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INTRODUCTION

CHAPTERS ON census methods in The Wildlife Society’s “techniques man-
ual” have exploded from 9 pages in the first manual (Wight 1938) to 48 
pages in the sixth manual (Lancia et al. 2005). This expansion is testament 

to the volume of  literature produced over the years on this subject, and it has not 
subsided since the sixth manual. Indeed, the subject has spawned a voluminous lit-
erature over the years, including many in-depth books (Caughley 1977; Seber 1982; 
Caughley and Sinclair 1994; Sutherland 1996; Krebs 1999; Thompson et al. 1998; 
Buckland et al. 2001, 2004; Borchers et al. 2002; Williams et al. 2002a) on this sub-
ject, leading us to ponder how to properly balance coverage of  the subject and our 
intended audience in a limited number of  pages. 
 This chapter differs from those in previous editions (Lancia et al. 1994, 2005) in 
that we have designed the chapter for use in an undergraduate wildlife techniques 
class. Our intent is to provide an overview of  the basic and most widely used popu-
lation estimation techniques. As pointed out by Lancia et al. (2005), there are sev-
eral possible approaches to writing a chapter dealing with population estimation 
that include (1) supplying a detailed treatment that focuses on statistical models 
and deriving estimators based on these models, (2) providing details on survey pro-
tocol design and actually applying different population estimation techniques, or 
(3) providing the conceptual basis underlying the various estimation methods. Lan-
cia et al. (2005) chose to do the latter. We have chosen the second approach, recog-
nizing, as noted by Lancia et al. (2005), that such an approach has limitations due to 
the diversity of  real-world circumstances and our inability to provide detailed in-
structions for all possible situations. As such, we do not present all variations of  the 
basic population estimation procedures, but rather provide citations for the rele-
vant literature and computer software where variations of  these estimators can be 
found. However, we believe that a more concise chapter using simple examples will 
provide a much needed introduction for students, while providing a reference for 
wildlife biologists and resource managers. 
 Here we provide an overview of  factors that should be considered before choos-
ing a method to estimate population abundance, the pros and cons of  using various 
methods, relevant literature, and available computer software, so the reader may 
make informed decisions based on their particular needs. For readers with a more 
quantitative background, literature citations provide access to more detailed cover-
age of  the topics discussed in this chapter.

Estimating Animal Abundance
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DEFINITIONS

As terms are used in this chapter, they are defined in rela-
tion to population estimation to help the reader understand 
the material in the chapter. Definitions are based on Over-
ton and Davis (1969), Caughley (1977), Cochran (1977), White 
et al. (1982), Verner (1985), Caughley and Sinclair (1994),  
Sokal and Rohlf  (1995), Sutherland (1996), Zar (1996), Thomp-
son et al. (1998), Krebs (1999), and Ott and Longnecker (2008).

Population Definitions

Population: A group of  animals of  the same species occu-
pying a given area (study area) at a given time.

Absolute abundance: The number of  individuals.
Relative abundance: The number of  individuals in a popu-

lation at one place and/or time period, relative to the 
number of  individuals in a different place and/or time 
period.

Population density: The number of  individuals per unit area.
Relative density: The density in one place and/or time 

period, relative to the density in another place and/or 
time period.

Population trend: The change in numbers of  individuals 
over time.

Census: A total count of  an animal population. 
Census method: The method (e.g., spotlight count) used to 

obtain data for an estimate of  population abundance.
Population estimate: A numerical approximation of  total 

population size.
Population estimator: A mathematical formula used to 

compute a population estimate calculated from data col-
lected from a sampled animal population.

Closed population: A sampled population in which births, 
deaths, emigration, and immigration do not occur dur-
ing the sampling period.

Open population: A sampled population that is not closed.
Population index: A statistic that is assumed to be related 

to population size.
Detection probability: The probability that an individual 

animal in a sampled population is detected. Synonyms 
include observability, sightability, catchability, detect-
ability, and probability of detection. 

Statistical Definitions
Parameter: An attribute (e.g., percentage of  females) of  a 

population. If  you know the parameters of  the popula-
tion, you do not need statistics.

Statistic: An attribute (e.g., percentage of  females) from a 
sample taken from the population.

Frequency of occurrence: The observed number of  occur-
rences of  an attribute relative to total possible number of  
occurrences of  that attribute (e.g., individual was observed 
on 4 of  5 spotlight counts).

Accuracy: A measure of  bias error, or how close a statistic 
(e.g., a population estimate) taken from a sample is to 
the population parameter (e.g., actual abundance).

Bias: The difference between an estimate of  population 
abundance and the true population size. However, with-
out knowledge of  the true population size, bias is un-
known.

Mean estimate: The average of  repeated sample population 
estimates usually taken over a short time period.

Precision: A measure of  the variation in estimates obtained 
from repeated samples. Precision can be measured by (1) 
range (difference between lowest and highest estimates), 
(2) variance (sum of  the squared deviations of  each n 
sample measurements from the mean divided by n – 1), 
(3) standard deviation (positive square root of  the vari-
ance), (4) standard error (the sample’s standard devia-
tion divided by √n

—
. It therefore estimates the standard 

deviation of  sampled means based on the population 
mean), and (5) confidence interval (probability that a 
given estimate will fall within n standard errors of  the 
mean; e.g., a 95% confidence interval would be ±2 stan-
dard errors).

Central Limit Theorem: A statistical theorem stating that 
for large sample sizes ( 30), the sampling distribution of  
any statistic (e.g., the distribution of  means obtained by 
repeated sampling of  the mean from the same popula-
tion) will be approximately normally distributed (form 
a symmetrical, bell-shaped frequency histogram). There-
fore, we can divide the normal curve for the sampling 
distribution of  means into sections represented by n stan-
dard deviations above and below the mean. When this is 
done, 68.26% of  the area lies within ±1 standard devia-
tion, and approximately 95% lies within ±2 standard de-
viations of  the mean. Accordingly, a 95% confidence in-
terval implies a range of  values within which 95% of  the 
estimated means would fall. Stated differently, there is a 
95% chance the true mean lies within ±2 standard errors 
of  the estimated mean, provided there is no bias in the 
estimate.

 Overton and Davis (1969), in the third edition of  Wildlife 
Management Techniques Manual, provided a pictorial presen-
tation (Fig. 11.1) of  the relationship between precision and 
accuracy that made them easy to visualize. The bull’s eye 
on the rifle target represents the true population abun-
dance. If  one were to fire 10 shots from a rifle, the 10 bullet 
strikes would represent the value of  each of  the 10 individ-
ual population estimates. The center of  the area circum-
scribed by these 10 shots would then represent where the ri-
fle is firing, on average, or the overall average estimate of  
population abundance. The distance from the center of  all 
shots fired to the center of  the bull’s eye represents bias, or 
the amount of  inaccuracy present during those 10 shots. 
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The spread of  the bullet strikes would represent precision 
of  the population estimates. Variance is used to measure 
precision; the smaller the spread, the smaller the variance 
and the better the precision will be. For perfect precision 
and perfect accuracy, all 10 shots would strike the bull’s eye 
(Fig. 11.1A). However, one can have poor precision, but 
still maintain overall mean accuracy if  the center of  the 
area circumscribed by the 10 bullet strikes falls on the bull’s 
eye, thereby giving a mean estimate equal to the true pop-
ulation abundance (Fig. 11.1B). In the same way, one can 
have poor accuracy with perfect precision if  all bullet 
strikes hit in 1 spot biased away from the bull’s eye (Fig. 
11.1C). The worst-case scenario would be to have poor ac-
curacy with poor precision (Fig. 11.1D). In the real world 
of  population estimation, one does not ever know where 
the bull’s eye lies; therefore, one can only measure preci-
sion of  the estimates.
 In practice, population estimates need to be at least pre-
cise to be useful. If  estimates can be replicated many times 
in a short time frame, precision can be increased. And, if  an 
estimator or method has good precision, it might be useful 
as an indicator of  population trend, even if  it is not accu-
rate. However, if  field conditions change (even during the 
same field season), precision may not increase (Rakestraw  
et al. 1998). Furthermore, using trend data to manage wild-
life populations can be problematic, as the basic assumption 
when using trend data is that nothing changes over time ex-
cept population abundance. So, although precision is easy to 
compute, in real wildlife populations the true population 
abundance is never known, and therefore accuracy cannot 

be computed. It can only be implied by the sum of  all evi-
dence at hand. As such, if  one needs information on popula-
tion abundance, accuracy is still paramount. Hence the 
warning precision is no surrogate for accuracy (Lancia et al. 
2005).

SURVEY DESIGN

The solution to obtaining a usable estimate of  abundance is 
to choose the right method (sampling and/or analysis tech-
nique) and to employ proper survey design or experimen-
tal design (scheme or plan used to obtain samples for abun-
dance or density estimation; see Chapter 1, This Volume). 
Both must be optimized for the particular circumstance and 
species to obtain precise (and hopefully accurate) popula-
tion estimates. Unfortunately, what may work well in some 
circumstances is useless in others. In addition, there are many 
combinations of  methods and survey designs to choose from, 
and these can differ by orders of  magnitude in their preci-
sion and expense. Likewise, there are many opportunities to 
encounter setbacks and failure. Hence, before any surveying 
is attempted, the wildlife manager should ask a number of  
questions:

1.  Have I reviewed the relevant literature on the species 
and/or method?

2.  Do I need an estimate of  density, or will an index of  
relative abundance suffice?

3. What methods are available that meet these criteria?
4. What is the extent of  the survey area?

Fig. 11.1. An analogy of precision and accuracy when estimating 
animal abundance or firing a rifle at a target. Note that in 
target C, shots are biased to lower left, and in target D, shots 
are biased to right. When estimating animal abundance, we 
rarely know in which direction our estimation may be biased 
(either low or high). Modified from Overton and Davis (1969).
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 5. Are there any limitations on where I can sample?
 6.  What are the experimental units from which sam-

ples will be drawn?
 7. How much precision is desired?
 8.  If  comparing areas or time periods, how small a dif-

ference must be detected?
 9.  Given the precision or difference to be detected, how 

much replication is required?
10. How much replication can I afford?
11.  What is the distribution of  the species to be surveyed?
12. How will the sample units be distributed?
13.  Will sample units be drawn with or without replace-

ment?
14.  Do I have the necessary equipment and infrastructure?
15.  Do I have sufficient funds to conduct the proposed 

survey?
16.  Is that money better spent on answering another 

question?
17.  Do I have the time required to complete the estimate?
18.  Do I have the expertise to collect and analyze the 

data, or is it available elsewhere?
19.  Are there other biologists and biometricians who 

can provide an independent review?
20.  Will I need a pilot study to answer any of  the above 

questions?

 Answering the above questions is absolutely necessary, 
the completion of  which should result in a project proposal. 
Note, the process is iterative and may require several at-
tempts to reach an optimum set of  conditions for your par-
ticular project. This is typically a good time to contact other 
biologists and/or biometricians for help, and at the very 
least to request an independent review of  your proposal 
prior to initiating any work.

Survey Extent
Population estimates typically occur over a defined spatial 
area, with the estimates representing a specific period of  
time. As simple as this idea may seem, it is imperative that 
you define the spatial and temporal extent of  the area over 
which inference is to be made. Answers to these questions 
will lay the foundation for the statistical analyses ahead and 
are integral to proper survey design. Integral to this design 
is an assessment of  any nonhabitat and/or nonaccessible ar-
eas (private property or dangerous conditions) that may af-
fect species and/or sample distribution. 

