
3 Home range and habitat use

3.1 Introduction In this chapter we introduce the pivotal concept of the home range and consider how
it relates to patterns of habitat use. The home range for an individual refers to the
geographic area utilized for all normal activities, linked together through animal move-
ment (Burt 1943). This is likely of course to depend on the time frame under consid-
eration, so home ranges can be specified on a daily, seasonal, annual, or even lifetime
basis. In order to meet an individual’s full range of physiological and ecological require-
ments over an extended period, a suitable home range typically must have an adequate
supply of food and water, shelter, breeding sites, and often locations that are secure
against predators and parasites. The spatial locations associated with common sets of
these attributes are often termed habitats, so we can refer to “nesting habitat,” “shelter
habitat,” or “refuge habitat from predation.”
Obviously, such a complex set of requirements is unlikely to be met routinely at

every place in the environment, so home range locations often yield important insight
into the requirements for life, particularly those resources (see Chapter 2) that have
the greatest influence on survival and reproductive potential. As such, home range
analysis provides wildlife biologists with one of the most important tools by which
to assess ecosystem quality. Habitat attributes that reliably indicate home range use
can offer insight into key ecological features of importance from the individual’s
point of view.
Comparison of home range size across different species or among populations of the

same species can help us to understand better what ecological factors most strongly
limit population abundance. These factors can be used to identify the ecological
niche, central in any discussion about community structure (see Chapter 6) but also
vitally important in defining suitable candidates for habitat restoration, improvement
projects, and conservation. In species whose home ranges of individuals rarely
overlap, the reciprocal of home range size essentially defines a social carrying capacity
that naturally regulates population density (see Chapter 5). Even in species with
extensive individual home range overlap, the locations of suitable habitats across the
landscape can offer useful insights into potential population size, a characteristic that
can be of enormous practical use with respect to species reintroduction or recovery
programs (see Chapter 4). In other words, patterns of habitat use within the home
range link to many different aspects of wildlife ecology and play a useful role in many
conservation and management initiatives.
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36 Chapter 3

3.2 Estimating
home range size
and utilization
frequency

There are a wide variety of ways in which home ranges can be estimated, but all start
with a requirement for spatial field data. In rare circumstances, such data might be
estimated from direct observation of individually recognizable individuals over con-
tinuous time, such as in many primate studies. More commonly, wildlife biologists
rely on remote sensing apparatuses, such as radio collars, to provide the spatial coor-
dinates of animal locations sampled at regular time intervals. Until recently, such data
were laborious and enormously time-consuming to gather for field biologists, with
substantial effort required to get close enough to radio-collared animals to allow reli-
able positioning of directional antennae. Multiple fixes of this sort were then used to
estimate coordinates using triangulation methods derived from basic trigonometry. An
inevitable consequence of the uncertainty in determining the direction of the teleme-
try signal relative to the receiver was that even the most careful field research yielded
positional data (“fixes”) of dubious reliability.
In more recent years, however, there has been an explosion of new technologies for

the gathering of animal location data using global positioning systems (GPS) identical
to those used in modern cell phones. GPS radio collars determine their own spatial
positions at pre-assigned intervals through linkage with a set of satellites circling the
globe. Such data are typically much more precise than hand-gathered radio-telemetry
data, often yielding fixes within 10m of the true location and sometimes within 1m.
This remarkable precision, coupled with major improvements in the number of fixes
possible even for multiple organisms, has opened exciting new avenues of research and
allowed for much more reliable information on which to base home range assessment.
As an example, consider the fix data shown in Fig. 3.1 for a gray wolf in northern

Ontario, Canada (Kittle 2014). Sequential positions of the study animal at 24-hour

Fig. 3.1 Sequential
radio-telemetry fixes
from GPS radio-tele-
metry fixes for a gray
wolf from Canada taken
every 5 h over the course
of a year.
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intervals are connected by lines. This example demonstrates several common features
of positional data: first, the researcher knows only that at some point over the course
of a single day the study animal transferred between sequential locations, not typically
how long it remained or if it remained at all at any single site; second, while on occa-
sion the individual moved a large distance between sequential fixes, short “moves”
outnumber long “moves”; third, much of this individual’s time was spent in a small
fraction of the available area – that is, it seemed to prefer some locations to others.
The typical goal of home range analysis is to characterize the overall pattern suggested
by the collection of fixes, measure the areal coverage, and identify correlations between
habitat elements in areas of heavy versus light use to assess selectivity.
Once one has gathered spatial fixes for a given individual, there are a variety of ways

to estimate home range size, differing largely in the underlying assumptions about the
individual’s position during the intervals between fixes. The oldest method is simply to
connect the outermost fixes, forming what is termed a convex polygon (Fig. 3.2a). This
has several virtues, simplicity being paramount. It does not come heavily loaded with
preconceptions about the normal patterns of home range use. Moreover, it is inclusive,
in that all fixes are part of the home range. On the negative side, convex home range
polygons are often thought to be too inclusive, with the border including some regions
that might not be used at all. Most importantly, the convex polygon method offers little
insight into identification of areas of intense use.
The most common alternative to convex polygons is what is known as a kernel esti-

mator for the putative home range (Kie et al. 2010). This can take essentially two forms:
a bivariate kernel tries to fit as many fixes as possible within an ellipse centered over
the observed fixes, whereas an adaptive kernel is a complex surface draped over the
observed fixes (Fig. 3.2b). Contoured isopleths drawn on the surface demarcate areas
of similar frequency of visitation. One can immediately see the advantages of the kernel
method. The complex pattern of folding allows the researcher to discriminate between

