
5 Population growth and regulation

5.1 Introduction In this chapter we first describe the fundamental characteristics of population growth
and how these vary with body size. We consider the range of processes that can con-
strain population growth through population limitation and ultimately serve to stabilize
populations through the density-dependent process of natural regulation. We then ana-
lyze the processes that can cause fluctuations and population cycles, using models to
develop our understanding of them. Finally, we examine one of the major causes of
regulation: competition between individuals for resources, or intraspecific competition.
Other causes of regulation, such as predation, parasites, and disease, will be dealt with
in Chapters 7–9.

5.2 Rate
of increase

If a population comprising 100 animals on (say) January 1 contains 200 animals on
the following January 1 then obviously it has doubled over one year. What will be its
size on the next January 1 if it continues to grow at the same rate? The answer is not
300, as it would be if the growth increment (net number of animals added over the
year) remained constant each year, but 400, because it is the growth rate (net number
of animals added, divided by numbers present at the beginning of the interval) that
remains constant. Thus the growth of a population is analogous to the growth of a
sum of money deposited at interest with a bank. In both cases, the growth increment
each year is determined by the rate of growth and by the amount of money or the
number of animals that are there to start with. Both grow according to the rules of
compound interest and all calculations must therefore be governed by that branch of
arithmetic.
Populations decrease as well as increase. The population of 100 animals on January 1

might have declined to 50 by the following January 1, in which case we would say that
the population has halved. If its decline continues at the same rate it will be down to 25
on the next January 1. Halving and doubling are the same process operating with equal
force, the only difference being that it is running in opposite directions. The terms by
which we measure the magnitude of the process should reflect that equivalence. This
is poorly achieved by simply giving the multiplier of the growth, 2 for a doubling and
0.5 for a halving, and it becomes even more confusing when percentages are used. We
need a metric that gives exactly the same figure for a halving as for a doubling, but
with the sign reversed. This will make it obvious that a decrease is simply a negative
rate of increase.
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This is achieved by expressing the rate of increase, positive or negative, as a geomet-
ric rate according to the following equation:

Nt+1 = Nt𝜆 = Nte
r

where Nt is population size at time t, Nt+1 is the population size a unit of time later, e
is the base of natural logs taking the value 2.7182817, and r is the exponential rate of
increase. The finite rate of increase (𝜆) is the ratio of the two censuses:

𝜆 = Nt+1∕Nt

and therefore the exponential rate of increase is:

r = loge(Nt+1∕Nt) = loge𝜆

Let us test this on a doubling and a halving.
With a doubling:

𝜆 = 200∕100 = 2

and so:

r = loge𝜆 = 0.693.

With a halving:

𝜆 = 50∕100 = 0.5

and so:

r = loge𝜆 = −0.693.

Thus, a halving and a doubling both provide the same exponential rate of increase,
0.693, but in the case of a halving with the sign reversed (i.e. −0.693). This makes the
point again that a rate of decrease is simply a negative rate of increase.
The finite rate of increase (i.e. the growth multiplier 𝜆) and the exponential rate of

increase r must each have a unit attached to them. In our example, the unit is a year,
and so we can say that the population is multiplied by 𝜆 per year. The exponential rate
r is actually the growth multiplier of loge numbers per year. That is something of a
mouthful, so we say that the population increased at an exponential rate r on a yearly
basis. Note that 𝜆 and r are simply different ways of presenting the same rate of change;
they do not contain independent information.
Unlike the finite rate of increase, the exponential rate of increase can be changed

from one unit of time to another by simple multiplication and division. If r = −0.693
on a yearly basis then r = −0.693∕365 = −0.0019 on a daily basis. This simplicity is
not available for 𝜆.
These equations are simplified to embrace only one unit of time. They can be gen-

eralized to:

Nt = N0e
rt
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where N0 is the population size at the beginning of the period of interest and Nt is the
population size t units of time later. The average exponential rate of increase over the
period is:

r = (loge(Nt∕N0))∕t

which can also be written as:

r = (logeNt − logeN0)∕t

It would be of a waste of data to use only the population estimates at the beginning and
end of the period to estimate the average rate of increase between these two dates. If
intermediate estimates are available, they can and should be included in the calculation
to increase its precision. The appropriate technique is to take natural logarithms of the
population estimates and then fit a linear regression to the data points, each comprising
logeN and t. A linear regression takes the form y = a + bx, where y is the dependent
variable (in this case logged population size) and x is the independent variable (in this
case time measured in units of choice). Our equation thus becomes:

logeN = a + bt

where a is the fitted value of logeN when t = 0 and b is the increase in logeN over one
interval of time. Note that this is the definition of r, so r = b. The equation for the
linear regression may thus be rewritten in the following manner:

logeN = a + rt.

This can be converted back to the notation used in the example where rate of increase
was measured between only two points by designating the start of the period as time 0:

logeNt = logeN0 + rt

which with a little rearranging converts to:

r = (logeNt − logeN0)∕t

as before. Fig. 5.1 shows such use of linear regression to estimate the rate of increase
of the George River caribou herd in eastern Canada, yielding r = 0.11 (Messier et al.
1988).

5.2.1 Intrinsic rate
of increase

The rate of increase of a population of vertebrates usually fluctuates gently most of
the time, around a mean of zero. If conditions suddenly become more favorable, the
population increases, the environmental improvement being reflected in a rise in
fecundity and a decline in mortality.
The environmental change might be an increase in food supply, perhaps a flush of

plant growth occasioned by a mild winter and a wet spring. The rate at which the
population increases is then determined by two things: the amount of food available
and the intrinsic ability of the species to convert this extra energy into enhanced
fecundity and diminished mortality. It thus depends on an environmental effect and



72 Chapter 5

Fig. 5.1 Exponential
population growth of the
George River caribou
herd, as discussed in the
text. (After Messier et al.
1988.)

800

600

400

200

0

14

12

10

8
0 10 20 30 0 10 20 30

t (years)

N
 (

th
o

u
s
a

n
d

s
)

lo
g

e 
N

t (years)

an intrinsic effect, but neither is without limit. From the viewpoint of the animal, both
are constrained. There comes a point at which the animal has all the food it can eat,
any further food having no additional effect on its reproductive rate and probability of
survival. Similarly, an animal’s reproductive rate is constrained at the upper limit by its
physiology. Litters can be only so big and the interval between successive litters cannot
be reduced below the gestation period. The potential rate of increase can never be very
high, irrespective of how favorable the environmental conditions are, if the period of
gestation is long (e.g. 22 months for the African elephant (Loxodonta africana)). All
species, therefore, have a maximum rate of increase, which is called their intrinsic rate
of increase (Fisher 1930) and symbolized rm. This is a particularly important param-
eter in estimating sustainable yield (see Chapter 18). Populations do not attain this
maximum very often. It requires a very high availability of food and a low density of
animals, such that there is negligible competition for the food. These conditions are
most closely approached when a population is in the early stage of active growth sub-
sequent to the release of a nucleus of individuals into an area from which they were
formerly absent. Fig. 5.2 gives the intrinsic rates of increase of several mammals.