Experimental Units
Because of  the limits of  time and costs, a survey of  the en-
tire study area of  interest is usually not possible. Therefore, 
an experimental design is devised to select a portion of  the 
study area to be sampled (experimental units). By defini-
tion, experimental units are homogeneous and should be 
representative of  the population or treatment to which in-

ference is to be applied. Experimental units may be time  
periods, units of  space, groups of  animals, or an individual 
animal. It is from experimental units that samples units 
are drawn (replication). For example, if  mice in a cage are 
given a treatment in diet (e.g., food type A), the cage of  ani-
mals is the experimental unit, and mice in the cage are sam-
ple units. Likewise, if  we are comparing abundance among 
habitat units, the differing habitats are the experimental units, 
and each survey would be a sample drawn from each of  the 
habitats. In simple surveys, where a population estimate is 
to be obtained from a single entity with no treatments or 
controls, there is only one experimental unit.
 An experimental unit is the smallest entity to which a 
treatment can be randomly assigned (see Chapters 1 and 2, 
This Volume). If  the treatments are manipulative (applied 
by the experimenter), a randomization rule is used to en-
sure an unbiased assignment of  treatments to experimental 
units. If  the treatments are mensurative (categories of  time 
or space; Hurlbert 1984) or organismal (natural categories, 
such as age class or sex), the randomization rule ensures that 
experimental units are drawn randomly from each treat-
ment. Thus, proper experimental design helps minimize the 
effects of  uncontrolled variation, allowing you to obtain un-
biased estimates of  abundance and experimental error (vari-
ation among experimental units treated alike).

Sample Units and Sampling Design
Sample units are the entity from which measurements are 
obtained. Sampling units may be quadrats, transects, or points. 
Selection of  sample units from an experimental unit should 
be done using a probability sampling scheme, or sampling 
design, where every sample unit has some probability of  
being selected, and this probability can be accurately deter-
mined. Without some type of  randomization rule, there is 
no way to avoid discrimination or favoritism in sample unit 
selection, resulting in bias (inaccuracy) and unrepresenta-
tive estimates of  variance (precision) in the estimate of  
abundance.
 Several sampling designs exist to accommodate particu-
lar survey conditions (Cochran 1977). The most common 
sampling design is simple random sampling, where sample 
units are selected randomly to ensure that each sample unit 
has an equal probability of  being selected. You proceed by 
exhaustively subdividing the experimental unit into sample 
units, and then you may draw lots, flip a coin, roll dice, or 
use a random number table to select units to be sampled. 
During random sampling, sample units may be drawn with 
replacement (i.e., a sample unit is selected and then placed 
back into the pool of  possible sample units, where it may 
possibly be drawn again) or without replacement (i.e., sam-
ple units may be selected only once). Because sampling with- 
out replacement is more precise than sampling with replace-
ment, it is more commonly used in wildlife management 
(Caughley and Sinclair 1994).
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 Stratified random sampling is employed when there are 
implicit differences in sample units that need to be ac-
counted for in the analysis. For instance, differences in habi-
tat quality may produce localized differences in animal den-
sity, resulting in increased variance. To reduce variance, the 
area may be stratified by habitat quality, with sample units 
selected randomly from each habitat type. For example, a 
large survey has defined experimental units (areas of  homo-
geneous habitat) by physiognomy (grassland, forest, savanna, 
desert, etc.). But investigation revealed that controlled 
burns in each experimental unit created perturbations in the 
underlying physiognomic matrix (alterations in otherwise 
homogeneous experimental material). To account for the 
variability, experimental units are stratified into burned and 
unburned areas, and sample units are randomly obtained 
from each stratum.
 Systematic sampling (or systematic random sampling) 
is employed to reduce the amount of  effort (time or fuel) 
necessary to navigate among sample units. Systematic sam-
pling typically uses a random start point and the proceeds in 
an ordered fashion (e.g., a point grid where a sample is col-
lected every 200 m) until the entire area to be covered is 
sampled. It has the advantage of  ensuring thorough cover-
age of  area under investigation, but is susceptible to an ar-
ray of  problems (Cochran 1977), the most pernicious of  
which is the possible coexistence of  an unknown periodic 
variation in the population being sampled (Krebs 1999). The 
periodic fluctuation could match the frequency of  a system-
atic sampling design, resulting in a biased estimate with un-
representative precision (that is unknown to the user).
 Several nonprobabilistic sampling designs that may be 
used in error have been described in the literature (Cochran 
1977, Krebs 1999), such as accessibility sampling (sampling 
along trails or roads due to ease of  access; later called “con-
venience sampling” by Anderson [2001]), haphazard sam-
pling (without a plan, as the name implies), or judgmental 
sampling (selected as “typical” or “representative” on the 
basis of  subjective opinion). Even worse, some sample units 
may be selected because of  the greater opportunity to “see 
more animals,” despite the obvious bias that will result. Re-
gardless of  cause or origin, nonprobabilistic sampling de-
signs are likely to yield biased estimates with levels of  preci-
sion that are not representative of  the area of  inference, and 
they should therefore be avoided.

Sampling Intensity and Statistical Power
Sampling intensity is a concept that encompasses desired 
precision, statistical power, and the amount of  variability 
among the sample units. Determining the sample size re-
quired to achieve study objectives is a central question that 
must be addressed prior to the initiation of  work. If  the 
sample obtained is too big, valuable resources will be wasted 
obtaining excess precision that produces no change in out-
come or conclusions. More catastrophic is a sample size that 

is too small, as the information obtained may be incapable 
of  producing useful results, leading to incorrect conclu-
sions. Sampling intensity also is an ethical consideration. 
Studies with improper sample size exposes subjects (animals 
or humans) to risks when little (too many samples) or no 
(too few samples) gain in useful knowledge is possible. Lenth 
(2001) observed that for such an important and complex is-
sue, there was an alarming paucity of  published literature. 
Fortunately, most popular statistical packages (R [http://
www.r-project.org/], SPSS [http://www.spss.com/], SAS 
[http://www.sas.com], JMP [http://www.jmp.com/], and 
Statistica [http://www.statsoft.com/]) have the tools for sam-
ple size determination, and there a growing number of  re-
sources devoted specifically to the task, including books  
(Armitage and Colton 2005, Chow et al. 2008, Dattalo 2008, 
van Belle 2008, Julious 2010), standalone software packages 
(Thomas and Krebs 1997, Lenth 2001, Faul et al. 2007), and 
several online calculators (Lenth 2001).
 There are 5 interrelated components that influence sam-
ple size determinations and the conclusions you might reach 
from a statistical test in a research project. The logic of  sta-
tistical inference with respect to these components is often 
difficult to understand and explain (see Chapter 1, This Vol-
ume). Here we clarify the 5 components and describe their 
interrelationships 

1.  Significance level: The significance level is the odds 
the observed result is due to chance. This concept in-
cludes 2 components that define the types of  errors 
possible in statistical tests. Type I error is rejecting 
the null hypothesis when it is true, and the probabil-
ity of  committing this type of  error is controlled by 
the alpha level (α) of  the test (frequently α = 0.05). 
Type II error is failing to reject the null hypothesis 
when it is false, and the probability of  committing 
this type of  error is controlled by the beta level (β) of  
the test (frequently β = 0.05). The investigator should 
adjust the levels of  alpha and beta according to exper-
imental needs, being mindful of  the potential harm 
that may result from dogmatically applying “typical” 
or “established” probability levels.

2.  Power: Power is the odds that you will observe a 
treatment effect when it occurs. Defined another way, 
power is the probability of  rejecting the null hypothe-
sis when it is false, and it is controlled by adjusting 
beta (i.e., power = 1 – β). Increased power results in 
requisite increases in sample size, due to the relation-
ship between power and beta.

3.  Effect size: Effect size (d2) is the difference between 
treatments (e.g., in number of  animals seen) relative 
to the noise in measurements. Effect size expresses 
the magnitude of  difference between 2 sample means 
and therefore is the logical complement to the P-values 
generated from statistical hypothesis tests. Effect size 

http://www.r-project.org/
http://www.r-project.org/
http://www.spss.com/
http://www.sas.com
http://www.jmp.com/
http://www.statsoft.com/
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and the ability to detect it are indirectly related; the 
smaller the effect, the more difficult it will be to find, 
therefore requiring a larger sample size. The term “ef-
fect size” is sometimes used synonymously with 
“standardized difference.” Effect size can be written as 

 x̄1 – x̄2d2 = ————,
 s

  which scales the difference in population means 1 and 
2 (x̄1 – x̄2) by the standard deviation σ (Cohen 1988, 
van Belle 2008). Although it is useful to think in these 
terms, one should recognize the dangers of  formulat-
ing study objectives exclusively in terms of  effect size 
(Lenth 2001, van Belle 2008). For determining sample 
sizes, it is important to know the anticipated means 
and variances under the null and alternative hypothe-
ses for the entities being compared.

4.  Variation in the response variable: The sample vari-
ance (s2) or standard deviation (s) are often used to 
estimate variability in the parameter of  interest (e.g., 
population mean). The standard deviation is calcu-
lated as positive square root of  the sample variance: 

s = √s
—2 ,

 where the variance is 
 n

 ∑ (Xi
 – X̄)2

 i = 1 s2 = —————— .
 n – 1

  where Xi is 1 data point within a sample and X̄ is the 
mean of  all data points within the sample. Similar to 
the requirement to know the anticipated means for 
the entities being compared, to accurately determine 
sample size, we also must estimate the variance or 
standard deviation for the entities being compared. 
They are typically obtained from either the literature 
or a pilot study.

5.  Sample size: Sample size (n) is the number of  sam-
ples required to obtain the desired precision in an esti-
mate or the desired power in a hypothesis test. Larger 
sample sizes generally lead to parameter estimates 
with smaller variances, giving you a greater ability to 
detect a significant difference. Sample size is typically 
the variable being solved for in the planning stages, 
but it can be an input variable when you are attempt-
ing to estimate power. 

 For example, to determine the sample size required for 
comparing 2 populations with equal variance in a 2-tailed 
hypothesis (Lehr 1992, van Belle 2008): 

 2(z1 – α/2 + z1 – β)2

n = ————————— .
 x̄1 – x̄2 (———) s

When α = 0.05 and β = 0.20 (typical settings for these pa-
rameters in wildlife research), the corresponding critical val-
ues from a standardized normal probability table (z-values 
or z-scores) become 1.96 (z-score for α, the probability of  
committing a Type I error: z1 – α/2) and 0.84 (z-score for β, 
the probability of  committing a Type II error: z1 – β), re-
spectively. The z distribution is a normal or Gaussian distri-
bution with a mean of  0 and a standard deviation of  1. Stan-
dardized or z-values then represent deviations from the 
normalized mean in units of  standard deviation. The nu-
merator then simplifies to 15.68. Rounded up to 16 and sub-
stituted into the equation, it yields a useful rule of  thumb 
for calculating sample size (Lehr 1992, van Belle 2008): 

 16n = ——,
 d2

where 

 x̄1 – x̄2d2 = ————, s

the standardized difference, reflects the difference to be de-
tected between treatment means (effect size) divided by the 
standard deviation. 
 It is clear, the ideal experimental design would be one 
that minimizes the probability of  Type I and Type II errors 
while maximizing power, given the particular experimental 
constraints of  time and resources. Likewise, the above ex-
ample illustrates the 5 components that are necessary for 
determining sample size and conducting power analysis, are 
not independent. The usual objectives of  a power analysis 
are to calculate the sample size (5) required to achieve the 
desired power (2), given effect size (3) and sample variability 
(4), at a predetermined level of  significance (1). In studies 
with limited resources, the maximum sample size (5) will be 
known. In these instances, power analysis then becomes 
necessary to determine whether sufficient power (2) can be 
achieved with the known sample size (5), for the desired sig-
nificance values (1), sample means (3), and sample variances 
(4). The researcher can then evaluate whether the study is 
worth pursuing. As indicated above, there are many soft-
ware packages available for calculating sample size and power 
(Thomas and Krebs 1997, Lenth 2001, Faul et al. 2007, R De-
velopment Core Team 2008). Consult the user’s manual of  
the software package you are using to become familiar with 
these calculations. The goal is to achieve a balance of  com-
ponents that provides the maximum level of  power to de-
tect an effect if  one exists, given programmatic, logistical, 
or financial constraints on the other components. 