Fig. 3.2 Alternate home
ranges estimated from
daily GPS
radio-telemetry fixes for
a gray wolf in Canada
based on (a) convex
polygon, (b) adaptive
kernel, (c) Brownian
bridge kernel, and
(d) local weighted
polygon methods (Kittle
2014). For subplots (b)
and (c), areas of intense
use are lighter in tone,
whereas areas of minor
use are shaded darkly.
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those areas that were used versus those not used at all. More importantly, locations of
intense use are nicely captured by peaks in the fitted surface. The height of the kernel
home range at any spatial location is proportionate to the utilization probability, so
the kernel itself represents a utilization distribution in space. This is an improvement
on simply assuming that all parts of the home range are equally important, because
we know that animals almost always spend disproportionate amounts of time in dif-
ferent parts of the home range (Fig. 3.1). Improved understanding of the most heavily
utilized parts of the home range can often lead to insights about the most important
factors, in a sense giving us an animal’s-eye-view of the things that matter ecologically.
One slightly disturbing feature of kernel home ranges is that they have no absolute

limit, because, for mathematical reasons associated with fitting a complex surface to
point data, the fitted surface extends without limit in all directions, albeit with low
levels of use. To circumvent this logical impossibility, scientists routinely truncate the
kernel home range at the point where the surface includes 95 or 99% of the observed
fixes (a so-called isopleth), eliminating the infinity conundrum. The advanced soft-
ware required to fit such complex home ranges to data are included with some com-
monly used GIS packages (e.g. Spatial Analyst, available as a toolbox in ARCmap)
or in R statistical packages freely available on the Internet (e.g. adehabitat, available
at http://cran.r-project.org). The quality of kernel-estimated home ranges obviously
depends on the accuracy and the number of fixes, as well as on the degree to which
fixes are clumped across the landscape.
A recent modification of the kernel approach is termed Brownian bridge kernel

estimation (Horne et al. 2007). Like other kernel methods, it fits a complex surface
to the collection of fixes, accommodating local variation in home range use. Unlike
other kernel estimators, however, the Brownian bridge approach estimates the prob-
ability of space use by an animal with typical movement characteristics during the
intervals between fixes, assuming so-called Brownian movement during each interval
(Fig. 3.2c) (Brownian movement refers to a random pattern of movement, such as that
of small pollen grains suspended in a water droplet). This helps to identify corridors
of likely importance linking sites used repeatedly by the study animal. On the negative
side, presumption of purely Brownian movement adds to an already ponderous set of
assumptions.
A fourth approach that has recently come into its own is termed local convex hulls

(Getz and Wilmers 2004). This is a methodological approach that conceptually lies
somewhere between the simplicity of convex polygons and the extreme complexity of
kernel home range estimators. Simple geometric shapes (convex hulls) are constructed
around subsets of the fix data (Fig. 3.2d), thus permitting researchers to construct a
sequence of home ranges for different seasons. This can be helpful in understanding
more complex patterns of movement or for comparing patterns of home range use for
multiple animals over short time intervals. R code for the calculation of local convex
hulls is available over the Internet.

3.3 Estimating
habitat availability
and use

The pattern of animal fixes that generates a home range estimate and indicates the
degree of utilization of parts of the home range can also be used to define habitat
usage. It is rarely possible to know all the relevant attributes of every spatial position
of an animal’s home range. Nonetheless, it is often possible to make educated guesses
about the most important features using geographic information systems (GIS). This is a
means of linking complex geographical information on physical structure, topographic
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relief, biological features, and human-made landscape elements into a computerized
database. One important feature of GIS is rapid and simple construction of tailor-made
“maps” that are readily accessible from a computer screen. This allows users to sift
rapidly through complex spatial information in a visual context. Just as importantly,
GIS allows the user to identify and measure spatial interrelationships among variables
that would be exceedingly difficult to perform in the field. For example, one can rapidly
calculate the sizes of forest stands of similar species composition, measure the distance
of each of these stands from the nearest road, and calculate what fraction of the stands
falls within the home range of a wildlife species of interest. From the point of view of
assessing habitat selection, GIS also offers a convenient means of random sampling of
geographic features across complex landscapes. GIS is clearly a technological break-
through in the analysis of wildlife habitat needs and is transforming the way that we
think about conservation and management issues.
The remarkable capacity afforded by GIS data does not come without cost. First,