Fig. 5.2 Intrinsic rate of
increase of mammals
plotted against body
weight. (After Caughley
and Krebs 1983.)
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Table 5.1 Expected
intrinsic rates of increase
rm on a yearly basis for
herbivorous mammals, as
estimated from mean adult
live weight.

Weight (kg) rm

1 1.50
10 0.65
100 0.29
1000 0.08

Alternatively, the rate can be estimated from the initial stages of growth of a popu-
lation recovering from overhunting. This would work for blue whales (Balaenoptera
musculus), for example, which are presently recovering from intense overharvesting
between about 1925 and 1955 (Cherfas 1988).
Intrinsic rate of increase rm tends to vary with body size. The following relation-

ship has been calculated for herbivorous mammals (Caughley and Krebs 1983; Sinclair
1996):

rm = 1.5W−0.36

where W is mean adult live weight in kilograms. Table 5.1 gives rm calculated
according to this equation for a range of body weights. In the absence of other data, it
provides an approximation that can be used to make a first estimate of sustained yield
(see Chapter 18).

5.3 Geometric or
exponential
population growth

In 1798, Thomas Malthus recognized that populations have an intrinsic tendency
towards exponential or geometric growth, just as a bank account at fixed interest grows
geometrically with the amount of money it contains. The growth of such populations
can be calculated as either a continuous or a discrete process. For simplicity, we will
concentrate on discrete time representations of population growth. Strictly speaking,
such models are most applicable to organisms whose patterns of deaths and births
follow a seasonal or annual cycle of events, which includes most wildlife species. Con-
sider, for example, a population whose finite growth rate 𝜆 = 0.61 and whose initial
density N0 is 1.5. The geometric growth model predicts subsequent changes in density
over time according to the following equation:

Nt = N0𝜆
t

The outcome depends on whether 𝜆 is larger or smaller than 1: when 𝜆 < 1 (Fig. 5.3),
there is a decelerating pattern, while when 𝜆 > 1 (Fig. 5.4), there is an accelerating
pattern.The geometric model can be readily translated into the exponential model:

Nt = N0 e
rmaxt

Hence, it is straightforward to shift between representations of population dynam-
ics in continuous versus discrete time. Such simple models are most appropriate for
small populations introduced into a new environment or for a short period following
a perturbation. For example, the George River caribou herd in eastern Canada grew
exponentially at a rate of r = 0.11 during a 30 year period following recovery from
overharvesting (Messier et al. 1988).

5.4 Stability
of populations

If we look at long-term records of animal populations, we see that some populations
remain quite constant in size for long periods of time. Records of mute swans (Cygnus
olor) in England from 1823 to 1872 (Fig. 5.5) show that although the population
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Fig. 5.3 Population
changes according to the
geometric model with
𝜆 = 0.61.
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Fig. 5.4 Population
changes according to the
geometric model with
𝜆 = 1.65.
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Fig. 5.5 Some
populations remain
within relatively close
bounds over long time
periods. The mute swan
population of part of the
River Thames in England
(estimated by total
counts) shows a steady
level or gentle increase
despite some
perturbations due to
severe winters, for
example in 1946–1947
and 1963–1964. (Data
from Cramp 1972.)
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Fig. 5.6 Density indices
for old female house
mice on contour banks
and in stubble fields of
rice crops in
southeastern Australia.
Broken lines distinguish
the crop cycle cohort of
1978–1979 from those
of 1977–1978 and
1979–1980. The extent
of the peak in January
1980 is unknown due to
a poisoning campaign.
(After Redhead 1982.)
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fluctuates, it remains within certain limits (190–1150). Other populations, such as
those of insects and house mice (Mus domesticus) in Australia (Fig. 5.6), fluctuate to
a much greater extent and furnish no suggestion of an equilibrium population size.
Nevertheless, such populations do not always go extinct and remain in the community
for long periods. Occasionally one finds unusual situations where populations show
regular cycles. The snowshoe hare (Lepus americanus) in northern Canada has the
clearest (Fig. 5.7), as indicated by the furs collected by trappers for the Hudson Bay
Company over the past two centuries (MacLulich 1937).
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Fig. 5.7 Snowshoe hares in the boreal forest of Canada show regular fluctuations in numbers with a 10-year periodicity. Data are
from the Hudson Bay Company fur records up to 1903 and questionnaires thereafter. (After MacLulich 1937.)
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This relative constancy of population size, or at least fluctuation within limits, is in
contrast to the intrinsic ability of populations to increase rapidly. The fact that popu-
lation increase is limited suggests that there is a mechanism that slows down the rate
of increase and so regulates the population.

5.5 The theory
of population
limitation
and regulation

5.5.1 Density
dependence

Populations have inputs of births and immigrants and outputs of deaths and emigrants.
For simplicity, we will confine discussion to a self-contained population having only
births B and deaths D per unit time.
If either the proportion of the population dying increases or the proportion being

born decreases as population density increases then we define these changes as being
density-dependent. The underlying causes of the changes in these rates are called
density-dependent factors.
Births and deaths as a proportion of the population (B∕Nt,D∕Nt) can be related to the

instantaneous birth b and death d rates in the following way.The change in population
per unit time is:

Nt+1 − Nt = B − D

The instantaneous rate of increase r is given by:

r = b − d

The finite rate of increase R is given by:

𝜆 = Nt+1∕Nt = er

Therefore:

eb−d = (Nt+1∕Nt) = (B − D + Nt)∕Nt

If d = 0, D = 0 then:

eb = (B + Nt)∕Nt = (1 + (B∕Nt))

and:

b = ln(1 + (B∕Nt))

Similarl,y if b = 0, B = 0, and D∕Nt is much less than 1 then:

d = ln(1 + (D∕Nt))

If B and D fall in the range of 0–20% of the population then b and d are nearly linear
on N. They remain approximately linear even if B and D are 20–40% of N. This range
covers most of the examples we see in nature, so for our purposes we can say thatD∕Nt

and B∕Nt change with density in the same way as do b and d, and both go through the
origin.
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Fig. 5.8 Model of
density-dependent and
density-independent
processes. (a) Birth rate,
b, is held constant over
all densities while
mortality, d, is density-
dependent. The
population returns to the
equilibrium point, K, if
disturbed. The instan-
taneous rate of increase,
r, is the difference
between b and d. (b) As
in (a) but b is density-
dependent and d is
density-independent. (c)
Both b and d are
density-dependent. (d) d
is curvilinear so that the
density dependence is
stronger at higher
population densities.