Proposal Generation and Independent Review
We began this section with a list of  questions that should be 
addressed when developing a survey design. By answering 
these questions, the researcher should have gained sufficient 
understanding of  the task at hand to finalize the process 
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with a research proposal. Although many view the writing 
of  a research proposal as an unnecessary formality, we be-
lieve that it is an essential part of  wildlife management. The 
steps required to gather the information necessary to write 
a research proposal forces the investigator(s) to assess the 
various parameters that will ultimately determine the suc-
cess, or failure, of  a project. The written proposal then rep-
resents the investigator’s understanding of  the problem at 
hand, as well as the resources and methods believed to pro-
vide the solution, given any limitations. As such, the pro-
posal conveys all the information necessary for an indepen-
dent review. The independent review provides a critique of  
the survey design, either confirming a sound design or pro-
viding the information necessary to improve on the existing 
knowledge. Therefore, the independent review serves as  
either the starting point of  a new iterative loop through the 
whole process or the conclusion of  the survey design phase. 

METHOD CATEGORIES  
AND CONSIDERATIONS

Animal survey methods have developed over time, building 
on established knowledge and growing in sophistication. 
They can be broadly categorized as census methods or esti-
mates derived from sampling, and they are further subdi-
vided by complete or incomplete detection in samples (Fig. 
11.2). Early methods focused on complete census of  a given 
population. For animals that were elusive or otherwise diffi-
cult to census, methods were developed to census animal 
indices. Indices were typically based on cues or other by-
products of  animal activity (fecal pellets, nests, burrows, 
tracks, calls, scrapes, etc.) that were believed to be propor-
tional to animal abundance or density. At the same time, 
methods were developed for obtaining trends or abundance 
estimates from exploited populations. Later, methods capi-
talized on existing methodology and attempted to estimate 
abundance by obtaining complete counts from sample ar-
eas. Finally, because it was impossible to ascertain whether 
a complete count had been obtained (i.e., to prove a nega-
tive: “no animals were missed”), newer methods of  esti- 
mation were developed utilizing incomplete counts from 
sample areas. It is through this general classification (modi-
fied from Lancia et al. 2005) that we introduce the basic 
methodology of  estimating animal density and/or abundance 
(Fig. 11.2). 

Considerations
As noted above, the breadth and depth of  the subject of  
abundance estimation for animal populations spans many 
methods. The combination of  method and survey design 
then, in turn, dictates how samples may be combined to es-
timate means and variances. Chapters 1 and 2 (This Vol-
ume) should be consulted for more in-depth discussions of  
experimental design and analysis of  data. We intend to pro-

vide a basic overview of  methods available for consideration 
in each category for assessing animal abundance, providing 
simple examples from historical methods and references  
for further investigation. We begin by re-emphasizing 2 fac-
tors that must be considered due to their impact on preci-
sion and accuracy of  methods: distribution of  the target 
species relative to the distribution of  samples and detection 
probability.

Species Distribution
Attempts to manage populations using indices (counts be-
lieved to be related to abundance) and complete counts 
(census) revealed the analytical and practical limitations of  
these methods. As the size of  the area to be surveyed in-
creased, practical limits on available resources were reached, 
forcing investigators to derive methods for obtaining esti-
mates from samples. Similarly, development of  methods for 
obtaining estimates from samples revealed the importance 
of  sample distribution in relation to species distribution. Re-
sources, and therefore wildlife, are not randomly distributed, 
which can create bias in estimates of  animal abundance. 
Problems arise when animal distributions are clumped, or 
when the distribution of  samples correlates with the under-
lying distribution of  animals to be sampled. Appropriate 
survey design is almost always the key component in allevi-
ating this problem, with random sampling or stratified ran-
dom sampling the most common remedy. Although avoid-
ing the problems resulting from nonrandom distribution of  
either samples or species is a requisite for obtaining precise 
and accurate estimates of  abundance, defining or describing 
the underlying distribution of  animal abundance is some-
times a necessary objective (Pielou 1974, Cochran 1977, Dig-
gle 1983, Greig-Smith 1983, Ludwig and Reynolds 1988, Rip-
ley 2004). Regardless, we again warn that it is prudent to use 
probabilistic sampling as the easiest alternative for avoiding 
unforeseeable problems in obtaining estimates.

Detection Probability
Most animal survey methods do not observe all individuals 
in the population. Generally, the probability of  seeing or 
trapping an individual animal over a given area is 1. Sam-
pling design and detection probability are major concerns 
when estimating animal abundance. Usually, one assumes 
that detection probability is similar across all sampling ar-
eas; however, this assumption is not always true, and there 
may be different detection probabilities for different sampling 
units. Estimators for these cases take this variation into con-
sideration (Thompson 2002a, Skalski 1994). Lancia et al. 
(2005) noted that considerable effort in development of  abun-
dance estimators has involved ways to estimate detection 
probability.
 Conroy and Nichols (1996), Pollock et al. (2002), and 
Lancia et al. (2005) noted there are 3 basic approaches used 
in attempts to deal with variation in detection probability in 
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surveys. The first is to use standardized methods when 
conducting the surveys. All potential sources of  variation in 
detection probability that are under the control of  the inves-
tigator should be kept constant (methods, effort, observer 
experience, weather, etc.). 
 The second involves use of  covariates in analyses of  sur-
vey statistics. If  exogenous variables, such as weather condi-
tions or observer identity, account for most of  the variation 
in detection probability, models can be developed for esti-
mating change in population size as a function of  the rele-
vant exogenous variables (Overton and Davis1969; Craig  
et al. 1997; Link and Sauer 1997, 1998, 2002). Lancia et al. 
(2005) stressed that covariates selected for use in model- 
ing cannot be associated with both detection probability and 
true abundance. They used the example of  vegetation type, 
because it can affect detection probability, and it also can  
influence abundance. Therefore, using vegetation type as  
a covariate affecting detection probability would not be 
appropriate. 
 The third approach is to recognize that detection proba-
bility is not constant over space or time, and that not all 
exogenous variables can be measured, modeled, or even 
perceived. This idea leads to implementation of  methods 
that permit direct estimation of  detection probability. Of  
the 3 methods, Lancia et al. (2005) believed this approach 
was the only one that was scientifically defensible, and they 
recommended that developers of  future surveys and moni-
toring programs utilize this approach. Despite this recom-
mendation, index use is common in wildlife surveys and 

monitoring programs throughout the world (e.g., Thomp-
son et al. 1998). 

INDICES

Most indices collect frequency (number of  individual ani-
mals or animal sign) information along transects, at quad-
rats, or points. Examples of  index methods include the 
number of  animals seen per kilometer of  road, the number 
of  animals present per night at a waterhole, fecal pellets per 
quadrat, and nest or burrow counts per kilometer of  tran-
sect. Similarly, a frequency of occurrence index only col-
lects presence or absence data. A frequency of  occurrence 
index is based on the proportion of  sample units (e.g., scent 
stations) that contain at least 1 animal or animal sign (Scat-
tergood 1954, Caughley 1977, Seber 1982). However, Seber 
(1982) noted that a population with a highly clumped distri-
bution will yield a lower frequency of  occurrence index 
(proportion of  quadrats with at least 1 animal) than a popu-
lation of  similar density with a more uniform or random 
distribution. 
 A density index can be defined as any measure that cor-
relates with density (Caughley 1977:12). Indices are used 
most often because of  perceived savings in cost, time, and/
or labor. Indices differ from population estimation methods 
in that only relative abundance or relative density can be de-
rived from the indices. Data are usually presented as deer/
km, rabbit pellets/m2, or birds/point. Indices can be used to 
compare animal numbers between treatment and control 

Fig. 11.2. The relationship among 
population estimation procedures.
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areas (e.g., disked with nondisked areas) or to compare the 
same area over time, based on the assumption that nothing 
changes except the relative abundance of  the animal being 
studied. The probability of  catching, counting, or otherwise 
detecting an animal in sample units from 2 areas or time  
periods being compared should be similar. If  indices are em-
ployed, they should be standardized as to season, time of  
day, weather conditions, habitat, and observer experience. 
For multispecies surveys, detection probability will vary with 
species. Such factors as group status, reproductive cycle, sex 
and age ratios, and population density also will affect detec-
tion probability. For aquatic species, water level, water tem-
perature, and moonlight also affect detection probability.
 Data obtained from indices (e.g., relative abundance) are 
correlated with abundance in some unknown manner. Stan-
dardizing methods and using covariates in an analysis can 
address some sources of  variation in index surveys (Lancia 
et al. 2005). However, as noted by Lancia et al. (2005), other 
factors that affect detection cannot be handled in these ways 
or may not even be identified. They recommended caution 
and skepticism when using and interpreting indices, and 
they preferred that all indices include an estimate of  detec-
tion. There are only 2 ways to obtain the relationship of  an 
index to population abundance: (1) estimate detection prob-
ability or (2) estimate population abundance and “calibrate” 
the index (Caughley 1977, Lancia et al. 2005). However, it 
should be apparent that if  an estimate of  population abun-
dance can be obtained, there may be no need to do the in-
dex survey. We are of  the opinion that a calibrated index 
would only be applicable for the time and place it was done, 
as conditions typically change over time and for difference 
areas. Therefore, we will go a step further and recommend 
that all indices include an estimate of  detection probability, 
and if  possible, only population estimation procedures 
should be used to obtain animal abundance data. Most in-
dex surveys can be readily modified to provide information 
needed in a population estimation procedure. For example, 
live catch per unit effort (an index) could be easily modified 
for a mark–recapture population estimation procedure, or 
deer seen per kilometer could be easily modified for a line-
transect population estimation procedure. Regardless, given 
the advances in sampling methodology, there are relatively 
few circumstances where index could not be adequately re-
placed by a more quantitative method.

CENSUS OR TOTAL COUNTS

In few situations are total counts possible. Total counts may 
be possible for the number of  deer in a small paddock or 
maybe the number of  elephants in a small pasture. But for 
wild populations, it is seldom possible for wildlife managers 
to obtain a total count of  animals in a give study area. As 
sample area increases, animals are inevitably missed. If  it is 
possible to obtain a total count, then no descriptive statistics 

are needed nor apply. The data obtained are not a sample, 
but an enumeration of  the whole population (i.e., no vari-
ability is present, because you counted them all). Total 
counts are assumed to be accurate and can be used to cali-
brate (i.e., estimate probability of  detection) extensive field 
surveys (Lancia et al. 2005). Total counts on small areas can 
be derived from intensive surveys (Tilton et al. 1987), from a 
known number of  marked individuals, or by other inge-
nious means (Kuvlesky et al. 1989). Several methods (pre-
sented below) have been purported to produce accurate 
population counts in some circumstances. However, we warn 
investigators there is always a possibility that an unknown 
number of  animals will be missed (e.g., nonsinging male 
birds in a spot-mapping survey). When this occurs, there are 
no means to detect bias or assess the precision of  the sam-
ple. So, although the methods listed below are in this sec-
tion on total counts, in most cases, data resulting from these 
methods should viewed skeptically and probably should be 
considered indices rather than total counts.