someone has to gather spatial data and map them in the first place. The quality of
that initial data collection (sometimes termed “ground-truthing”) and how recently it
has occurred have a strong bearing on the utility of the GIS database. For example,
it is quite common to rely on GIS databases to assess the degree of wildlife prefer-
ence for specific vegetation communities, such as forest stand types. Such habitats are
often defined in rather crude terms, representing a few predominant species that can
be identified from aerial photos or limited samples taken at a limited number of acces-
sible sites, rather than field data sampled extensively across the landscape. The aerial
coverage of each habitat type is then based on extrapolation from a limited number of
ground-truthed sites to a much larger landscape. Different forest stands have different
spectral reflectance characteristics, allowing remote-sensing specialists working with
a satellite image to fill in a GIS database, much as a child would fill in a line drawing in
a coloring book. Statistical extrapolation of such derived variables is always tenuous
and the reliability of GIS databases is affected accordingly.
Sometimes GIS data cannot provide information on the actual resources used by

animals. For example, the rich mix of forbs used by browsing deer may be poorly pre-
dicted by forest stand type. One way around this is to use satellite-generated estimates
of plant abundance, such as NDVI (Normalized Difference Vegetation Index), rather
than plant community types. Alternatively, changes in NDVI from one satellite pass to
the next can be used to ascertain areas of rapid vegetation growth, often indicative of
the most nutritious forage (Pettorelli et al. 2005; Bischof et al. 2012). Such variables
lump all vegetation classes together, so they inevitably yield a rather coarse view of the
world. The information in GIS databases may also be out of date and therefore irrele-
vant to current conditions. Human population growth, industrial development, habitat
disturbance due to natural or anthropomorphic causes, and ecological processes such
as community succession are rapidly changing habitat availability in many if not all
landscapes.
Finally, many relevant variables are dynamic in nature, which is difficult to accom-

modate in static GIS databases. Plant biomass grows over the summer or wet season
and then declines over the winter or dry season in most ecosystems. Prey distribution
can shift markedly from month to month and even in cases where prey are resident,
local snow conditions influencing access to those preymay vary considerably over time
and space across large landscapes. From the prey point of view, the spatial distribution
of predation risk is itself highly dynamic, depending on the manner in which predators
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use their home range. All of these factors introduce uncertainty into wildlife habitat
assessment. Statistical modeling can never eliminate the uncertainties introduced by
inadequate habitat data.

3.4 Selective
habitat use

By now it should be apparent that there are good reasons for wildlife species to choose
habitats carefully, in order to enhance the opportunities for feeding while reducing
the risk of being eaten. Moreover, most species have a suite of other needs to meet,
including obtaining shelter from inclement weather, gaining access to water, and locat-
ing suitable breeding sites, such as cavities in dead trees or burrows. Quantification
of specific habitat needs is known as habitat assessment and is an important area of
wildlife ecology. Much of this interest derives from practical benefits: knowing pre-
cisely which wildlife habitats are essential allows appropriate management decisions
regarding alternate forms of land use.Moreover, good understanding of habitat require-
ments can improve the odds of success when wildlife species are reintroduced to areas
from which they were extirpated.
There are many ways to quantify wildlife habitat selectivity (Aarts et al. 2008). All

such methods rest on a common assumption: that selectivity can be determined by
comparing use to availability of alternative habitat types. This is often assessed by tak-
ing S = use∕availability. If the proportion of occurrences in a particular habitat type
exceeds the proportion of the landscape composed of that habitat then S > 1 and pos-
itive selectivity (preference) is implied. If use is less than proportionate availability, on
the other hand, then S < 1 and negative selectivity (avoidance) is implied.
The simplest way to evaluate such logic is through contingency tables. The number

of actual occurrences in a given habitat is compared with the number expected under
the null hypothesis of nonpreference. If 30% of the environment is composed of grass-
land and 70% of woodland then the null hypothesis will be that of 500 radio-telemetry
fixes of elk, we should expect to get 150 (= 0.3 × 500) fixes in grassland and 350 in
woodland. One can test statistically whether the actual observed values significantly
deviate from this expectation using a 𝜒-squared test. A similar analysis can be used to
determine whether animals preferentially choose diets or other resources.
A commonly used variant on this simple contingency test is known as composition

analysis (Aebischer et al. 1993). Using this approach, one converts the proportions
of use for each habitat i to a log-ratio using the formula yi = ln(ui∕u1), where u1 is
the proportion of use of one arbitrarily chosen habitat type. Log-ratios of availability
are similarly calculated as zi = ln(ai∕a1). Preference is then indexed by the difference
between the log-ratios (pi = yi − zi) for all habitat types. If these log-ratios are available
for a number of individuals then it is possible to rank the habitats in terms of mean
preference and to use a MANOVA to test whether patterns of preference differ from
what one might have expected at random. The strength of composition analysis is that
the individual becomes the logical sampling unit, rather than fixes, which are rarely
truly independent of one another and thus bias statistical tests. The primary weakness,
however, is that selectivity can only be assessed for those habitats that are actually used
to some degree, hence complete avoidance presents a serious problem.
While simple tests based on use versus availability can help us identify important

habitat needs, they are not very useful for predicting patterns of occurrence across
the landscape. For such purposes, wildlife biologists use a different approach,
termed a resource selection function (Manly et al. 1993; Boyce and McDonald 1999).
Resource selection functions offer a flexible means of quantifying the degree of habitat
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preference. Complex combinations of categorical and continuous variables can be
readily accommodated using this method. Moreover, the method can use a GIS to
locate, manipulate, and analyze habitat data of interest.
Perhaps the easiest way to understand the most typical resource selection proce-