(b)(a)

(d)(c)

Population density

R
a
te

d

b

r

K

d

b

K

d

b

KK

d

b

R
a
te

Population density

In Fig. 5.8a we plot b against density (or population size) N as a constant so that it
is a horizontal line. If we now plot d as an increasing function of density, we see that
where the two lines cross, b = d and the population is stationary at the equilibrium
point K. The difference between the b and d lines represents r, which declines linearly
as density increases, in the same way as it does for the logistic curve (see Section 5.6).
In Fig. 5.8a, the decline in r is due solely to d being density-dependent. Since b (or
B∕Nt) is constant in this case, we describe it as density-independent (i.e. it is unrelated
to density). In real populations, density-independent factors such as weather can affect
birth and death rates randomly. Rainfall acted in this way on greater kudu (Tragelaphus
strepsiceros) in Kruger National Park in South Africa, causing mortality of juveniles
(Owen-Smith 1990).
We can apply the same arguments if we assume that b is density-dependent and

d is density-independent (Fig. 5.8b) or if both are density-dependent (Fig. 5.8c). So
far we have assumed that the density-dependent factor has a linear effect on rate of
increase, as in the logistic curve. However, density-dependent mortality is more likely
to be curvilinear, as in Fig. 5.8d.

5.5.2 Limitation
and limiting factors

In Fig. 5.9 we take the argument a little further. Let us assume a constant
(density-independent) birth rate b. Shortly after birth, a density-independent morta-
lity d1 (depicted here as a constant) kills some of the babies so that inputs are
reduced to b1. There follows a density-dependent mortality d2, and the population
reaches an equilibrium at K3. If mortality d1 had not occurred (or was smaller), the
equilibrium population would be at K1. Therefore, the presence or absence of the
density-independent factor causing d1 alters the size of the equilibrium population.
The strength or severity of the density-dependent factor is indicated by the slope of

d2. If the density-dependent factor becomes stronger, for example to produce d3 instead
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Fig. 5.9 Model showing
that the equilibrium
point, K, can vary with
both density-dependent
and density-independent
processes. Birth rate, b, is
held constant over all
densities. In sequence, a
density-independent
mortality d1 reduces the
input to the population
to b1. There follows a
density-dependent
mortality d2 or d3. The
intercept of b or b1 with
d2 or d3 determines the
equilibrium (K1 –K4).
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of d2, the slope becomes steeper and the equilibrium population drops from K3 to K4

(or from K1 to K2 if d1 is absent). Thus, altering the strengths of density-dependent
factors also alters the size of the equilibrium population.
We define the process determining the size of the equilibrium population as limita-

tion and the factors producing this as limiting factors. We can see therefore that both
density-dependent and density-independent factors affect the equilibrium population
size; they are thus both limiting factors. Any factor that causes mortality or affects birth
rates is a limiting factor.

5.5.3 Regulation Populations are often disturbed from their equilibrium K by temporary changes in
limiting factors (a severe winter or drought or an influx of predators might reduce the
population; a mild winter or good rains might increase it). The subsequent tendency
to return to K is largely due to the effect of density-dependent factors, and this pro-
cess is called regulation. Therefore, regulation is the process whereby a density-dependent
factor tends to return a population to its equilibrium. We say “tends to return” because
the population may be continually disturbed, so that it rarely reaches equilibrium.
Nevertheless, this tendency to return to equilibrium results in the population remain-
ing within a certain range of sizes. Superficially, it appears as if the population has a
boundary to its size and fluctuates randomly within this boundary. However, it is more
constructive to picture random fluctuations in both the density-independent (d1) and
density-dependent (d2) mortalities as the shaded range in Fig. 5.10a. This results in
a fluctuation of the equilibrium population indicated by the range of K. Fig. 5.10a
shows that this range of K is relatively small when the density-dependent mortality is
strong (steep part of the curve); Fig. 5.10b shows the much greater range of K (which
we see in nature as fluctuations in numbers) when the density-dependent mortality is
weak. Note in Fig. 5.10a and b that differences in the amplitudes of fluctuations are
due to changes in the strength of the density-dependent mortality, as we have held
density-independent (random) mortality constant in this case.

5.5.4 Delayed
and inverse density
dependence

Some mortality factors do not respond immediately to a change in density but act after
a delay. Such delayed density-dependent factors might be predators whose populations
lag behind those of their prey or a drop in food supply causing the delayed action
of starvation. Both causes can have a density-dependent effect on the population, but
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Fig. 5.10 Random variation in the mortalities d1 and d2 (indicated by the shaded area) are the same in (a) and (b). In (a) there is
stronger density dependence at the intercept of b1 and d2 than in (b), and this difference results in a smaller range of equilibria, K,
in (a) than in (b).

this effect is related to density at some previous time period rather than the current
one. For example, a 34-year study of white-tailed deer in Canada indicated that both
the population rate of change and the rate of growth of juvenile animals were depen-
dent on population size several years previously, rather than to current population size
(Fryxell et al. 1991). A similar relationship was found with winter mortality of red
grouse (Lagopus lagopus) in Scotland. Delayed density dependence is indicated when
mortality is plotted against current density, and the points show an anticlockwise spi-
ral if they are joined in temporal sequence. These delayed mortalities usually cause
fluctuations in population size.
Predators can also have the opposite effect to density dependence, termed an inverse

density-dependent or depensatory effect. They take a decreasing proportion of the prey
population as it increases, allowing the population to increase faster as it becomes
larger. Conversely, if a prey population is declining for some reason, predators will
take an increasing proportion and so drive it down even faster towards extinction.
In either case we do not see a predator–prey equilibrium. We explore this further in
Chapter 9.

5.5.5 Carrying
capacity

Carrying capacity is one of the most common phrases in wildlife management. It con-
veys a variety of meanings, however, and unless we are careful and define it precisely,
it can be a source of confusion (Caughley 1976, 1981). Some of its more common uses
are discussed in this section.