Drive Counts
Drive counts occur over limited areas where “beaters,” or 
herders, drive animals into an enclosure or past counters to 
count total animals in the study area. The method works 
best with large, easy to detect animals, such as deer. Drivers 
remain in sight of  one another at all times (to prevent ani-
mals from escaping unseen between observers), spaced 
along a line, and sweep across an area with well-defined 
boundaries. In the best case scenario, the area would be sur-
rounded by a high fence or water (Tilton et al. 1987). If  not, 
additional observers are placed along the boundaries to 
count animals that move in or out of  the census area. All 
observers count only those animals that move past them on 
their right side (this practice eliminates double counting). 
The census is the sum of  the number of  animals moving 
out of  the area or back through the line of  drivers, minus 
any moving into the area ahead of  the drivers.
 McCullough (1979) compared drive counts with popula-
tion estimates reconstructed from the age of  death of  indi-
viduals in the population. At low densities, drive counts un-
derestimated the true population, and at high densities, they 
overestimated the true population. Errors could be as large 
as 20–30%. Thus, drive counts are probably best viewed as 
an index of  population size. 

Aerial Photography
Low altitude photography of  flocks of  birds (or other groups 
of  animals) is often used as a census technique. The entire 
assemblage of  animals is photographed and later counted to 
give a complete census. However, it is often difficult to as-
certain whether all individuals are visible (e.g., some diving 
ducks may be under water) to be photographed, and errors 
in counting undoubtedly are made (Bajzak and Piatt 1990). 
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Spot Mapping or Territorial Mapping
Spot mapping involves plotting locations of  individual birds 
that are seen or heard on a gridded map during repeated 
visits to a study area. The technique is most suited to birds 
that regularly sing or call in exclusive territories. Floaters 
(i.e., nonterritorial birds) and young of  the year are usually 
not surveyed by this technique. The combined data reveal 
clusters of  locations, assumed to represent centers of  activ-
ity for individual territories during the breeding season. The 
total number of  clusters in the study area equals the num-
ber of  clusters completely inside the area plus the sum of  
fractional parts of  clusters on the boundaries. Total number 
of  birds is estimated by multiplying the number of  clusters 
by mean number of  birds per cluster, which is normally 2, 
assuming that birds breed in pairs.
 Assumptions of  the method (Verner 1985, Bibby et al. 
2000) are: (1) populations are constant, and birds remain in 
exclusive spaces or territories during the sampling period; 
(2) birds in territories produce cues frequently enough to 
permit repeated location on successive observational visits; 
(3) estimated proportions of  territories along boundaries 
are accurate; (4) the estimated mean number of  birds repre-
sented by each cluster is accurate; and (5) observers are 
skilled, record data accurately, and are consistent. Verner 
and Milne (1990) provided evidence that spot mapping re-
sults should not be considered to be complete counts, as  
results can vary among observers (Best 1975, O’Conner and 
Marchant 1981) and map analysts. At best, spot mapping 
yields an index.

Total Mapping of Bird Territories
This approach is similar to spot mapping, except breeding 
birds are first trapped and color banded, prior to surveys to 
delineate territories. This practice facilitates the identifica-
tion of  individuals. Verner (1985:266) believed that, when 
thoroughly executed, total mapping was probably the most 
accurate method of  estimating population density of  breed-
ing birds. He also believed the method should be used as a 
standard for evaluating the accuracy of  other methods of  
estimating bird density. However, Bibby et al. (2000:42) noted 
this method only estimates the population of  relatively con-
spicuous birds holding territories, not floaters (i.e., non-
territorial birds) or transients. Assumptions are the same as 
for territorial mapping (described above).

COUNTS ON SAMPLE PLOTS (FIXED AREA)

It may be possible to obtain complete counts of  animals on 
sample units of  limited area within some larger area of  in-
terest. The sample units must be suitably sized relative to 
the organism being considered, to ensure that a complete 
count is obtained. The area being counted is fixed in terms 
of  length and width prior to the start of  the survey. Because 
all individuals are counted, there is no variation associated 

with the density or number of  animals seen on the sample 
plots (unless counts on each sample plot are replicated). In-
stead, only geographic (plot to plot) variation is a concern. 
The mean density from all sample plots is then extrapolated 
to the entire study area, giving an estimate of  average den-
sity and/or population abundance for the area of  inference. 
This basic sampling method has been modified to use  
sample units of  various shape (quadrats, strips, plots, etc.) 
and size, depending on circumstance and target species. We 
refer the reader to Caughley and Sinclair (1994) for their  
excellent illustration of  the advantages and disadvantages  
of  sampling with replacement versus sampling without re-
placement, and transects (long, narrow rectangles) versus 
quadrats (squares). Here we focus on simple estimates de-
rived from sampling units of  equal size. We provide exam-
ples for strip and point counts. We again warn investigators 
of  the possibility that an unknown number of  animals may 
be missed in some or all sample units, resulting in negatively 
biased estimates of  population size and/or density.

Strip Counts
This method is the one of  the most commonly used to mea-
sure density. The counting unit is a strip or transect, which 
is merely a long, narrow rectangle of  fixed area. Transects 
are randomly placed across the grain of  the topography and 
landscape. Transect lines can be traversed on foot or horse-
back, by truck or boat, or in a helicopter or airplane. The 
classic strip census uses a preset distance (0.5-strip width) on 
each side of  the transect line, and then only those animals 
within this predefined distance are counted. Animals ob-
served outside this distance are not counted, and it is assumed 
that all animals in the strip are counted with certainty. If  
these assumptions are valid, the population abundance can 
be estimated using any of  the simple population estimators 
(Cochran 1977, Krebs 1998, Caughley and Sinclair 1994) for 
samples of  equal area, samples of  unequal area, or sampling 
proportional to size. Here we illustrate the calculations of  
density and abundance from strip counts of  equal area, sam-
pled with and without replacement. Density is calculated as 
the ratio of  the sum of  counts to the sum of  strip areas (see 
below for variable definitions):

 ∑xiD =  ———.
 ∑a

The density obtained on the sample strips is then multiplied 
by the size of  the study area (area of  inference) to obtain 
populations size:

N = DA.

By combining the 2 formulas, we obtain the simple strip abun-
dance estimator:

 A∑xiN =  ———.
 2Lwns
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The variance is obtained from the strip counts using 

 (∑xi
)2

 ∑xi
2 – ——— nssx

2 =  ———————.
 ns – 1

The strip count standard error is then 

 sx
2

SEX̄
 =   —. √  ns

The variance of  the population estimate when sampling with 
replacement (SWR) is 

 (nt)2

sN
2 = —— sx

2, ns

where nt is the total number of  samples possible on the area 
of  inference (calculated by A/a). The variance of  the popula-
tion estimate when sampling without replacement (SWOR) is 

 (nt)2 nssN
2 = —— sX̄

2(1 – —). ns nt

Here the added term (finite population correction) reduces 
the variance of  SWOR relative to SWR by 1 minus the pro-
portion of  the area sampled (i.e., the number samples taken 
over the total number of  samples possible on the area of  infer-
ence). The standard error of  the population estimate is then

SEN = √S
—

EX̄ .

Finally, we obtain the 95% confidence interval from

95%CI = N ± ta,df  (SEN
),

 where N = population abundance
 D = density of  animals in strips
 A = area of  inference (study area)
 a = area of  each strip (L × 2w)
 xi = number of  animals seen on transect i
 w =  preset 0.5-strip width (sample area on 

each side of  transect line)
 L = length of  transect
 ns = number of  samples (strips)
 nt = total possible samples (A/a) in study area
 s2 = sample variance
 t =  Student’s t for the desired alpha (α) and 

degrees of  freedom (df = n – 1)
 SE = standard error
 x̄ =  mean number of  animals seen on all 

transects
 95%CI = 95% confidence interval

Example: We wish to estimate the number of  grouse on a 
2-km2 study area. We utilize 5 counting strips, each 100 m in 
length with a preset sighting distance of  10 m (0.5-strip width). 
We divide the study area into strips and select 5 to survey 
using a random number table. We count each strip, flushing 
a total of  15 grouse (xi 

= 4, 3, 3, 2, and 3). The total possible 
number of  samples of  this size is 1,000 (nt = A/a). There-

fore, the estimated population abundance would be calcu-
lated as follows: 

 (2 km2)(15)
N = —————————— = 3,000.

 (2)(0.1 km)(0.01 km)(5)

The strip count variance (s2 = 0.50) is then used to obtain 
the strip count standard error (SEX̄ = 0.7071). The variance 
of  the population estimate when SWR is then

 (1,000)2

sN
2 = ———— (0.50) = 100,000, 5

and the standard error of  the population estimate when 
SWR is 

SEN
 = √100,000 = 316.23.

We can then calculate the 95% confidence intervals when 
SWR as

95%CI = (±2.776)(316.23) = ±877.85.

The population estimate, ± 95%CI when SWR, is 3,000 ± 
878 grouse. If  we had obtained the counts by SWOR, the 
population estimate would remain the same, but the vari-
ance of  the population estimate would change:

 (1,000)2 5
sN

2 = ——— (0.50) (1 – ———) = 99,500.
 5 1,000

The standard error of  the population estimate would become

SEN
 = √99,500 = 315.44,

and the resulting 95% confidence interval would be

95%CI = ±(2.776)(315.44) = ±875.66.

The population estimate, ± 95%CI when SWOR, is 3,000 ± 876 
grouse. The increased precision reveals the additional infor-
mation obtained from n unique samples using SWOR over 
the possible redundant information contained in repeated 
samples gathered using SWR. Regardless, we would report 
the population estimate as N ± SE (e.g., 3,000 ± 315.44 grouse), 
which would allow other investigators to derive confidence 
intervals of  their choice from the data.

Point Counts
Point counts are typically used to estimate bird density. An 
observer proceeds to a sample point and might, or might 
not, allow a rest period of  specified duration for equilibra-
tion of  bird activity (Reynolds et al. 1980). The observer 
then detects (by both sight and sound) birds for a specified 
count period within a preset distance (radius) from the 
point. Although it is generally assumed that all birds are de-
tected within the sample radius, this assumption is typically 
false unless the preset radius is quite small or the target spe-
cies is quite conspicuous. Therefore, unless complete counts 
are certain, point counts should be considered as an index to 
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relative density. If  the assumption is reasonable, then esti-
mation proceeds similar to strip transect counts (described 
above), differing only in the form of  the equation for the 
simple population estimate: 

 A∑xiN =
 
———,

 npr2

 where N = population abundance
 A = area of  study area
 xi =  number of  birds seen within a fixed radius r 

of  point i
 n = total points sampled
 p =  pi (ratio of  the circumference of  a circle to its 

diameter)
 r = preset radial distance

Example: A survey consisting of  10 random points, each 
with a fixed radius of  50 m, is conducted on a 2-km2 study 
area. Surveyors count 50 birds. The estimated population 
abundance would be calculated as follows: 

 (2 km2)(50)
N = —————————— = 1,273.24.

 (10)(3.1416)(0.050 km)2

The sample variance (sx
2), population variance (s

n
2), and pop-

ulation standard error (SEn) are calculated using the strip 
count equations for SWOR. We then obtain a point count 
variance of  0.6667, a population variance of  4,238.13, and 
population standard error of  65.1. Our calculated 95%CI is 
then ±147 birds. Therefore, the population estimate (±95%CI) 
for the study area is approximately 1,910 ± 107 birds. We 
would report the population estimate N ± SE (e.g., 1,273 
± 65 birds), which would allow other investigators to derive 
confidence intervals of  their choice from the data.