dure is to walk through an example. The rufous bristlebird is a threatened passerine
species living in coastal areas of Australia. Gibson et al. (2004) used GIS to evaluate
critical habitat needs for bristlebirds in a site with competing land use interests (biodi-
versity values versus mining). Along a series of trails bisecting the study area, Gibson
et al. recorded the presence (scored with a 1) or absence (0) of bristlebirds, noting the
exact geographic coordinates of each positive identification made. They later trans-
ferred these sightings to a GIS, overlaying digitized topographic data on aspect, slope,
and elevation, as well as spatially explicit data on hydrology and vegetation complex-
ity derived from multispectral remote-sensing imagery. The probability that a habitat
is used (w(x)) is given by the following logistic regression model:

w(x) =
exp(𝛽0 + 𝛽1X1 + … 𝛽kXk)

1 + exp(𝛽0 + 𝛽1X1 + … 𝛽kXk)

where the logistic regression coefficients 𝛽1 –𝛽k measure the strength of selection for
the k different habitat variables (symbolized by Xi) over the full set of sample units.
The S-shaped logistic function w(x) is bounded between 0 and 1 and represents a prob-
ability of usage, given the set of habitat characteristics within a spatial unit. Given the
descriptive nature of both the data on bristlebird presence or absence and habitat vari-
ables derived from the GIS, Gibson et al. elected to use model evaluation (Chapter
15; Burnham and Anderson 1998) rather than classical hypothesis testing (Chapter
14). They found that there was a positive association between bristlebird presence
and vegetation vertical complexity, but negative associations between bristlebird pres-
ence and “elevation,” “distance to creek,” “distance to the coast,” and “sun incidence.”
This suggests that bristlebirds require densely vegetated stands in close proximity to
coastal fringes and drainage lines. Such habitats composed approximately 16% of the
study area, demonstrating how resource selection can help in the assessment of land
use priorities for wildlife conservation in a planning context.
There are many variations on this basic statistical design, discussed in detail in the

comprehensive treatise byManly et al. (1993). If one can visit all spatial units and know
for sure whether each has been used or not, the logistic function w(x) can be treated
as a true probability of occurrence. An example of this might be the study of squirrel
nests in a small wooded area at a time of year in which nests are readily observable
from the forest floor. While it might require a good deal of work, one could probably
say with reasonable certainty that spatial units without a nest were not used as nesting
habitats.
In most cases in the contemporary literature, however, resource selection is based

on sampled radio-telemetry data, used to identify used habitats and sample available
habitat randomly from a larger set of sites. While this kind of study design unambigu-
ously identifies sites that were actually used by the marked population, one cannot
be sure that sites without fixes were not used at least some times by at least some
individuals (Keating and Cherry 2004). This means that recorded “0”s would actu-
ally be “1”s if the biologist had completely accurate data. Under these circumstances,
the proper procedure is to use logistic regression to estimate the coefficients of w(x),
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discard the denominator and intercept 𝛽0, and use the resulting modified formula
z(x) = 𝛽1X1 + … + 𝛽kXk to estimate the relative magnitude of use (z(x)) for each habi-
tat. In other words, the model cannot be treated as a true probability function, but
the resource selection function is still appropriately scaled to preferences (Keating and
Cherry 2004) and therefore useful in assessing conservation ormanagement objectives.

3.5 Using resource
selection functions
to predict population
response

Resource selection can in principle be used to evaluate the potential success of rein-
troduction programs (Boyce and McDonald 1999). This approach has been used, for
example, to predict the potential for successful reintroduction of gray wolves to dif-
ferent parts of the United States (Mladenoff et al. 1995; Mladenoff and Sickley 1998).
Data for existing wolf populations were first used to determine the suite of critical
habitat variables for wolves and to relate local wolf densities to habitat features. GIS
data were then fed into the resource selection models to predict the potential of dif-
ferent areas to support gray wolves. The model has been validated against data for an
expanding wolf population in Wisconsin, demonstrating that this approach can be a
useful planning tool.
Resource selection functions are also a powerful means of linking habitat character-

istics with spatially realistic models of population viability. For example, Akçakaya and
Atwood (1997) used logistic regression to develop a habitat suitability model for the
threatened California gnatcatcher (Polioptila californica) in the highly urbanized envi-
ronment of Orange County, California. Gnatcatcher distribution data were mapped
on to a GIS map. Numerous geographical habitat features were then evaluated and
a resource selection probability function was developed on the basis of the strongest
suite of variables. Suitable habitat fragments were mapped on to the Orange County
landscape and this spatial configuration was modeled as a metapopulation in order
to evaluate the long-term viability of gnatcatchers (see Chapters 16 and 22). This is
a valuable way of evaluating the conservation needs of threatened populations. It is
particularly appropriate for species utilizing fragmented landscapes, because it gives
useful insights into the ecological implications of alternative land use policies and
planning scenarios.