Ecological carrying capacity
This can be thought of abstractly as the K of the logistic equation, which we derive
later in this chapter (Section 5.8). In reality it is the natural limit of a population set by
resources in a particular environment. It is one of the equilibrium points that a popu-
lation tends towards through density-dependent effects from lack of food, space (e.g.
territoriality), cover, or other resources. As we discussed earlier, if the environment
changes briefly, it deflects the population from achieving its equilibrium and so pro-
duces random fluctuations about that equilibrium. A long-term environmental change
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can affect resources, which in turn altersK. Again, the population changes by following
or tracking the environmental trend.
There are other possible equilibria that a population might experience through regu-

lation by predators, parasites, or disease. Superficially, they appear similar to the equi-
librium produced by a lack of resources, because if the population is disturbed through
culling or weather events it may return to the same population size. To distinguish the
equilibria produced by predation, by resource limitation, and by a combination of the
two, we need to know whether predators or resources or both are affecting b and d.

Economic carrying capacity
This is the population level that produces the maximum offtake (or maximum sus-
tained yield) for culling or cropping purposes. It is this meaning that is implied when
animal production scientists and range managers refer to “livestock carrying capacity.”
We should note that this population level is well below the ecological carrying capacity.
For a population growing logistically, its level is half of K (Caughley 1976).

Other senses
We can define carrying capacity according to our particular land use requirements. At
one extreme, we can rate the carrying capacity for lions on a Kenya farm or wolves
on a Wyoming ranch as zero (i.e. farmers cannot tolerate large predators killing their
livestock). A less extreme example is seen where the aesthetic requirements of tourism
entail reducing the impact of animals on the vegetation. Large umbrella-shaped Acacia
tortilis trees make a picturesque backdrop to the tourist hotels in the Serengeti National
Park, Tanzania. In the early 1970s, elephants began to knock these trees over. Whereas
elephants could be tolerated at ecological carrying capacity in the rest of the park, in
the immediate vicinity of the hotels the “carrying capacity” for elephants was much
lower and was determined by human requirements for scenery.

5.5.6 Measurements
of birth and death
rates

Birth rates are inputs to the population. Ideally we would like to measure conception
rates (fecundity), pregnancy rates in mammals (fertility), and births or egg production.
In some cases it is possible to take these measurements, as in the Soay sheep of Hirta
(Clutton-Brock et al. 1991). Pregnancies can be monitored in a variety of ways, includ-
ing ultrasound, x-rays, blood protein levels, urine hormone levels, and rectal palpation
of the uterus (in large ungulates). In many cases, however, these are not practical for
large samples from wild populations.
Births can be measured reasonably accurately for seal species, in which the babies

remain on the breeding grounds throughout the birth season. Egg production, egg
hatching success, and fledgling success can also be measured accurately in many bird
populations. However, in the majority of mammal species birth rates cannot be mea-
sured accurately, either because newborn animals are rarely seen (as in many rodents,
rabbits, and carnivores) or because many die shortly after birth and are not recorded in
censuses (as in most ungulates). In these cases we are obliged to use an approximation
to the real birth rate, such as the proportion of the population consisting of juveniles
first entering live traps for rodents and rabbits, or juveniles entering their first winter
for carnivores and ungulates. These are valid measures of recruitment.
Death rates are losses to the population. Ideally they should be measured at different

stages of the life cycle to produce a life table (see Chapter 13). Once sexual maturity
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is reached, age classes often cannot be identified and all subsequent mortality is there-
fore lumped together as “adult” mortality. Mortality can be measured directly by using
mortality radios, which indicate when an animal has died, as Boutin et al. (1986) and
Trostel et al. (1987) did for snowshoe hares in northern Canada. Survivorship can be
calculated over varying time periods by the method of Pollock et al. (1989).
Mortality caused by predators can also be measured directly if the number of preda-

tors (numerical response) and the amount eaten per predator (functional response) are
known (see also Chapters 7 and 9). Such measurements are possible for those birds
of prey that regurgitate a single pellet containing the bones of their prey each day.
With appropriate sampling, the number of pellets indicates the number of predators,
while prey per pellet shows the amount they eat. This method was used for raptors (in
particular the black-shouldered kite, Elanus notatus) eating house mice during mouse
outbreaks in Australia (Sinclair et al. 1990).

5.5.7 Implications We should be aware of a number of problems associated with the subject of population
limitation and regulation:

1 Much of the literature uses the terms “limitation” and “regulation” in different ways.
In many cases they are used synonymously, but the meanings differ between authors.
Since any factor, whether density-dependent or density-independent, can determine
the equilibrium point for a population, any factor affecting b or d is a limiting factor.
It is therefore a trivial question to ask whether a certain cause of mortality limits a
population: it has to. The more profound question is how mortality and fecundity
factors affect the equilibrium.
2 Regulation requires, by our definition, the action of density-dependent factors. Den-
sity dependence is necessary for regulation, but it may not be sufficient. First, the par-
ticular density-dependent factor that we have measured, such as predation, may be too
weak, and other regulating factors may be operating. Second, some density-dependent
factors have too strong an effect and thus cause fluctuations, rather than a tendency
towards equilibrium (see Section 5.9).
3 The demonstration of density dependence at some stage in the life cycle does not
indicate the cause of the regulation. For example, if we find that a deer population
is regulated through density-dependent juvenile mortality, this does not give us any
indication as to the cause of the mortality. Correlation with population size is merely a
convenient abbreviation that hides underlying causes. Density itself is not causing the
regulation; the possible underlying factors are competition for resources, competition
for space through territoriality, and an effect of predators, parasites, and diseases (see
Section 5.10).

5.6 Evidence
for regulation

There are three ways of detecting whether populations are regulated. First, as we have
seen in Section 5.5.3, regulation causes a population to return to its equilibrium after a
perturbation. Perturbation experiments should therefore detect this return. Similarly,
natural variation in population density, provided it is of sufficient magnitude, can be
used to test whether per capita growth rates decline with density (see Chapters 15,
16, and 18). Second, if we plot separate and independent populations at their natural
carrying capacity against some index of resource (often a weather factor), there should
be a relationship. Third, we can try to detect density dependence in the life cycle.