Sample Units of Unequal Area
Samples units of  unequal area require an average density to 
be calculated from all units sampled, as indicated in the dis-
cussion of  strip counts (above). The average density (D) is 
then extrapolated to the survey area using N = DA. How-
ever, the formulas for SWR and SWOR differ for samples of  
unequal area (Krebs 1998):

 (nt)2

SWRs2
N = ———— [∑xi

2 + D2∑ai
2 – 2D∑(xiai)] ns(ns – 1)

 nt(nt – ns)
SWORs2

N = ———— [∑xi
2 + D2∑ai

2 – 2D∑(xiai)], ns(ns – 1)

 where xi = count from sample i
 ai = area of  sample i
 ns = number of  samples taken
 nt = total number of  samples in study area
 D = average density from the samples

Example: We wish to estimate the number of  grouse on a 
2-km2 study area. From a total of  784 possible transects, we 

selected 10 counting strips without replacement. Each strip 
had a different length, but each was surveyed with a preset 
sighting distance of  10 m (0.5-strip width) on each side of  
the centerline. We counted each strip, flushing a total of  50 
grouse, with the counts (x) and area (a) of  each strip recorded. 
There are 784 possible transects on the study area. The esti-
mated population abundance would be calculated as follows: 

 50D = —————  1,960.8
 0.0255 km2

and

N = (1,960.8)(2) = 3,922.

The variance of  the population estimate (SWOR) would be 
calculated as

 784(784 − 10)
SWORs2

N = —————— [256 + (1,960.8)2(0.00006681) – 
 10(10 − 1)

 (2)(1,960.8)(0.1305)] = 7,403.4.

Using the equations for strip counts, we obtain a population 
standard error (SEN) of  86.0. Our calculated 95%CI is then 
±229 birds. Therefore, the population estimate (±95%CI) for 
the study area is approximately 3,922 ± 107 birds. Again, we 
would report the population estimate N ± SE (e.g., 3,922 
± 86), which would allow other investigators to derive confi-
dence intervals of  their choice from the data.

Sampling with Probability Proportional to Size
Large study areas are seldom homogeneous with respect to 
resources, species density, or detectability. When this variabil-
ity occurs, stratification is used to divide the area into units of  
similar composition. As a result, the units to be sampled are 
often of  unequal size. In these circumstances, one may em-
ploy sampling with probability proportional to size (PPS), 
where the probability of  a sample being selected is propor-
tional to the size of  the various units being sampled. The PPS 
method may be used with equal or unequal sized sampling 
units. Although the PPS method is unbiased and ideally 
suited for sampling irregular experimental units of  differing 
size, it is limited by design to SWR. Thus, Caughley and Sin-
clair (1994:202) recommend the method be limited to circum-
stances where sampling intensity is 15%. 
 Sampling using the PPS method requires the density to be 
calculated for each sample, with the average density and vari-
ance of  the density estimates (sD

2; calculations are the same as 
sample variance for strip counts above, except they use the 
density for each sample rather than the count for each sam-
ple) to be calculated from all units sampled. The average den-
sity (D) is extrapolated to the survey area using N = DA. How-
ever, the formula for calculating the variance of  the total 
population differs for PPS estimates (Krebs 1998):

 (A)2

PPSs2
N = —— s2

D, ns
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 where A = total study area size
 ns = number of  samples selected
 D = average density from the samples
 s2

D = variance of  sample densities

Example: We wish to estimate the number of  grouse on a 
2-km2 study area consisting of  3 vegetation types. We selected 
10 samples using sampling PPS. Each strip was 100 m in 
length with a preset sighting distance of  10 m (0.5-strip 
width) on each side of  the centerline. We counted each 
strip, flushing a total of  50 grouse (xi = 4, 5, 6, 6, 4, 5, 5, 5, 4, 
6). Densities for each sample were calculated (di in birds/
km2 = 2,000, 2,500, 3,000, 3,000, 2,000, 2,500, 2,500, 2,500, 
2,000, 3,000), yielding an average density of  2,500 grouse/
km2, with a variance (s2) of  166,667. The estimated popula-
tion abundance (N = DA) was 5,000 birds. The variance of  
the total population was calculated as follows:

 (2)2

PPSs2
N = —— 166,667 = 66,667.

 10

The standard error of  the population estimate (SEN) was 
258, with a 95%CI of  ± 687 birds. We would report the pop-
ulation estimate as N ± SE (e.g., 5,000 ± 258 birds), which 
would allow other investigators to derive confidence inter-
vals of  their choice from the data. 

COUNTS ON SAMPLE PLOTS  
(ESTIMATING AREA)

Considerable attention was given to conducting sample counts 
prior to 1980. In particular, methodology began to center 
on methods that would allow an accurate estimate of  sam-
ple area to be obtained from counts without preset strip 
widths. The thoughts of  the day, summarized by Eberhardt 
(1968), stated that precision was proportional to the square 
root of  the number of  animals seen, and therefore efforts 
should be focused on methods that would allow all sightings 
to be used. Sightings were expensive to obtain, particularly 
when many were discarded for being outside the sample 
frame. The basic solution had several forms, but each at-
tempted to determine the sample area congruent to the area 
over which counts were obtained. 
 The King method (Leopold 1933, Buckland et al. 2001) 
used the average radial distance to all observed animals to 
estimate the strip width used in the calculations of  animal 
abundance. Kelker (1945) used perpendicular distances to 
generate a histogram, and from the histogram subjectively 
determined the strip width over which all animals were likely 
detected. Hayne (1949a) developed the first widely recog-
nized line-transect density estimator with a solid mathemat-
ical foundation (Buckland et al. 2001), based on the sighting 
distances and angles to flushed birds. Hahn (1949) used visi-
bility measurements, periodically taken perpendicular to the 
transect line, to estimate the area over which deer were 

counted. Density estimates were then based on all detected 
animals, using average visibility as the estimate of  strip width. 
Robinette et al. (1974) compared the accuracy of  these and 
6 other early line-transect methods, noting that only the 
King and Kelker methods showed promise.
 We group these methods together based on use of  sight-
ing distances to estimate sample area. We refer to this type 
of  distance sampling as traditional distance sampling. As 
modern distance sampling has superseded these methods, 
we provide only the estimators and no examples.

Hahn Method
The Hahn (1949) method is still commonly used to estimate 
population density. It is very similar to the strip method ex-
ample provided above, differing only in the use of  distances 
to estimate the strip width defining the sample area. Tran-
sects are randomly placed across the grain of  the topogra-
phy and landscape, and they can be traversed on foot, on 
horseback, or by vehicle. Estimates of  maximum visibility 
are made periodically (e.g., every 200 m) on both sides of  
the transect, with maximum visibility defined as the maxi-
mum distance an observer could see a target animal perpen-
dicular to the transect at each point. The Hahn estimate of  
population abundance is calculated as

 A∑xiN =
 
———, 2Lv

 where N = population abundance
 A = area of  study area
 xi = number of  animals seen on transect i
 v =  the 0.5-strip width determined by average 

visibility measurements
 L = total length of  all transects

King Method
The King method (Leopold 1933, Buckland et al. 2001) used 
the average radial distance from all observed animals to esti-
mate the 0.5-strip width to be applied in the calculations of  
density or abundance. Thus, it is similar to the Hahn method:

 A∑xiN =
 
———, 2Lr̄

 where N = population abundance
 A = area of  study area
 xi = number of  animals seen on transect i
 r̄  =  the 0.5-strip width determined by average 

sighting radius
 L = total length of  all transects

Hayne Method
The Hayne (1949a) method was commonly used to estimate 
population density of  flushing birds. The method assumed 
there was a fixed flushing radius for each bird species and 
habitat. When an observer walking a transect came within 
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that radial distance, the bird would flush and be spotted. 
Further, the method assumed the sine of  the angle for each 
observation came from a uniform random distribution rang-
ing from 0 to 1, with an average angle of  32.7° (Hayne 1949a). 
Later investigators (Robinette et al. 1974, Burnham et al. 1980) 
determined the mean sighting angles were generally around 
40°, with Burnham and Anderson (1976) providing a correc-
tion factor for the original Hayne method. The Hayne esti-
mator of  density, from Krebs (1998), is

 n 1 1DH = —— (— ∑ —) 2L n ri

 and 

N = DA,

 where N = population abundance
  DH = population density
  A = area of  inference
  n = number of  animals seen on each transect
  ri = sighting distance to animal i
  L = length of  transect

 The variance associated with this density estimate is cal-
culated as

 s2
n ∑(1/ri – R)2

s2
DH

 = DH [—— + ——————], n2 R2n(n – 1)

 where DH = population density
 n = number of  animals seen
 s2

n = variance of  n
 ri = sighting distance to animal i
 R = mean of  the reciprocals of  sighting distances ri 

Time-Area Squirrel Survey
Time-area surveys are a common method used to census tree 
squirrels (Goodrum 1940:8). They are a point-based example 
of  using distances to estimate the effective sample area of  the 
counts. Sample points are chosen at random, and counters 
are stationed at each point (base of  a tree nearest to the point) 
before sunrise. Starting at sunrise, counters wearing camou-
flaged clothes remain quiet and relatively motionless while 
counting all squirrels that come into view for 30 minutes. The 
counter determines the distance to each squirrel when first 
detected using a laser rangefinder. The average distance to all 
squirrels detected is then used to compute the area over 
which the squirrels were counted. Under field conditions, the 
proportion of  a circle observed by each counter will vary 
from point to point. As such, each observer uses a compass to 
estimate the portion of  a circle under surveillance during the 
count (e.g., 0.75 or 75% sample effort). This estimate is then 
factored into the estimation equation (mean area observed by 
each surveyor). Population size is estimated using

 A∑xN = ———,
 n∆pr

 where N = population abundance
 A = area of  study area
 Σxi = number of  squirrels seen at point i
 n = total points sampled
 ∆ =  average effort in terms of  portion of  circle 

observed
 p =  pi (ratio of  the circumference of  a circle to 

its diameter)
 r = average radial distance to all detections 

The simple strip estimator of  variance, standard error, and 
95%CI can be used with this method.

COUNTS ON SAMPLE PLOTS  
(PLOTLESS METHODS)

Although methods of  fixed area counts were common in 
both plant and animal sampling, they suffer from boundary 
effects, where a decision must be made to determine whether 
to include each target observed on a plot boundary in the 
sample, and they are time consuming. Plant biologist devel-
oped several “plotless” methods to estimate density and 
abundance that alleviate these problems and are relatively 
easy to apply, so long as the target species (e.g., bird nests) 
remains in place or can be measured before they move (Cot-
tam and Curtis 1956). They have sometimes been referred 
to as distance methods, because they utilize either point-to-
target or target-to-nearest-neighbor distances to estimate 
density and/or the spatial pattern of  the target species.
 Two general considerations should be weighed when 
considering use of  plotless methods. The first is the execu-
tion of  the random sampling design often proposed for this 
method. Random sampling is great in theory, and reviews 
well in proposals, but it is difficult and time consuming to 
achieve in the field. There also is an uncanny proportion of  
“random” points that do not occur in the thick brush, in the 
deeper portion of  the marsh, on the ant bed, or other “ran-
dom, but inconvenient” places in the field. Further, Pielou 
(1977) demonstrated that using random points to select ran-
dom individuals is biased toward isolated individuals. In 
some circumstances, systematic random sampling is a good 
compromise, as the starting points are randomly placed, 
and they provide broad coverage of  the area. Regardless, if  
you utilize random sampling, then establish a map and/or 
Global Positioning System (GPS)-based navigation system, 
allow extra time for navigating to the random points, and 
develop the willpower to place the points objectively where 
they fall. The second consideration is the distribution of  the 
target species. Although most methods work well when the 
target species is randomly or uniformly distributed, many 
have problems when the target species is clumped or se-
verely clumped (Legendre et al. 2004), and this drawback is 
especially pronounced for the plotless methods (Engeman 
et al. 1994). 
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Point-to-Target and Target-to-Nearest-Neighbor 
Methods
Byth and Ripley (1980) recommend 2 plotless sampling 
methods for measuring density and an excellent sampling 
design procedure for obtaining data from both methods 
simultaneously:

1. Determine sample size (n) for the density estimate.
2.  Set out 2n points using a systematic random or other 

probabilistic sampling design. 
3.  Randomly select half  of  the 2n points, proceed to 

those points, and measure the distance from the point 
to the nearest target species (point-to-target or PTT).