3.6 Sources
of variation in
habitat use

A number of factors can have a strong influence on habitat selectivity and use. First
and foremost, estimates of habitat selectivity are strongly influenced by the spatial scale
at which the assessment is made. A useful set of habitat use categories is in common
use by wildlife biologists (Johnson 1980). Type 1 habitat selection is based on the
entire range occupied by a given species relative to the unoccupied area. Type 2 habi-
tat selection is based on the full home range chosen by an individual relative to the
area encompassed by the species range. Type 3 habitat selection is based on the use of
specific habitats within the home range of a single individual. Finally, Type 4 habitat
selection is based on the selective use of particular food types by a single individual
within a single resource “patch.”
Although not commonly done, analyses conducted at multiple spatial scales often

find quite different patterns of selection at each scale (DeCesare et al. 2012). It is not
entirely clear what this means, but it has been suggested that the most limiting demo-
graphic factor will elicit selection at the most coarse scale (Rettie and Messier 2000).
So, giant pandas might be expected to coarsely select for bamboo forest, because that
is a crucial, nonreplaceable food resource, but to select for ancillary features such as
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slope, aspect, or stem density at finer spatial scales. At the very least, repetition of
resource selection studies at multiple scales is more likely to identify robust habitat
predictors that happen to have their greatest effect at different spatial scales.
Even if one maintains a similar spatial scale, patterns of selectivity will often be

intrinsically sensitive to variation in habitat availability in the local environment,
potentially clouding the ability of use-availability sampling designs to identify
preference (Beyer et al. 2010). This is an inevitable outcome of the mathematics used
to estimate preference coefficients combined with spatial heterogeneity in habitat
distribution that occurs routinely in nature. It is also a likely consequence of animals
valuing choices differently when resources are common as opposed to rare (Mysterud
and Ims 1998). One remedy is to repeat resource selection studies at a variety of
spatial scales or to repeat studies at sites with different levels of habitat availability,
if only to appreciate the robustness of statistical inferences. It is also advisable to
use some form of cross-validation, a statistical method of resampling one’s dataset
to evaluate the robustness of conclusions. Caution in accepting resource selection
functions at face value is often well warranted.
Given that there are differences in the intrinsic suitability of habitats, due to variation

in resources, cover, and risk from predators, one might expect animals to concentrate
in themost favorable habitats. It has been long appreciated, however, that habitat selec-
tivity tends to vary with densities of both consumers and their resources (Rosenzweig
1991). Birth rates tend to fall and mortality rates to climb as forager density increases
(see Chapter 5). As a consequence, habitat suitability is often negatively associated
with density. Density-dependent decline in habitat suitability can arise from a variety
of causes, including resource depletion, direct interference among individuals, disease
transmission, and elevated risk of predation.
At low consumer densities, individuals tend to be highly selective of habitats, but the

range of used habitats expands as consumer density increases (Rosenzweig 1991). This
is often interpreted as evidence of adaptive changes in foraging decisions that should
have positive fitness consequences (Rosenzweig 1981, 1991; Brown 1988; Brown et al.
1994). Animals that do not expand their range of acceptable options when preferred
items (habitats) are scarce face an opportunity cost that can be deadly (Brown 1988).
Density-dependent decline in habitat suitability can be extended to multiple habi-

tats. Individuals should concentrate in the best habitat until the density there reduces
in suitability to that of the next best alternative (Fig. 3.3). Thereafter, both habitats
should receive equal use. The resulting pattern of distribution among alternative habi-
tats is known as the ideal free distribution (Fretwell and Lucas 1970). It is free in the
sense that every individual is presumed equal and capable of choosing the best option
available. It is ideal in the sense that all individuals are presumed to have perfect
knowledge about the relative suitability of each habitat on offer. Hence, it would not
pay for any individual to deviate from the ideal pattern of distribution, because their
fitness would be compromised. This is a prime example of an evolutionarily stable strat-
egy (ESS; Maynard Smith 1982). Once adopted by all individuals in a population, no
mutant or deviant strategy could do better. Hence, the ESS will be favored by natural
selection.
The ideal free hypothesis predicts that most individuals should be found in preferred

habitats when forager population density is low, spilling over into less preferred habi-
tats when forager density is high. This pattern has been demonstrated several times in
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Fig. 3.3 Schematic
diagram of the ideal free
distribution. As density
in the preferred habitat 1
increases, suitability de-
clines to a point indi-
cated by the light broken
line where it equals that
in the poorer habitat 2
(60 units). At this point
it pays some individuals
to use habitat 2.
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Fig. 3.4 Use of preferred
habitats by three
different bird species
declines as population
size increases. (After
Sutherland 1996.)

