left and top of the photo is Dendrosenccio

keniodendron. (Photo courtesy of Truman R. Young.)

relatively dry, less productive slopes, whereas Labeliz
deckenii keniensis is a repeated reproducer that lives in
moist, more produgtive sites (Young 1990). Rosettes
grow slowly from germination to reproductive size

over 40-80 years for both species (Figure 10.19). In_.

Lobelia telekii the resources of the entire plant go into
reproduction, and the inflorescence may exceed 3.m

in height and contain on average 500,000 seeds. After .

teproductdon the endre plant dies. In Lobekia deckenii
kenierisis only a portion of the plant’s resources goes
into reproduction, and the inflorescence rarely
exceeds 1 m tall and contains on average about
200,000 seeds. Big-b'ang reproduction in Lobelia telekii
is favored by high__m_qrt_a]jqr'df adult plants in between
flowering episodes the probabhility of future repro-

duction is outweighed
bang reproduction.

Some of the best examples of the evolution of life
history straregies come from studies within 2 singﬁle
species. Capelin are a good example because males are
big-bang reproducers while ferales are repeated
reproducers. Capelin, small (1 5—'2-§Tg')'“s_§fﬂfrie~lﬂée,
pelagic fish with a ciccumpolar arctic. distribution,
form an important part of the food chajn fea'l_";g:.;ls,
seabirds, and other fish such as cod. Males have

adopted the big-bang strategy because cach male can
mate with several females gg_;_ing..a,Spamiug_s,cas_on
and becapse male Mortality is very high after spé;jmn
ing (Huse 1998). Female capelin are limited byftlm

number of eggs they can carry, and they can improve

by the greater fecundity of big-




-

their reproductive success only by spawning several
times at yearly intervals. e

Much interest in life history evolution has cen-
tered on determining the costs of féproduction.
Reproductive effost. at any given age can be associ-
ated with a biolagical cost and a biological profit. The
biclogical cost derives from the reduction in growth
or survival that occurs_as'a consequence of Using
energy to reproduce. For example, the more seeds a
meadow grass {Pog annua) plant produces in one year,
the less it grows the following year (Law 1979). Fruit
fly (Drosopbila melanogaster) females that mate often
typically live shorter lives than females that mate less
often (Fowler and Partridge 1989). The biological
profit associated with reproduction is measured in
the number of descendants left to future generations,
which will be affected by the survival rate and the
growth rate. The hypothetical organism must in
effect ask at each age: Should I reproduce this year,
or would I profit more by waiting until next year?
Obviously, if the mortality rate of adul& & high, Tt
would be best to reproduce as soon as possible, But,.
if adult mortality is low, iLmay pay for an organism
to put its energy into growth and wait unul the next
year tg reproduce.

Many organisms do not reproduce g5 soon as they

et S T

are physiologically capable of doing g:._lh@}q quan-
tity that we must measure to predict the optimal a
at maturity is &emmﬁmndﬁ_@j&mﬁ

Individuals that reproduce in a given year will often
be smaller and less fecund in the following year than
an individual that has previously abstained from
reproduction. This 5 Bést established in poikilo-
therms, such as fishes, that show 3 feduction in
growth associated with spawning. Patend ity
costs also occur in homeotherms {Clutton-Brock et
al. 1989), and the period of lactation in mammals is
energetically very expensive for females (Figure
10.20). Social behavior associated with reproduction
can produce great differences in the costs associat

with breeding in the two sexes and.thus cause differ-

ences in the optimal age at maturity for males and
females. Red deer stags, for example, defend harems
and attain 2 breeding peak after seven years of age
through their fighting ability. Females marure at three
years and live longer than males.

Repeated reproducers must “decide” in an evolu-

fionary sense to increase, decrease, of hold constanty

e L
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FIGURE 10.20

Cost of reproduction in female ved deer on the island of
Rbum in Scotland. Mortality in winter is akways bigher
m frmales that reproduced during the previous summer,
no matter the age of the female. (After Clutton-Brock
etal. 1982.)

their reproductive effort with age. In every case ana-
lyzed so far, reproductive effort increases with age
(Sydeman et al. 1991), and this may he a general evar
lntionary trend in organisms.

~ Why do species expend the effort to have repeated
reproduction? The answer seems to be that repeated
reproduction is an adaptation to something other than
achieving maximum reproductive cutput. Repeated
reproduction may be an evolutionary response, to
uncertain survival from zygote to adult stages (Roff
1992). The greater the uncertainty, the higher the
selection for a Yonger reproductive life. This may,
involve chanifeling mors. eaesgy. into-growth and
maintenance, and less into reproduction. Thus we can
recognize a simple scheme of possibilities:

Long lfe span  Short life span
Steady reproductive ? Possible
success
Variable reproductive Possible Not possible
success

We gow believe that the advantage of regcated
repmdu.:ﬁoﬁ is that it spreads the risk of reproducing
over a lopger time pericd and thus acts as an 4dapta-
tiof that thwarts environmental fluctuations.
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‘Summary

Population changes can be analyzed with a ser of quantitative
techniques first developed for human population analysis, A
life table is an age-specific summary of the mortality rates
operating on a population. Life tables are necessary because
mortality does not fall equally on all ages, and in most species
the very young and the old suffer high moralicy.

A fertility schedule that summarizes reproduction with
respect to age can describe the reproductive component of
population increase. The intrinsic capacity for increase of a
population 15 ohtained by combining the life table and the
fertility schedule for specified environmental conditions,
This concept leads to an important demographic principle;
A population that is subject to 1 constant schedule of mor-
tality and natality rates will (1) increase in numbers geo-
metrically at a rate equal to the capacity for increase (r), (2)
assume a fixed or stable age distribution, and (3) maintain this

Key Concepts

1. Age-specific natality and mortality rates for any pop-
ulation can be summarized quantitatively in fertility
schedules and in life tables.

2. The intrinsic capacity for increase (r) summarizes the
natzlity and mortality schedules and forecasts the rate
of population growth implicit in these schedules.
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