82 Chapter 5

Fig. 5.11 The wildebeest
population in the
Serengeti increased to a
new level determined by
intraspecific competition
for food after the disease
rinderpest was removed
in 1963. (After Mduma
et al. 1999 and
unpublished data.)
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5.6.1 Perturbation
experiments

If a population is moved experimentally to either below or above its original density
and then returns to this same level, we can conclude that regulation is occurring.
An example of downward perturbation is provided by the northern elk herd of Yel-
lowstone National Park (Houston 1982). Prior to 1930, population estimates ranged
between 15 000 and 25 000. Between 1933 and 1968, culling reduced the population
to 4000 animals. Culling then ceased and the population rebounded to around 20 000
(Coughenour and Singer 1996). This result is consistent with regulation through
intraspecific competition for winter food (Houston 1982), since there were no natural
predators of elk in Yellowstone until the return of wolves in the early 1990s.
Density is usually recorded as numbers per unit area. If space is the limiting resource

(as it might be in territorial animals), or if it is a good indicator of some other resource
such as food supply, numbers per unit area will suffice in an investigation of regulation.
However, space may not be a suitable measure if density-independent environment
effects (e.g. temperature, rainfall) cause fluctuations in food supply. It may be bet-
ter to record density as animals per unit of available food or per unit of some other
resource.
The Serengeti migratory wildebeest experienced a perturbation (Fig. 5.11) when an

exotic virus, rinderpest, was removed. The population increased fivefold from 250 000
in 1963 to 1.3million in 1977 and then leveled out (Mduma et al. 1999). This example
is less persuasive than that of the Yellowstone elk because the pre-rinderpest density
(before 1890) was unknown, but evidence on reproduction and body condition sug-
gests that rinderpest held the population below the level allowed by food supply, a
necessary condition for a perturbation experiment implicating a disease.
A case of a population perturbed above equilibrium is provided by elephants in Tsavo

National Park, Kenya (Laws 1969; Corfield 1973). From 1949 until 1970, the popu-
lation was increasing, due in part to immigration from surrounding areas in which
human cultivation had displaced the animals. A consequence of this artificial increase
in density was depletion of the food supply within reach of water. In 1971, the food
supply ran out and there was starvation of females and young around the water holes.
After this readjustment of density, the vegetation regenerated and starvation mortality
ceased.
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5.6.2 Mean density
and environmental
factors

A population that is uninfluenced by dispersal and unregulated (i.e. has no
density-dependent factors affecting it) will fluctuate randomly under the influence of
weather and will eventually drift to extinction (DeAngelis and Waterhouse 1987).
Just by chance, there may for a time be a correlation between density and environ-

mental factors. However, if we take many separate populations, the probability that all
of them are simultaneously correlated with an environmental factor by chance alone
is very small. Therefore, if we find a correlation between mean densities from inde-
pendent populations and environmental factors, a strong inference can be made that
weather is influencing some resource for which animals are competing, resulting in
regulation about some equilibrium point.
An example of this approach is shown in Schluter’s (1988) study of seed-eating

finches in Kenya (Fig. 5.12): finch abundance from various populations is correlated
with seed abundance. Other examples of density correlated with weather factors are
given in Sinclair (1989).

5.6.3 Examples
of density dependence

As discussed in Section 5.5.7, density dependence is a necessary but not sufficient
requirement for demonstrating regulation. There are an increasing number of studies
in the bird and mammal literature demonstrating density-dependent stages in the life
cycle. For birds (Fig. 5.13a), the long-term study of great tits (Parus major) in Oxford,
UK has shown that winter mortality of juveniles is related to the number of juveniles
entering the winter (McCleery and Perrins 1985). In contrast, (Fig. 5.13b) it is early
chick mortality in summer that is density-dependent for the English partridge (Perdix
perdix) (Blank et al. 1967).
For mammals, density-dependent juvenile mortality has been recorded for red deer

on the Isle of Rum, UK (Clutton-Brock et al. 1985) (Fig. 5.14a), for reindeer in Norway
(Skogland 1985) (Fig. 5.14b), for feral donkeys (Equus asinus) in Australia (Choquenot
1991), and for greater kudu in South Africa (Owen-Smith 1990). Adult mortality was
density-dependent for African buffalo in the Serengeti (Sinclair 1977). In each case,
the cause was lack of food at critical times of year. Reproduction is known to be

Fig. 5.12 The total
abundance of seedeating
finches in savanna
habitats of Kenya is
related to the abundance
of the food supply. Such
a positive relationship in
unconnected popula-
tions may demonstrate
regulation. (After
Schluter 1988.)
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Fig. 5.13 Examples of
density-dependent mor-
tality in birds. (a) Great
tit (Parus major) over-
winter mortality (log of
[juveniles in winter/first
year breeding popula-
tion]) plotted against log
juvenile density in win-
ter. (After McCleery and
Perrins 1985.) (b) Chick
mortality of European
partridge (Perdix perdix)
(measured as log hatch-
ing population/log popu-
lation at 6 weeks) plot-
ted against log hatching
population, in
Hampshire, UK. (After
Blank et al. 1967.)
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Fig. 5.14 Density dependence in large mammals. (a) Juvenile mortality of male and female red deer on the Isle of Rum, UK. (After
Clutton-Brock et al. 1985.) (b) Juvenile recruitment per 100 female reindeer older than 1 year in Norway. (After Skogland 1985.)
(c) Fertility rate of 1-year-old Soay sheep on St. Kilda island. (After Clutton-Brock et al. 1991.)
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Fig. 5.15 The proportion of a red
grouse population in Scotland
which disappears over winter
(August–April) is related to
population density in the previous
August in a complex way. Mortality
varied according to whether the
population was increasing or
decreasing. By joining the points
sequentially an anticlockwise cycle
is produced, indicating a delayed
density-dependent effect in the
cause of the mortality. By plotting
the percentage disappearance
against density 1 year earlier, a
closer fit can be obtained for a
regression line. Thus the delay is 1
year. Numbers at the points are
years. (After Watson and Moss
1971.)
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density-dependent in both birds (Arcese et al. 1992) and mammals (Clutton-Brock
et al. 1991). Fig. 5.14c shows that the proportion of Soay sheep that give birth at 12
months of age declines with density. Fowler (1987) reports over 100 studies of terres-
trial and marine mammal populations in which density dependence was detected.
Delayed density dependence has been recorded in winter mortality of snowshoe

hares in the Yukon and in overwinter mortality of red grouse in Scotland (Watson
and Moss 1971) (Fig. 5.15). For the hares, the delay appears to have been due to a
lag of 1–2 years in the response of predator populations to changing hare numbers
(Trostel et al. 1987), while for the grouse the delay came from the density response to
food conditions in the previous year (see Section 5.10.3).