100

50

0

100

50

0

100

50

0
0 4 8 12 16 20 0 02 4 6 824 20 40 60

Total population (thousands)

%
 o

f 
to

ta
l 
o

n
p

re
fe

rr
e

d
 a

re
a

Species 1 Species 2 Species 3

different bird species (Fig. 3.4). One of the earliest examples was Brown’s (1969) pio-
neering studies of great tits (Parus major) in the woodlands near Oxford, UK. Brown
showed that adult birds nested predominantly in woodland habitats in years with low
bird abundance, expanding outwards into less attractive hedgerows only when den-
sities were high. Krebs (1971) tested the assumption that this distribution stemmed
from differences in fitness by experimentally removing birds from woodland habitats,
resulting in vacancies that were filled rapidly by former hedgerow “tenants.”
A powerful way to test the ideal free hypothesis is to compare the feeding rates of

individuals in different patches with different rates of food delivery. Milinski (1979)
delivered food at differing rates to the two ends of an aquarium and measured the con-
sequent pattern of distribution of sticklebacks. The ideal free hypothesis predicts that
once they have determined the rate of food delivery at each end of the tank, the density
of fish at each end should be proportional to the same. In other words, delivering twice
as much food to one end of the tank should lead to two-thirds of the fish congregat-
ing in the food-rich patch. The sticklebacks redistributed themselves in precisely this
manner (Milinski 1979). Similar results have been recorded in continuous-food-input
experiments with numerous other species, including mallard ducks (Harper 1982),
cichlid fish (Godin and Keenleyside 1984), and starlings (Inman 1990). Measurements
in the field have been less supportive. However, animals in preferred habitats generally
obtain higher rates of food intake than those relegated to poorer habitats (Sutherland
1996). Researchers frequently find that individuals vary in the quantity of food that
they acquire, withmore dominant or larger individuals securingmore of the food deliv-
ered than lower-ranking individuals. This hierarchy suggests that although animals are
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capable of adjusting their behavior in predictable ways to accommodate the presence of
other competitors for scarce resources, differences in dominance status tend to main-
tain differences in fitness (Sutherland 1996).
One way to accommodate these effects is through a modified model known as the

ideal despotic distribution (Fretwell 1972). This model assumes that individuals choose
the best habitat possible on the basis of their dominance status. In extreme cases, this
process can lead to territoriality, in which an individual, pair, or social group defends an
area of exclusive use against all intruders. The most dominant individuals choose first,
followed by others in rank order of their dominance status. Under these conditions,
individuals of lower status might well choose to split their time between two habi-
tats offering similar levels of suitability, whereas high-ranking individuals invariably
choose the best habitat. More importantly, the ideal despotic distribution predicts that
there will be disparities in food intake, mortality risk, and reproductive success among
individuals. These differences dissolve when we focus on individuals of similar rank.

3.7 Movement
within the home
range

One nagging flaw in simple studies of habitat selectivity is that not all parts of an
animal’s home range are physically accessible from every other part of the home range
at every moment. For example, imagine one has a dataset composed of daily telemetry
fixes for a caribou occupying a circular home range with a radius of 24 km. If an animal
never travels more than an 8 km straight-line distance in a day, only a small fraction
of the home range can be exploited from any particular position in any given day. As
a result, not all habitat types will be equally accessible, even if we lump data over the
entire annual cycle.
Wildlife biologists have recently taken enormous strides in overcoming this intrinsic

bias. The key is in thinking about the movement process itself. One simple way to
characterize movement is simply to measure the distance between subsequent fixes
over constant time intervals (termed steps) and the degree to which an animal deviates
in direction from one step to the next (termed the turn angle). Such a distribution of
steps and turn angles for elk in southern Ontario, Canada is shown in Fig. 3.5. Like
most organisms, elk tend to make many short “steps” punctuated by a small number
of long ones. While searching for food patches, elk tend to move in fairly straight
trajectories, whereas they tend to turn tightly and take shorter steps once they have
located a patch with abundant food (Hazell 2006; Fryxell et al. 2008).
By randomly sampling from such distributions of step length and turn angle, one

can hazard a reasonable guess about the locations that an animal could have plausibly
visited as it moved from one point in time to the next. This procedure is very similar to
that described for resource selection functions, except that the set of available habitat
types is defined by the points that are plausible in light of the observed movement
process, hence the method is called a step selection function. By taking a random sample
of 200 points realistically arrayed around every elk fix, Fortin et al. (2005) were able to
estimate which local habitat variables were most highly preferred by elk in Yellowstone
National Park. Using this procedure, they demonstrated that elk tend not tomove away
from roads and preferentially move towards stands of aspen trees or open grasslands
when wolves are rare in the vicinity, but move preferentially towards coniferous forest
when wolves are locally common. This suggests that elk are able to make a subtle
assessment of the relative value of food versus predation risk. When risk is high, elk
tend to choose sites with heavy forest cover, presumably for concealment, whereas
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when risk is low they choose sites that offer better opportunities to feed on grasses or
young aspen saplings, which are their preferred food resources.
This general approach using distributions of movement steps and turn angles has

come into wide use in a variety of other contexts, allowing behavioral ecologists to pre-
dict better patterns of dispersal from newly-established versus long-standing popula-
tions (Ovaskainen et al. 2008), alternation in movement behavior between exploratory
and encamped “phases” (Morales et al. 2004), and identification of seasonal and daily
cycles of movement behavior for animals of different social rank (Wittemyer et al.
2008). A useful new framework for developing such integrated models of animal and
plant movement is nicely outlined in Nathan et al. (2008).
Mechanistic movement models can also be used to develop a deeper understanding