4.  On the remaining half  of  the 2n points, lay out a cir-
cle of  radius sufficient to enclose (on average) the 5 
nearest targets. Number these individuals and select n 
at random. From the randomly selected individuals, 
measure the distance to the nearest target species (tar-
get-to-nearest-neighbor or TNN).

The PTT density is estimated by 

 nDPTT = ———,
 p∑x 2

i

 where D = density
 n = number of  samples
 xi = distance from point i to nearest target

The TNN density is estimated by

 nDTNN = ———,
 p∑x 2

j

 where D = density
 n = number of  samples
 xj = distance from target j to nearest neighbor

The variance for both estimates is calculated from the recip-
rocal of  the density,

 1y = —,
 D

with the variance of  y calculated as

 y2

s2
y = —. n

The standard error of  y is then

 s2
ySEy = √ ——, n 

 where D =  density from either the PTT or TNN 
estimator

 n = number of  samples
 y = reciprocal of  the density estimate (D)

Example: We wish to estimate the number of  active nest on 
a 2-km2 study area during the breeding season. We used a map 
to delineate 20 systematic samples and randomly selected 

10 for PTT measurements, reserving the other 10 for TNN 
measurements. At the PTT locations, we obtained the dis-
tances (xi = 0, 10, 1, 10, 11, 15, 7, 12, 10, 9), with the sum of  
squared distances (x2) equal to 921. At the TNN locations, 
we obtained the distances (xi = 15, 7, 3, 12, 9, 15, 5, 11, 1, 7), 
with the sum of  squared distances (x2) equal to 929. As the 
calculations are the same for each estimator, we illustrate 
the density estimate from the PTT measurements:

 10DPTT = ———————— = 0.0035.
 (3.14159)(921 m2)

So we estimate 0.0035 nests/m2 or 34.56 nests/ha. The vari-
ance of  the PTT estimate is

 1 2
 (—————) 0.003456s2

y = —————— = 8.371.8.
 10

The standard error of  the population estimate (SEy) is

 8,371.8SEy = √ ———— = 28.934.
 10

Therefore, the 95%CI for y is

95%CIy = ±(2.262)(28.934) = ±65.45.

The upper and lower bounds on 95%CI are calculated as:

 1————— + 65.45 = 289.35 + 65.45 = 354.8
 0.003456

and

 1————— + 65.45 = 289.35 – 65.45 = 223.9.
 0.003456

We take the reciprocal of  the results and multiply by 10,000 
to convert to nests per hectare, so 

 1(———) (10,000) = 28.18
 354.8

and 

 1(———) (10,000) = 44.66.
 223.9

Therefore we have a mean of  34.56 nests/ha with 95%CI of  
28–45 nests/ha.

Point-Quarter Method
The point-quarter method is a classic for sampling vegeta-
tion that dates back to the first land surveys in the United 
States. Surveyors would locate and describe the 4 trees near-
est to each corner of  a section (1 square mile) of  land. The 
method was used by Cottam and Curtis (1956) for estimat-
ing forest species and continues to be used today. The 
method has application to animal density estimates as long 
as the target species (e.g., bird nests) remains in place or can 
be measured before they move. Using this technique, se-
lected points from a sampling design are located in the field, 
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and the area around the point is precisely divided into 4 
(90°) quadrants (either perpendicular to the transect for 
point-transect sampling, or by compass bearing for random 
points). The distance from the point to the nearest target 
within each quadrant is measured, so that 4 distances are 
obtained at each point. The population density is then cal-
culated as (Pollard 1971, Krebs 1998)

 4(4n – 1)
DPQ = —————,

 p∑(x 2
ij)

 where D = point-quarter estimate of  density
 n = number of  points sampled
 xij =  distances from point i to the nearest target in 

quadrant j 

Variance of  the density estimate is

 DPQs2
PQ = ————. 4n – 2

The standard error of  the density estimate is 

 s2
PQSEPQ = √ ——. 4n

The 95%CI can be obtained by

 √16n – 1 ± 1.96 2

95%CLPQ
 = (————————) .

 √p∑(x2
y)

Example: We wish to estimate the number of  active nests 
on a 2-km2 study area during the breeding season. We use a 
map to delineate a point transect through a patch of  forest, 
with 5 points spaced at 100 m. At the 5 locations, we obtain 
the distances (xi = 0, 10, 1, 10, 11, 15, 7, 12, 10, 9, 15, 7, 3, 12, 
9, 15, 5, 11, 1, 7), with the sum of  squared distances (xi

2) 
equal to 1,850. The density estimate is

 (4)[(4)(5) – 1]
DPQ = ——————— = 0.0131

 (3.1416)(1850)

with a variance of  the density estimate equal to 

 0.01308s2
PQ = ————— = 0.000727.

 (4)(5) – 2

The standard error of  the density estimate is then

 0.00072647SEPQ = 
√

—————— = 0.00603,
 (4)(5)

and the lower and upper bounds on the 95%CI are

 √(16)(5) – 1 – 1.96 2

95%LCLPQ = (—————————) = 0.00826
 √(3.1416)(1,850)

and

 √(16)(5) – 1 + 1.96 2

95%LCLPQ = (—————————) = 0.02025.
 √(3.1416)(1,850)

The above units are in nests per square meter. We multiply 
by 10,000 to get nests per hectare, so we have a mean of  131 
nests/ha, with 95%CI of  83–202 nests/ha.

COUNTS ON SAMPLE PLOTS  
(DETECTION PROBABILITY)

The preceding methods for estimating population size either 
reduced the survey area to ensure complete detection or at-
tempted to correct the survey area to allow for unbounded 
counts with incomplete detection. The strategy was to ei-
ther standardize or estimate the survey parameters neces-
sary to obtain accurate estimates without direct evaluation 
of  detection probability. The methods that follow use the 
opposite strategy: to estimate detection probability directly 
or collect ancillary data necessary to develop models for pre-
dicting detection probability.

Double Sampling
Double sampling ( Jolly 1969a, b; Eberhardt and Simmons 
1987; Pollock and Kendall 1987; Estes and Jameson 1988; 
Prenzlow and Lovvorn 1996; Anthony et al. 1999; Bart and 
Earnst 2002) is a modified form of  sampling based on ratio 
estimation, where a large number of  samples are obtained 
using a rapid method, such as point counts, followed by 
the surveying of  a random subsample of  those same plots 
using an intensive method that determines actual density. 
In the subsampled area, the densities obtained from the in-
tensive method are used to estimate the proportion of  ani-
mals seen using the rapid method. The relative probability 
of  detection derived from the ratio of  the rapid-method 
results to actual density is then used to correct estimates 
obtained from the rapid method over the remaining sur-
veyed region.
 The estimate of  the proportion of  animals seen (β) is the 
ratio of  the mean counts (or density estimate) from the rapid 
method (y) to the mean count (or density estimate) from 
the intensive method (x):

 yβ = —. x

We can then use this estimate of  the proportion of  animals 
(β) on the subsamples to correct the population estimate 
(N) using the rapid method on the larger set of  samples:

 A∑y
N = ———,

 naβ

 where A = area of  the study area (area of  inference)
 Σy =  sum of  counts or density estimates from the 

rapid method
 n = the number of  rapid-method samples
 a = the area of  each rapid-method sample
 β =  the relative proportion of  animals (rapid 

method verses intensive method) 
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Jolly (1969a, b) and Pollock and Kendall (1987) presented an 
estimator for the variance of  this estimator. 
 The assumptions of  double sampling are the intensive 
method is accurate and reflects the actual density of  the 
subsamples. Inaccuracy in the intensive method will result 
in multiplicative bias in the population estimate. For instance, 
lack of  complete detection using the intensive method will 
create negative bias in the “corrected” population estimator. 
Similarly, the timing of  the counts should coincide, and ide-
ally would be simultaneous, so that both methods sample 
the same population. Differences in timing will increase 
variability, and perhaps bias, in the final population estimate.

Double Observer Sampling
Multiple observer methods were developed initially for aer-
ial transect surveys (Caughley 1974, Magnusson et al. 1978, 
Cook and Jacobson 1979, Grier et al. 1981, Caughley and 
Grice 1982, Pollock and Kendall 1987, Graham and Bell 
1989), but more recently they have been applied to ground 
point count surveys (e.g., Nichols et al. 2000). These meth-
ods can be divided into groups based on use of  independent 
or dependent observers.

Independent Observers
Aerial or surface (ship, car, etc.) transects may be conducted 
with 2 observers, each collecting observations independently. 
The animal locations can be annotated on maps by each  
observer, or precise offset locations (x, y, and time) can be 
obtained using survey equipment (total station or GPS and 
offset laser rangefinder), allowing maps to be created post-
survey. The mapped data are assigned to categories based on 
the type of  detection: those seen by observer 1, those seen by 
observer 2, and those seen by both observers as in the equa-
tion below. Caughley (1974) demonstrated that data of  this 
sort can be analyzed using the Lincoln–Petersen estimator 
(see Marked–Resight Methods later in this chapter) to esti-
mate population size in the surveyed area (Grier et al. 1981, 
Caughley and Grice 1982, Pollock and Kendall 1987):

  n1n2N = ——, m

 where N = population size in the area of  inference
 n1 = total number of  animals seen by observer 1
 n2 = total number of  animals seen by observer 2
 m =  total number of  animals seen by both 

observers

The method has several assumptions that will affect preci-
sion and accuracy:

1. Observations must be independent. 
2. Category assignments must be accurate.
3. Targets must have equal detectability. 

 The assumption of  independence of  sightings between 
the observers is a strict requirement that may be difficult to 

achieve. For example, the independence assumption will  
be violated if  the activity of  one observer, such as speaking 
into a tape recorder or writing on a map, alerts the other 
observer to an animal’s presence. Likewise, if  separate sur-
veys are conducted (e.g., ground and aerial), different ob-
servers should be used to ensure independence. Further, all 
animals must have equal detection probabilities, but these 
probabilities can differ between the 2 observers. If  some ani-
mals differ in detectability (e.g., if  males are more conspicu-
ous than females), the resulting heterogeneity will produce 
negative bias in the Lincoln–Petersen estimator. However, 
Magnusson et al. (1978) noted the assumption of  equal de-
tection probabilities is not critical. Observation locations 
from each observer must be precise and unambiguous, or 
categorical assignments will be inaccurate. Similarly, because 
animal movement may contribute to this problem, surveys 
of  mobile animals should be conducted simultaneously, so 
that each observer views the same sample population. Im-
mobile targets (nests, middens, lodges, etc.) pose no such 
problem, and therefore, separate surveys may be made so 
long as the sample frame remains the same. Chapman (1951) 
provided a modified estimator with less bias:

 (n1 + 1)(n2 + 1)
N = ——————— − 1, m + 1

and the variance of  N was provided by Seber (1982):

 (n1 + 1)(n2 + 1)(n1 – m)(n2 – m)
s2

N = ——————————————.
 (m + 1)2(m + 2)

 The method also has been used to estimate bird abun-
dance from fixed-radius point counts, using 2 independent 
observers at each point. The point method requires there be 
no undetected movement into or out of  the fixed radius, 
and that each observation must be accurately assigned as  
either inside or outside the fixed radius. 