5.7 Applications
of regulation

Causes of population change can be divided into (i) those that disrupt the popu-
lation and often result in “outbreaks,” which can be either density-dependent or
density-independent, and (ii) those that regulate and therefore return the population
to original density after a disturbance. These are always density-dependent.
Knowledge of regulation may be useful for management of house mice (Mus domes-

ticus) plagues in Australia. In one experimental study (Barker et al. 1991), mice in
open-air enclosures were contained by special mouse-proof fences. The objective was
to create high densities, mimicking plague populations, in order to test the regulatory
effect of a nematode parasite (Capillaria hepatica). It turned out that the effect of the
parasite could not be tested because other factors regulated the population and thus
obscured it. The replicated populations declined simultaneously.Why did this happen?
By dividing up the life cycle into stages, the researchers found that late juvenile and
adult mortality were strongly density-dependent but that other stages, including fertil-
ity and newborn mortality, were not. This allowed them to discount causes that would
affect reproduction and focus more closely on what was happening among adults, par-
ticularly in terms of social interactions.
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Other studies suggest that mouse populations in Australia may be regulated by
predators, disease, and juvenile dispersal (Redhead 1982; Sinclair et al. 1990). Under
conditions of superabundant food following good rains, the reproductive rate of
females increased faster than the predation rate and an outbreak of mice occurred. The
implication of these results for management is that if reproduction can be reduced,
for example through infections of the Capillaria parasite, then predation may be able
to prevent outbreaks even in the presence of abundant food for the mice.

5.8 Logistic model
of population
regulation

At the beginning of this chapter, we derived the geometric and exponential models
of population growth. In 1838, Pierre-Francois Verhulst published a paper that chal-
lenged the assumption of unlimited growth implicit in these models. Verhulst argued
that the per capita rate of change (dN∕Ndt) should decline proportionately with pop-
ulation density, simply due to a finite supply of resources being shared equally among
individuals. If each individual in the population gets a smaller slice of the energy
“pie” as N increases, this will prevent them from devoting as much energy to growth,
reproduction, and survival as would be possible under ideal conditions. Changes in
demographic parameters lead to corresponding changes in the finite rate of popula-
tion growth 𝜆t or its equivalent exponential rate rt, where t denotes a specific point
in time. Other factors, such as risk of disease, shortage of denning sites, and aggres-
sive interactions among population members may also cause the rate of population
growth to decline with population size. The simplest mathematical depictions of such
phenomena are commonly termed “logistic” models.
There are numerous ways to represent logistic growth. For simplicity, we will focus

on population growth modeled in discrete time, which is often a reasonable approx-
imation for species that live in a seasonal environment. One of the most commonly
used forms is called the Ricker equation, in honor of the Canadian fisheries biologist,
Bill Ricker, who first suggested its application to salmon stocks (Ricker 1954):

Nt+1 = Nte
rmax

(
1− Nt

K

)

The Ricker logistic equation represents the exponential rate of increase under ideal
conditions as rmax, with a proportionately slower rate of increase with each additional
individual added to the population. When the rate of increase has slowed to the point
that births equal deaths, the population has reached its carrying capacity K. These two
population parameters (rmax and K) dictate how fast the population recovers from any
perturbation to abundance.
A population growing according to the logistic equation will have slow growth when

N is small, will grow most rapidly when N is of intermediate abundance, and will grow
slowly again as N approaches carrying capacity K (Fig. 5.16). This kind of sigmoid or
S-shaped pattern is often termed logistic growth.
At first, it may seem somewhat counterintuitive that a proportional decline in

per capita demographic rates should produce the nonlinear growth pattern seen in
Fig. 5.16. The reason lies in the fact that population changes are dependent on both
population size and per capita growth rate, in much the same way that the growth of
a bank account depends on both the money already in the account and the interest
rate. When a population is small, the per capita rate of change will tend to be large,
in fact close to rmax, either because birth rates are high or because mortality rates are
low. Nonetheless, the population will still display a slight change from one year to the
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Fig. 5.16 Population
growth according to the
logistic equation, with
rmax = 0.5, initial
population density
N0 = 1.5, and carrying
capacity K = 100.
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Fig. 5.17 Net
recruitment (Nt+1 − Nt)
as a function of
population density Nt,
according to the Ricker
logistic growth model,
with rmax = 0.5 and K =
100.
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next. At the other end of the spectrum, even when N is enormous the population will
similarly display only modest change from year to year. This is because the per capita
rate of growth is small, due either to low birth rates or high mortality rates. It is only
when the population is of intermediate size and growing at intermediate per capita
rate that growth is maximized (Fig. 5.17).
Population data displaying the classic sigmoid pattern of change are rare. They will

only be seen when a population is reduced to very low initial density and then moni-
tored closely over an extended period. So, logistic growth will not be obvious in most
populations that we might see around us in nature, which are presumably close to their
carrying capacity. In some cases, however, populations have been perturbed (reduced)
to low densities, giving us a rare glimpse of logistic growth in the field. For example, as
we discussed earlier, the Yellowstone elk herd has been aggressively culled at various
times in the past, particularly in the late 1960s. Cessation of culling operations, stim-
ulated by a new policy of natural regulation in US National Parks, led to a subsequent
pattern of elk recovery reminiscent of the sigmoid pattern predicted by the logistic
model (Fig. 5.18). Similarly, release of the Serengeti wildebeest population from the
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Fig. 5.18 Population
dynamics of northern
Yellowstone elk between
1968 and 1989. (Data
from Coughenour and
Singer 1996.)
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exotic disease rinderpest led to a subsequent sigmoid pattern of change (Fig. 5.11)
reminiscent of the logistic model. Indeed, perturbation is an important ingredient in
detecting natural regulation and logistic growth because it gives us evidence to work
with, unlike populations kept close to their ecological carrying capacity. We demon-
strate how to estimate the parameters for the Ricker logistic model, and compare it to
other possible population growth models, in Chapter 15.