of the critical factors shaping animal home ranges. For example, behavioral studies
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Fig. 3.5 Distribution of step lengths and turn angles for Ontario elk while foraging (top) and while searching for new foraging
sites (bottom) and Yellowstone elk (next page). (Source: Hazell, 2006. Reproduced with permission of Megan Hazell, AMEC E & I,
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Fig. 3.5 (Continued)
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of coyote home range behavior suggest that individuals use scent-marking both to
establish their own presence and as a means of assessing the identities of intruders on
to their home range. The typical response to the presence of a foreign scent-mark is
to mark on top of the intruder’s scent, but then move away towards the center of the
home range. By the same token, the size of movement “steps” tends to be small when
prey abundance is high but large when prey abundance is low. As a result, coyotes tend
to linger for long periods of time in parts of the home range with lots of prey (rodents
and hares) but quickly move on to better opportunities when prey are scarce, a process
termed area-restricted search (Smith 1974; Benhamou 1992).
Combining the process of habitat selection with that of movement, Moorcroft and

coworkers (Moorcroft and Lewis 2006; Moorcroft et al. 2006) developed a predictive
model of the home range that would eventually be formed by a population of coyotes
that obeyed these mechanistic movement rules. Their model did a good job of
explaining observed patterns of coyote home ranges in Yellowstone National Park.
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Fig. 3.6 Home range use
by Yellowstone coyotes
in relation to prey
(shading) and
neighboring individuals.
(Source: Moorcroft et al.,
2006. Reproduced with
permission of The Royal
Society.)
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The coyote home ranges are clustered in the valley bottoms, because that is where
prey are most abundant in this montane landscape (Fig. 3.6). No single coyote can
monopolize the valley, however, because of the movement response to neighboring
individuals. As a result, coyote home ranges become evenly strung out, like beads on
a necklace, due to the coyotes’ aversion to home range overlap but common interest
in exploiting spatially clumped prey.
While mechanistic in nature, Moorcroft and Lewis’s (2006) movement model does

not necessarily maximize fitness of the individual. Other researchers have however
taken this tack in trying to develop predictive home range models from first principles.
For example, Mitchell and Powell (2004) developed an explicit model of trade-offs
in time versus energy gained for a single individual black bear gathering a variety of
resources across a complex landscape. Their model predicts that there are diminishing
returns for an animal that tries to utilize too large a home range, as a result of both time
wasted in travel from the home range center and resource depletion by neighboring
animals. Hence, low home range overlap could be a natural consequence of animals
striving to maximize their net energy gain, rather than avoidance of competitors.
In a follow-up to the underlying logic of these spatial movement models, Moor-

croft and Barnett (2008) showed that the equilibrium spatial distribution of any ani-
mal following mechanistic movement rules should be scaled to the resource selection
function. This suggests that animal home ranges, movement patterns, and habitat
preferences are all intertwined as a bundle – opening exciting new opportunities for
synthetic work in the future.

3.8 Movement
among home ranges

The traditional view of home ranges is predicated on the notion that animals have
well-defined homes in the first place. This is true, of course, for many species. On
the other hand, some wildlife species have no fixed address at all, but rather wander
over a large area each year. With this kind of movement variation, it is often conve-
nient to consider whether patterns of movement are repetitive (i.e. is there a tendency
to return to places visited before or not?) and whether movements of multiple indi-
viduals are coordinated. A cyclical pattern of movement by individuals among two or
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more non-overlapping home ranges at different seasons of the year is termed migra-
tion, whereas nomadism refers to unpredictable patterns of movement among multiple
non-overlapping home ranges (Mueller and Fagan 2008). Animals whose movements
fall within a single boundary all year long are termed residents. Within each of these
categories there are examples of species that move as a group and share the same home
ranges at different points in time, as well as of those whosemovements are independent
of each other (Fig. 3.7).
A well-known example of a migratory species that moves en masse from one loca-

tion to another in a periodic manner (Fig. 3.7b,c) is the Serengeti wildebeest, whose
annual migration takes it from the arid Serengeti Plains to the moist woodlands of
the Tanzania–Kenya border and back again. Offspring production takes place in a
3–4 week period while the wildebeest are on the plains; the precocious young then
travel with their mothers, even during lactation. Recent models suggest that move-
ments of Serengeti wildebeest track the wave of new grass growth triggered by mon-
soonal rainfall patterns, which sweep across the Serengeti landscape in an annual cycle