Dependent Observers
Another double observer approach involves 2 observers 
working in tandem. One is designated as the primary ob-
server, the other as the secondary observer. The primary 
observer detects animals and reveals all sightings to the sec-
ondary observer. The secondary observer then records any 
additional sightings independently. Animal locations can be 
annotated on maps by each observer, or precise offset loca-
tions (x, y, and time) can be obtained using survey equip-
ment (total station or GPS and offset laser rangefinder), al-
lowing maps to be created post-survey. The mapped data 
are assigned to categories based on the type of  detection: 
those seen by observer 1 and those additional animals seen 
by observer 2. Assuming equal detection probabilities for 
the 2 observers, we can obtain estimation of  population size 
under the 2-sample removal model (Seber 1982, Pollock and 
Kendall 1987):

 n2
1N = ————. n1 – n2
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 The variance of  N is estimated as

 n2
1n2

2(n1 + n2)s2
N = ——————.

 (n1 – n2)4

 The probability of  an animal being detected is

 n2p = 1 – (———) n1 + 1

 and the variance of  the detection probability is

 n2(n1 + n2)s2
P = —————,

 n3
1

 where N = population size in the area of  inference
 n1 = total number of  animals seen by observer 1
 n2 = total number of  animals seen by observer 2
 p = probability of  an animal being detected

 As with the independent observer approach, heteroge-
neous detection probabilities will produce negatively biased 
estimates of  population size. Pollock and Kendall (1987) 
noted this method does not use the number of  animals seen 
by both observers, and it assumes both observers have equal 
sighting probabilities. Therefore, it may not be as useful as 
the independent double observer method using the Lincoln–
Petersen estimator.
 Cook and Jacobson (1979) developed a similar dependent 
double-observer approach for transect surveys, but it has 
the 2 observers switch roles midway through the survey to 
overcome the possible difference in detectability between 
the observers. This method assumes that swapping roles 
does not alter the detection probability of  the observers, all 
other assumptions being the same as above. Nichols et al. 
(2000) suggested applying the Cook and Jacobson (1979) 
method to estimate bird abundance from fixed-radius point 
counts, noting the model (DOBSERV; Nichols et al. 2000) 
permits estimation of  observer-specific detection probabili-
ties and bird abundance.
 The advantage of  the dependent double-observer ap-
proach occurs when there are practical or logistical reasons 
prohibiting the use of  the independent double-observer 
method. The disadvantage is the dependent approach is less 
efficient than the independent approach, because capture–
recapture methods are more efficient than removal methods 
(Seber 1982:324, Pollock and Kendall 1987:505). Therefore, 
we agree with Pollock and Kendall (1987) the independent 
approach using the Lincoln–Petersen estimator is more pre-
cise, simpler to understand, and allows the 2 observers to 
have different sighting probabilities. 
 Generalizations using program MARK (White and Burn-
ham 1999) or DOBSERV (http://www.mbr-pwrc.usgs.gov/
software.html) give the researcher the option to fit general-
ized Lincoln–Petersen models that allow for detection prob-
ability to depend on covariates, such as species, wind speed, 
and distance. MARK and DOBSERV use Akaike’s Informa-
tion Criterion (AIC; Burnham and Anderson 1998, 2002) to 

pick the most parsimonious model that explains the data 
adequately.

Marked Sample
We can use marked animals in a population to estimate detec-
tion probabilities. Using this method, some marked animals 
are released into the population and are therefore available for 
detection at the time of  the survey. Marked and unmarked ani-
mals are counted during the survey, and the probability of  de-
tection for the marked animals can be estimated as

 mβ = ——. n1

By rearranging the terms, we get the Lincoln–Petersen esti- 
mator: 

 n2 n1n2N = —— = ———,
 β m2

 where N = total population size in the surveyed area
 n1 =  number of  marked animals present in the 

area at the time of  the survey
 n2 =  number of  animals (both marked and 

unmarked) seen during the survey
 m =  number of  marked animals seen during the 

survey
 β = probability of  detection 

In practice, we recommend use the bias-adjusted modifica-
tion of  this estimator provided by Chapman (1951):

 (n1 + 1)(n2 + 1)
N = ——————— – 1. m + 1

 Although this approach is straightforward, the practical 
aspects require careful consideration. Marked and unmarked 
individuals must have the same probability of  being detected. 
The mark must be conspicuous, so that no marked animals 
are erroneously or inadvertently recorded as unmarked. But 
the mark must not be so obvious that it draws attention to 
marked animals, making them more visible than unmarked 
animals. Further, it is necessary to determine how many 
marked animals are actually present for observation during 
the survey. The number present, and therefore available for 
observation, is frequently not equal to the number released. 
Radiotelemetry is a commonly used approach, as it can be 
used to determine the number of  radiomarked animals in 
the surveyed area at the time of  the survey (e.g., Packard  
et al. 1985, Samuel et al. 1987) and to verify whether each 
animal seen is marked. However, it is not necessary to have 
individually identifiable animals, and batch marks (e.g., col-
lars with no alphanumeric identification code) will suffice, 
so long as the number of  marked animals available for de-
tection can be determined prior to the survey. Similarly, any 
marked animals seen during the survey that were not 
known to be present prior to the survey are not included in 
n1. They are treated as unmarked in the survey data and in-
cluded in n2, but not in m. 

http://www.mbr-pwrc.usgs.gov/software.html
http://www.mbr-pwrc.usgs.gov/software.html
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 Program NOREMARK (White 1996; http://www.cnr 
.colostate.edu/~gwhite/software.html) provides multiple es-
timators to determine the number of  animals in the study 
area (Bartmann et al. 1987, White and Garrott 1990, Neal et 
al. 1993), a simulation capability for anticipating estimator 
performance, routines for estimating sample sizes, and a 
simulation for calculating the relative effort to put into mark-
ing versus resighting.

Time of Detection
Farnsworth et al. (2002) were the first to recognize that use-
ful information on detection probabilities were available 
from the times when birds were detected in point count sur-
veys. Their method was a modification of  removal methods 
that used only the time interval when a bird was first de-
tected to estimate detection probabilities. Similar to the  
development chronology of  double observer methods, 
more recent work (Alldredge et al. 2007a) has extended the 
approach using a capture–recapture formulation, because 
capture–recapture methods are generally more efficient 
than removal methods (Seber 1982:324, Pollock and Kendall 
1987: 505). Both approaches capitalize on the common prac-
tice of  recording data at point counts in temporal intervals, 
where the number of  birds counted is separated into those 
first observed in the first 3 minutes, those first observed in 
the next 2 minutes, and those first observed in the final 
5 minutes. This procedure was recommended by Ralph et al. 
(1995) and was originally designed to allow results from 10- 
minute counts to be comparable with those from studies 
employing 3- and 5-minute counts.
 Using the removal method of  Farnsworth et al. (2002), 
the simplest application of  the time of  detection approach 
can be illustrated with just 2 time intervals of  equal dura-
tion. Suppose that an observer records all birds seen and/or 
heard in the first 5 minutes and then records any additional 
birds detected in the second 5 minutes. We can then define 
x1 as the number of  birds counted in the first time interval 
and x2 as the number of  new birds (not detected in the first 
period) detected in the second time interval. The expected 
values of  the random variables x1 and x2 are

 E(x1) = Np1

E(x2) = N(1 – p1)p2,

 where N =  total number of  birds within the detection 
radius of  the observer 

  p1 =  detection probability for an individual bird in 
the first time period

  p2 =  detection probability for an individual bird in 
the second time period

The term (1 – p1) is necessary, because all birds first detected 
in the second interval must, by definition, have been missed 
in the first time interval. If  we assume the detection proba-
bility for the 2 intervals is equal (i.e., p1 = p2 = p), solving the 

above equations for p and N produces the moment estima-
tor (Zippin 1958)

 x1 – x2p = ———— x1

and the population estimator

 x2
1
 x1N = ——— = —. x1 – x2 p

 The estimators can fail if  x1 ≤ x2, which is possible when 
p is small. We present this 2-sample removal estimator to il-
lustrate the approach with the simplest possible situation. 

Example: During the first 5 minutes, we observe 20 birds, 
and during the second 5 minutes, we observe 5 birds that 
we did not observe during the first 5 minutes. The probabil-
ity of  detection is then

p = (20 – 5)/(20) = 0.75

and the population estimate is

N = (20)(20)/(20–5) = 20/0.75 = 26.67 = 27 birds.

 In practice, we use >2 intervals, because doing so per-
mits relaxation of  the assumption of  equal detection for dif-
ferent species. For instance, Farnsworth et al. (2002) present 
a more general model with 3 count intervals of  variable 
length, allowing for differences in detection probabilities 
among intervals and heterogeneity of  detection among in-
dividual birds. These differences are taken into account by 
assuming there are 2 groups of  individuals in an unknown 
proportion, and that all members of  the first group are de-
tected in the first time interval. 
 Alldredge et al. (2007a) suggested a more efficient approach 
using a closed population capture–recapture model with k 
time intervals to account for more sources of  variability in 
the point count data. Their method was specifically de-
signed to account for variation in detection probabilities as-
sociated with the singing rate of  birds, by modeling both 
availability and detection bias. They recommended using ≥4 
equal intervals to reduce assumptions. For example, the as-
sumption of  constant detection rates over time required by 
the removal model of  Farnsworth et al. (2002) is not re-
quired in the capture–recapture approach, because it mod-
els temporal variation from the full detection history.
 Assumptions of  the general time-of-detection method 
(Farnsworth et al. 2002, Alldredge et al. 2007b) model are: 
(1) there is no change in the population of  birds within the 
detection radius during the point count (i.e., the population 
is closed and birds do not move into or out of  the radius), 
(2) there is no double counting of  individuals, (3) all mem-
bers of  group 1 are detected in the first interval, (4) all 
members of  group 2 that have not yet been detected have a 
constant per minute probability of  being detected, and (5) 
observers accurately assign birds to within or beyond the  

http://www.cnr.colostate.edu/~gwhite/software.html
http://www.cnr.colostate.edu/~gwhite/software.html
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radius used for the fixed radius circle. As noted by Alldredge 
et al (2007b), these restrictions are not trivial, because move-
ment of  individuals and difficulties associated with aural de-
tections may result in violation of  all assumptions.
 Program CAPTURE can produce maximum likelihood 
estimates for N, as well as the estimated variance of  N (Otis 
et al. 1978, White et al. 1982), for equal time intervals using 
the method of  Farnsworth et al. (2002). Program MARK 
(White and Burnham 1999) can be used to model detection 
history over k intervals, constant detection probability for 
all individuals, time effects on detection probability, differ-
ence due to previous detection, and unobservable heteroge-
neity, following the method of  Alldredge et al. (2007a, b).