5.9 Stability,
cycles, and chaos

Paradoxically, the same density-dependent processes that are responsible for natural
regulation can also induce population fluctuations, at least under special circum-
stances. One way that this can happen is when the maximum rate of growth is
particularly high. For example, consider the dynamics of a hypothetical population
whose maximum rate of increase rmax = 3.3 and carrying capacity K = 100 (Fig. 5.19).
In this case the population does not increase smoothly over time and level off at
the carrying capacity but rather fluctuates erratically over time, with no apparent
repeated pattern. Such a pattern of population change is known as deterministic chaos
(May 1976). It arises because the population grows so fast that it tends to overshoot
the carrying capacity, a process known as overcompensation (May and Oster 1976).
Once above the carrying capacity, the net recruitment is negative (Fig. 5.19), so the
population declines rapidly. Repetition of this boom–bust pattern of overshooting
and subsequent decline results in the erratic fluctuations of deterministic chaos seen
in Fig. 5.19. For lower rates of increase (2.0 < rmax < 2.7), the pattern of fluctuation
will be regular cycles rather than deterministic chaos, but the underlying cause is still
overcompensation.
The underlying cause of instability due to overcompensatory density dependence

can be better appreciated by plotting the population dynamics over time on a graph
withNt on the horizontal axis andNt+1 on the vertical (Fig. 5.20). The diagonal identi-
fies potential points of equilibria, at whichNt+1 = Nt. We will also plot the recruitment
curve. Dynamics are plotted by starting at a particular value of N0, projecting upwards
to the recruitment curve (which identifies the next year’s population density), and



POPULATION GROWTH AND REGULATION 89

Fig. 5.19 Simulated dynamics over
time of two different populations
growing according to the Ricker
logistic equation, with rmax = 3.3
and K = 100. The first population
was initiated at a density of 2.0
individuals per unit area, whereas
the second population was initiated
at a slightly higher density of 2.1
individuals per unit area. The rapid
divergence in population dynamics
due to slight changes in starting
conditions is typical of
deterministic chaos.
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Fig. 5.20 Plot of predicted
recruitment (Nt+1) relative to Nt
(the heavy curve), equi-
librium line at which Nt+1 = Nt
(thin broken line), and trajectory of
population dynamics over time for a
simulated population following the
Ricker logistic model, with rmax =
1.3 and K = 100 (thin solid line).
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then projecting horizontally to the dotted equilibrium line, before repeating the pro-
cess. At modest values of rmax, the recruitment curve is low and has a shallow angle
of incidence as it intersects the equilibrium line. The result is that the population tra-
jectory becomes pinched between the recruitment curve and the equilibrium line as it
converges on K. This leads to stability.
Now, let us consider the pattern arising when rmax = 3.3 (Fig. 5.21). The recruit-

ment curve has a pronounced hump and intersects the equilibrium line at a sharp
angle (> 90∘). The recruitment curve is so sharply peaked that recruitment events
tend to overshoot the carrying capacity. This leads to the population collapsing to well
below the carrying capacity, where the boom–bust cycle begins anew. In this way, the
population never reaches an equilibrium, despite the fact that there is strong density
dependence. This example demonstrates overcompensation, and it occurs when the
angle of incidence of the recruitment curve exceeds 90∘ as it approaches the equilib-
rium line (May 1976; May and Oster 1976).
A diagnostic feature of deterministic chaos is that slight changes in starting condi-

tions lead to quite different population dynamics over time. In Fig. 5.21, the simulated
dynamics of the two hypothetical populations, begun at slightly different densities,
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Fig. 5.21 Plot of
predicted recruitment
(Nt+1) relative to N t(the
heavy curve),
equilibrium line at which
Nt+1 = Nt(thin broken
line), and trajectory of
population dynamics
over time for a simulated
population following the
Ricker logistic model,
with rmax = 3.3 and K =
100 (thin solid line).
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become quite different later on, illustrating their sensitivity to initial conditions. The
two populations go through similar changes in the first few years but rapidly diverge
thereafter, displaying different patterns of fluctuation.
We have thus far limited our discussion to the simplest pattern of density depen-

dence: linear changes in per capita rates of reproduction or survival. We saw earlier
(Figs 5.8 and 5.10) that there is no reason to expect natural regulation to be linearly
density-dependent. Some wildlife biologists have even argued that this may be the
exception rather than the rule (Fowler 1981); adult mortality in Serengeti wildebeest
is a good example (Mduma et al. 1999).

5.10 Intraspecific
competition

Regulation can occur through a number of mechanisms, such as predation or para-
sitism, but the most common cause is competition between individuals for resources.
Such resources might be food, shelter from weather or from predators, nesting sites, or
space to set up territories. We have seen some examples already in Figs 5.13 and 5.14.

5.10.1 Definition Intraspecific competition occurs when individuals of the same species utilize common
resources that are in short supply; or, if the resources are not in short supply, when the
organisms seeking the resource nevertheless harm one another in the process (Birch
1957).

5.10.2 Types
of competition

When individuals use a resource so that less of it is available to others, we call this type
of competition exploitation. This includes both removal of a resource (consumptive
use), as when food is consumed, and occupation of a resource (pre-emptive use), as
when resources such as nesting sites are used. Individuals competing for food need not
be present at the same time: one ungulate can reduce the food supply of another that
arrives later.
Another type of competition involves the direct interaction of individuals through

various types of behavior. This is called interference competition. One example of
behavioral interference is the exclusion of some individuals from territories; another
is the displacement of subordinate individuals by dominants in a behavioral hierarchy.
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5.10.3 Intraspecific
competition for food

Experimental alteration of food supply
Food addition experiments provide the best evidence for intraspecific competition.
Krebs et al. (1986) supplied extra food to snowshoe hares in winter from 1977 to 1985.
This raised the mean winter density fourfold at the peak of the 10-year population
cycle. Similarly, Taitt and Krebs (1981) increased the density of vole populations
(Fig. 5.22) by giving them extra food. The elk population at Jackson Hole, Wyoming,
is kept at a higher level than would otherwise be the case by supplementary feeding
in winter (Boyce 1989). These examples show that food is one of the factors limiting
density.
The dense shrubland (chaparral) of northern California contains two shrubs,

chamise (Adenostema taxiculatum) and oak (Quercus wislizenii), that are preferred
food for black-tailed deer (Odocoileus hemionus). These shrubs resprout from root
stocks after burning to provide the new shoots that the deer consume. Taber (1956)
showed that on plots thinned by experimental burning, herbaceous food supply
increased to 78kg∕ha from the 4.5kg∕ha found on control plots, while the shrub
component increased from 165 to 460kg∕ha. Deer densities consequently increased
from 9.5km−2 on the experimental controls to 22.9km−2 on the treatment plots,
while fertility increased from 0.77 to 1.65 young per adult female.
Red grouse (Lagopus lagopus) live year round on heather (Calluna vulgaris) moors

in Scotland. Their diet consists almost entirely of heather shoots. Watson and Moss
(1971) describe experiments in which some areas were cleared of grouse, fertilized
with nitrogen in early summer, and then left to be recolonized. Fertilizing increased
the growth and nutrient content of the heather. The size of their territories did not
differ between fertilized and control areas when the grouse set them up in autumn.
However, territorial grouse that had been present all winter reared larger broods on
the fertilized than on the control areas, indicating that reproduction was affected by
overwinter nutrition. Territory sizes did decline in the following autumn, and densities
increased, showing the 1-year lag of density response to nutrition. On other areas, old
heather was burned every 3 years, creating a higher food supply of young regenerating
heather. Territory size on these plots decreased (as density increased) in the same year
as the treatment, so there was a more immediate response than on the fertilized plots.