Fig. 3.7 Conceptual
examples of (a) resident
behavior, (b,c)
migration, and (d,e)
nomadism. (Source:
Mueller and Fagan,
2008. Reproduced with
permission of John
Wiley & Sons Ltd.)
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(Holdo et al. 2009). By relocating periodically to areas with new grass growth, wilde-
beest obtain more energy over the annual cycle than would be possible for an animal
remaining in any single part of the migratory pathway. A secondary benefit is that
wildebeest also make themselves less available to predators, such as lions and hye-
nas, which are far less mobile and are unable to track herds across the entire annual
pathway (Fryxell et al. 1988).
There are lots of other species that migrate en masse, including red crabs on Christ-

mas Island, hawks and vultures migrating from North to South America each winter,
and jellyfish in the Pacific Ocean. Other migrations are conducted by individual ani-
mals moving independently of each other, such as Monarch butterflies; although the
majority of the population has an overwintering site high in the forested mountains
outside Mexico City, multiple generations of offspring fan across North America dur-
ing the spring and summer, before a single generation of butterflies returns home to
Mexico in the autumn (Flockhart et al. 2013). This pattern of movement allows differ-
ent generations of Monarch butterfly to find appropriately aged stands of their single
food source: milkweed plants. Return to Mexico allows individuals to overwinter as
part of a truly spectacular aggregation.
A similar pattern of migration is often seen in many ungulates in montane envi-

ronments. For example, elk, red deer, mule deer, and pronghorn antelope move from
low elevations occupied during the winter to high-elevation pastures in the summer
(Bischof et al. 2012; Monteith 2011; Middleton et al. 2013). By taking advantage of
variation in the timing of snow melt and subsequent green-up at different elevations,
it is possible for migrants to improve access to the most nutritious forage available
across the montane landscape (Hebblewhite et al. 2008; Bischof et al. 2013). Although
different individuals fan out to independent summer home ranges, migrants must often
pass through narrow valley corridors as they move upwards in elevation. Such narrow
corridors can become critical habitat if competing human concerns, such as oil rigs
or other industrial developments, block the passageway. Such blockages are increas-
ingly common on a crowded planet, where migrants must share limited real estate with
humans. This is a pressing concern in montane environments, where suitable terrain
for human and wildlife use is in particularly short supply (Berger et al. 2006; Sawyer
et al. 2009). There is also growing evidence that while elevational migration improves
access to food resources, it can also expose migrants to heightened risk of mortality en
route, perhaps due to increased exposure to multiple predator territories or to a lack of
familiarity with refugia along the way (Nicholson et al. 1999; Hebblewhite et al. 2008,
2012; Middleton et al. 2013).
Many of the most impressive movements are conducted by nomadic species, whose

movements take them unpredictably across a vast landscape (Fig. 3.7d,e). A spectacu-
lar example is the Mongolian gazelle, which roams unpredictably across the steppes of
eastern Mongolia. This grazing species has a well-defined preference for pastures that
are at an intermediate level of abundance, rather than the tallest grass swards (Mueller
et al. 2007), probably because of trade-offs between cropping rate and nutritional qual-
ity. In semi-arid environments, the location of suitable pastures is uncertain, because
rainfall is highly unpredictable in both space and time. Monitoring of radio-marked
animals (Mueller et al. 2011), supported by herd distributions conducted from lengthy
ground transects (Mueller et al. 2008), suggests that gazelles continually shift nomad-
ically across this unpredictable landscape, lingering at sites with suitable pasture
much more reliably than at poorer sites (Fig. 3.8), so that a dynamic landscape feature
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Fig. 3.8 Observed
(triangles) vs predicted
(shading) distribution of
Mongolian gazelles.
(Source: Mueller et al.,
2007. Reproduced with
permission of John
Wiley & Sons Ltd.)
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(grass biomass) represents a continuous habitat variable that is well correlated with
home range use, at least at short timescales. Human pastoralists in the same region
adopt a similar land use strategy, moving nomadically with their herds of yaks, sheep,
and goats in search of short-lived patches of suitable pasture.
Fitting home range models to migratory or nomadic species obviously presents chal-

lenges. For a seasonalmigrant, onemight demarcate seasonal ranges, restricting habitat
assessment to particular periods of the year. For truly nomadic species, home range
analysis has to be conducted at multiple times per year in order to provide a useful
picture of the area meaningfully occupied and for habitat assessment at any point in
time. It is still possible to assess patterns of space use and habitat utilization, how-
ever, provided that the spatial frame of reference is well specified and fits the animal’s
lifestyle (Mueller et al. 2007).

3.9 Summary Animals tend to move within a restricted home range that defines those areas used in
their effort to acquire resources, seek suitable mating sites, and avoid predators. There
are various ways in which home ranges can be identified from sequential location data
obtained from marked animals, including simple convex polygons, adaptive or fixed
kernel distributions, and local convex hulls. Comparisons across animal taxa suggest
that home range size has an allometric relationship with body size, with different rela-
tionships in herbivores and carnivores, as well as in animals living in aquatic versus
terrestrial environments.
The nonrandom positioning of home ranges in the larger landscape and the pref-

erential use of parts of the home range suggest preferential use of specific habitats.
We discuss various ways that habitat data are typically gathered for use in preference
studies, as well as the telemetry data that are now routinely applied. Habitat selection
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can be measured in a variety of ways, including comparisons of use versus availability
andmore complex nonlinear resource selection functions. Themethodology, strengths,
and limitations of each of these statistical approaches are briefly examined.
Habitat selection is shaped by a variety of behavioral and ecological variables,

including availability, consumer density, social processes, movement mechanics,
optimal foraging, and anti-predatory behavior. Fitness-based movement rules, hetero-
geneous resource distribution (as well as risk), and social interactions can be linked
to predict patterns of habitat use and home range shape.