Fig. 5.22 The numbers
of Townsend’s voles on
trapping grids increase in
proportion to the
amount of food that is
provided, indicating that
intraspecific competition
regulates the population.
Dashed-dotted line:
control; dashed line: low
food addition; solid line:
high food addition;
shaded area: winter.
(After Taitt and Krebs
1981.)
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Fig. 5.23 The
percentage change in a
wood pigeon population
in England is related to
the proportion of the
population that is
underweight. (Data from
Murton et al. 1966.)
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Direct measures of food
Snowshoe hare populations in the boreal forests of Canada and Alaska reach high num-
bers every 10 years or so. Measurement of known food plants and feeding experiments
suggest that the animals run short of food at peak numbers (Pease et al. 1979). Other
measures, such as the amount of body fat (Keith et al. 1984) and fecal protein levels
(Sinclair et al. 1988), also identify food shortage at this time (see Section 2.9).
African buffalo graze the tropical montane meadows of Mount Meru in northern

Tanzania, keeping the grass short. Grass growth rates and grazing offtake were mea-
sured by use of temporary exclosure plots. Growth in the rainy season was more than
sufficient for the animals, but in the dry season available food fell below maintenance
requirements (Sinclair 1977).
Murton et al. (1966) measured the impact of wood pigeons (Columba palumbus)

on their clover (Trifolium repens) food supply. Food supply was measured directly by
counting clover leaves in plots. Pigeons consumed over 50% of the food supply during
winter. They fed in flocks, those at the front obtaining more food than those in the
middle or at the back. The proportion of underweight birds (under 450 g) was related
directly to the overwinter change in numbers (Fig. 5.23) and inversely related to the
mid-winter food. Thus, competition within flocks resulted in some animals starving,
and the change in numbers was related to the proportion that starved.

Indirect measures of food shortage
Indirect evidence for competition for food comes from indices of body condition (see
Section 2.9). The last stores of body fat that are used by ungulates during food shortages
are in the marrow of long bones such as the femur. Bone marrow fat can be measured
directly by extraction with solvents. However, since there is an almost linear relation-
ship between fat content and dry weight (Hanks 1981) (see Section 2.9.3), it is easier to
collect a sample of marrow from carcasses found in the field and oven dry it. A cruder
but still effective method, introduced by Cheatum (1949), is to describe the color and
consistency of the marrow.
Other fat stores, such as those around the heart, mesentery, and kidney, are used up

before the bonemarrow fat starts to decline (see Section 2.9). The relationship between
kidney and marrow fat holds for many ungulate species (see Fig. 2.11). If both kidney
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and marrow fat can be collected, a range of body conditions can be recorded. However,
often the marrow fat is all that is found in carcasses, because scavengers have eaten the
internal organs.
Klein and Olson (1960) used bone marrow condition indices to conclude that deer

in Alaska died from winter food shortage, as did Dasmann (1956) for deer in Califor-
nia. Similarly, migratory wildebeest in the Serengeti that died in the dry season were
almost always in poor condition, as judged by the bone marrow, and this was corre-
lated with the protein level in their food (see Fig. 2.12). This dry-season mortality
was density-dependent and was sufficiently strong to allow the population to level out
(Sinclair et al. 1985; Mduma et al. 1999).

Problems with measurement of food supply
To determine whether competition for resources such as food is the cause of regula-
tion, we need to know what type of food is eaten, how much is needed, and how much
is available. What is needed must exceed what is available in order for competition to
occur. The types of food eaten form the basis for many studies on diet selection, some-
times called food habit studies. These in themselves do not tell us what is needed in
terms of digestible dry matter, protein, and energy. We should note that such require-
ments are unknown for most wild species and we have to use approximations from
other, often domestic, species. The amount of food available to animals is particularly
difficult to assess because we are unlikely to measure potential food in the same way
as does the animal. Animals are likely to be far more selective than our crude sam-
pling, and so we are likely to record more “food” than the animal sees. Our measures
of food supply are often seriously flawed, which is one of the reasons why direct evi-
dence for intraspecific competition for food is rare. There is far more indirect evidence
for competition, provided by indicators such as body condition.

5.11 Interactions
of food, predators,
and disease

The effect of limited food on population demography can go beyond the direct effects of
undernutrition: there can also be synergistic interactions with predation and disease.
Animals may alter their behavior when food becomes difficult to find in safe areas,
searching increasingly in areas where they are at risk of predation in order to avoid
eventual starvation (Lima and Dill 1990; McNamara and Houston 1987). This is called
predator-sensitive foraging and has been observed in snowshoe hare feeding (Hik 1995;
Hodges and Sinclair 2003). Such behavior can result in increased predation well before
starvation takes effect, as seen in wildebeest (Sinclair and Arcese 1995).
Disease can also interact synergistically with food, pathological effects suddenly

becoming apparent at a certain, sometimes early, stage of undernutrition (see Chapter
11). Sometimes food, disease, and predators all interact. Wood bison numbers in
the Wood Buffalo National Park, Canada, switch suddenly from a high-density
food-regulated state to a low-density predator-regulated one when diseases such as
tuberculosis and brucellosis affect the population (Joly and Messier 2004).

5.12 Summary Regulation is a biotic process that counteracts abiotic disturbances affecting an animal
population. Two common biotic feedback processes are predation and intraspecific
competition for food. These are called density-dependent factors if they act as negative
feedbacks. Negative feedback imparts stability to the population. Disturbances are pro-
vided by fluctuating weather or other environmental conditions or by chance effects on
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reproduction and survival. These are called density-independent factors and will cause
populations to drift to extinction if there are no counteracting density-dependent pro-
cesses operating. For wildlife management, it is necessary to know (i) the causes of
the density-dependent processes that stabilize the population and of fluctuations and
instability, and (ii) which age and sex groups are most influenced by these stabilizing
or destabilizing processes.
One way to understand such effects is to model density-dependent changes in pop-

ulation growth rate using logistic models. Application of such models shows that
whereas density dependence is often stabilizing, overcompensatory density depen-
dence can itself encourage population fluctuation, beyond the degree we would expect
from demographic or environmental stochasticity. A common cause of regulation is
intraspecific competition for food.
Competition occurs if the needs of the population exceed availability. To measure

such competition, we need to know how much food is available and how much is
needed, and whether it is density-dependent. Food can also interact with predation
and disease to regulate populations.