Modern Distance Sampling
Modern distance sampling is a widely used method for esti-
mating size or density of  biological populations. It is a com-
prehensive approach that encompasses study design, data 
collection, and statistical analyses (Buckland et al. 2001). 
Modern distance sampling is based on the observation that 
detection probabilities decrease with increasing distance 
from the observer (Burnham and Anderson 1984). Distance 
data are used to estimate the specific shape of  the detection 
function relating detection probability to distance for a par-
ticular target species and set of  conditions. We can define 
the detection function g(x) as the conditional probability of  
detecting an animal, given that it is located at some distance 
(w) from the line. Although the various analyses can be 
quite sophisticated, the data collected along line transects or 
points counts for modern distance sampling methods are 
the same data one would use for traditional distance sam-
pling methods. When properly applied, distance sampling 
yields estimates of  absolute density and detection proba-
bility, meeting the requirements for inference put forth by 
Rosenstock et al. (2002). The history and development of  
distance sampling is described by Buckland et al. (2001), and 
extensions to the basic theory are covered in Buckland et al. 
(2004) and Thomas et al. (2010). An extensive reference ar-
chive, covering methodological development and practical 
applications of  modern distance sampling, is available on 
the Distance Sampling website (http://www.ruwpa.st-and 
.ac.uk/distancesamplingreferences/).
 In distance sampling, counts are assumed to be incom-
plete. Thus, the proportion of  animals present that are actu-
ally seen (β) must be estimated, and actual counts must be 
corrected by these detection probabilities. Perpendicular or 
radial distance data are used to estimate these detection 
probabilities. To examine what a detection function looks 
like, we can plot a histogram using the frequency of  detec-
tions (y axis) grouped into small distance intervals (x axis) 
from the center of  a transect line (distance 0) to the maxi-
mum observation distance (w). If  our sample size is large, 
we can approximate the shape of  the detection function by 
drawing a smooth curve through the top of  each distance 

interval in the histogram (Fig. 11.3). In practice, sample sizes 
are often too small, and this procedure does not work well. 
 Survey planning, including sampling design and estimates 
of  sample size, can be performed in program DISTANCE. 
Data collection can be performed using either line transects 
or points. Analysis of  the resulting data typically involves 4 
steps: (1) data examination via graphical displays, (2) model 
fitting using various functions and adjustment terms, (3) 
model selection using the AIC criteria, and (4) inference un-
der the chosen model. Program DISTANCE allows for the 
fitting of  complex detection functions (half  normal, uni-
form, or hazard rate) using a series of  adjustment terms (co-
sine, simple polynomial, or hermite polynomial). Rather 
than review these models and associated parameter estima-
tors here, we recommend the excellent book by Buckland et 
al. (2001). A concise overview of  distance sampling and pro-
gram DISTANCE, including newly available advanced op-
tions, can be found in Thomas et al. (2010). Details concern-
ing the actual use of  program DISTANCE (Thomas et al. 
1998; available at http://www.rupwa.st-and.ac.uk/distance) 
are contained in the help files provided with the program. 
 Actual field application of  modern distance sampling 
methods involves many decisions and considerations spe-
cific to each survey situation. For example, many animals 
exhibit gregarious behavior and tend to occur in groups. 
This behavior requires measuring the distance from the 
line or point to the geometric center of  each group and  
recording the number of  animals in present in each cluster. 
Because groups of  animals are easier to detect than indi-
viduals, detection bias can occur as a function of  group  
or cluster size. Thus, decisions must be made concerning 
whether to measure distances to groups or to individuals. 
The density of  groups or clusters along with estimates of  
cluster size are modeled to improve the precision of  esti-
mates of  density and population size. Drummer and Mc-
Donald (1987) and Otto and Pollock (1990) discussed mod-
els for use when detection probability for fixed distance 
depends on group size. 

Fig. 11.3. The detection function for the uniform plus one-term 
detection function for duck nest data. From Anderson and Pospahala 
(1970).

http://www.ruwpa.st-and.ac.uk/distancesamplingreferences/
http://www.ruwpa.st-and.ac.uk/distancesamplingreferences/
http://www.rupwa.st-and.ac.uk/distance
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 Another consideration involves grouping of  data. Accu-
rate measurement of  distances in the field may not be possi-
ble; therefore, detections may need to be grouped into dis-
tance categories. Even when direct distance measurements 
are recorded, anomalous patterns may be apparent, such as 
few objects detected at short distances, heaping of  detec-
tions at commonly rounded measurements (e.g., 50 m or 
100 m), or a relatively large number of  detections near the 
boundary distance. Buckland et al. (2001) recommended trun-
cation of  data at distances greater than that at which obser-
vations seem likely to be outliers. Further, data may be 
grouped into a histogram before analysis as a smoothing 
technique (Buckland et al. 2001). However, exact distance 
measurements are to be preferred when possible, as they al-
low the data to be placed into distance intervals during 
analysis. 
 Additional problems may arise due to insufficient sample 
size in terms of  observations, transects, or points. The vari-
ability between lines and points is an important factor that 
influences encounter rates (n/k) and detection probability. 
Failure to obtain a representative sample of  the true vari-
ability within a population will lead to bias, and too few 
lines or points will result in lack of  precision. The number 
of  lines or points (k) should be 4, and sampling should be 
probabilistic to adequately represent the area of  inference. 
We also suggest that transect length be selected to provide  
a minimum of  40 animals detected, and preferably 60–80 
(Buckland et al. 2001).
 We recommend those planning to conduct a modern dis-
tance sampling study consult Buckland et al. (2001) and, if  
available, published recommendations for specific field situ-
ations or species (e.g., Karanth et al. 2002). For instance, An-
derson et al. (2001b) used field trials to estimate the abun-
dance of  artificial desert tortoise (Gopherus agassizii) models 
to test whether assumptions that underlie distance sampling 
were met. They found the density estimate of  adult tortoise 
models was relatively unbiased, whereas the estimate for 
subadult (small) tortoise models was biased low (about 20%). 
They attributed the bias to failure to detect small tortoises 
on or near the centerline and presented ideas to better train 
observers before commencing the survey. And standard dis-
tance theory, based on the premise that detection probabil-
ity is a decreasing function of  distance and that nothing else 
influences detection, can be violated. Breeden et al. (2008) 
noted the effects of  traffic noise on auditory point surveys 
of  urban white-winged doves (Zenaida asiatica).
 Distances also can be measured to animals (usually land 
birds) that are counted around a point rather than along a 
transect. There are advantages and disadvantages associated 
with use of  points rather than line transects. For example, a 
line transect can yield more data per unit time than can 
points, particularly when more time is spent traveling be-
tween transects or points than actual sampling (Bibby et al. 
2000, Rosenstock et al. 2002). Scale also is important, as a 

typical transect generally covers more spatial area than a 
typical set of  points; thus, the scale of  spatial habitat diver-
sity must be commensurate with the scale of  transects or 
points. The main disadvantage with points, according to 
Bibby et al. (2000:92), is the area surveyed is proportional to 
the square of  the distance from the observer, whereas in 
transects the area is proportional to lateral distance from 
the transect line. Thus, density estimates from point data 
are more susceptible to errors arising from inaccurate dis-
tance measurements or from violation of  assumptions about 
detecting animals.
 However, points are often preferred to transects in habi-
tats with a variety of  small patches of  habitat relative to the 
home range of  an animal (Bibby et al. 2000). Likewise, points 
can be preferred over transects when vegetation or terrain 
hinders navigation, or when observer movement signals the 
animals of  observer presence. For instance, Reynolds et al. 
(1980) noted that observers traveling along line transects, in 
structurally complex vegetation and rough terrain, tended 
to watch the path of  travel, reducing their ability to detect 
birds. Consequently, they recommended establishing equally 
spaced observer stations, positioned along a transect of  
points that could be located randomly. Similarly, Koenen et 
al. (2002) used point transects to estimate seasonal density 
and group size of  mule deer (Odocoileus hemionus) by gender 
and age class on the Buenos Aires National Wildlife Refuge 
in southeastern Arizona. The authors believed their survey 
design balanced the often conflicting objectives of  random 
placement of  transects and detecting animals before they 
moved. Burnham et al. (1980) and Buckland et al. (1993, 
2001) provide details for sampling designs of  point transects. 
 The assumptions of  distance sampling are: (1) points or 
transects are located randomly with respect to the distribu-
tion of  animals; (2) all objects at the center of  the point or 
transect are detected with certainty; (3) objects are detected 
at their initial location prior to any movement in response 
to the observer; (4) distances are measured accurately (un-
grouped data), or objects are counted in the proper distance 
category (grouped data); and (5) objects are detected inde-
pendently. Violation of  the second assumption is a critical 
failure and is probably common when conducting bird sur-
veys. This violation will result in negatively biased estimates 
of  density. Similarly, if  animals are attracted to the observer, 
the data are not likely to indicate a problem, resulting in 
positive bias in the estimate of  density.

REMOVAL METHODS

Removal methods of  population estimation are old and have 
been analyzed by numerous investigators. Yet these methods 
are attractive, because often someone other than the investi-
gator, such as hunters, can collect the removal data. Thus, the 
investigator may not have to actually capture and mark ani-
mals to develop population estimates based on removals, 
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which often makes these methods inexpensive to implement 
in the field. 

Catch-per-Unit-Effort
Catch-per-unit-effort (e.g., catch/day) is based on the prem-
ise that as more animals are removed from a population, 
fewer are available to be “caught,” and catch/day will de-
cline (Fig. 11.4). Eventually, if  all animals are removed, the 
expected catch will become zero, and the total number of  
animals removed will equal the initial population size. Be-
cause it is generally not desirable (and seldom possible) to 
remove all individuals in a population, this method involves 
developing a linear regression of  the number of  animals re-
moved each day on the cumulative total number of  animals 
removed prior to that day (Leslie and Davis 1939). An ad-
vantage of  this method is that population estimates can be 
derived prior to all animals being removed, and they can  
be used with removals that are a part of  routine manage-
ment activities, such as hunter or fisher harvests. Animals 
do not have to be physically taken or removed to be “caught.” 
Animals can be trapped, shot, photographed, or seen. If  ani-
mals are marked (i.e., live-trapping of  small mammals), they 
would be included in the calculation on the day they were 
trapped and marked, but they would be ignored on subse-
quent days if  re-trapped. 
 Assumptions for this method include: (1) sampling units 
are taken at random; (2) the population is closed (e.g., the 
removal period is kept as short as possible); (3) all individual 
animals have an equal probability of  being caught; and (4) 
unit of  effort is constant, and all the removals are known. 
Catch-per-unit-effort estimates are not likely to be accurate 
or precise unless a large proportion of  the population is re-
moved (i.e., large enough to cause a decline in catch-per-
unit-effort; Krebs 1998, Bishir and Lancia 1996).

 The regression equation is not a typical regression, be-
cause the catch/day and the cumulative removals depend 
on the same removals. This lack of  independence makes 
calculation of  variances and 95%CI difficult. Bishir and Lan-
cia (1996) have shown that estimates do not follow a normal 
distribution and, therefore, standard variance equations are 
not appropriate.

Change-in-Ratio
Kelker (1940) first used this method on selective harvest of  
male and female deer. Often it is referred to as the sex-ratio 
estimator, because in most cases, sex determines the 2 
classes (e.g., male and female deer or pheasants) used with 
the estimator. However, the method can be used on any 2 
classes of  animals as long as harvest varies between the 
classes, such as age classes (e.g., adults and juveniles); spe-
cies harvested at the same time (e.g., gray [Sciurus carolinen-
sis] and fox [Sciurus niger] squirrels if  one species is selected 
over the other); if  only 1 species is harvested (e.g., deer and 
cows, where cows are not hunted); or with marked and non-
marked populations, where restrictions are placed on har-
vest of  marked animals (e.g., collar-marked deer). 
 This methods primarily has been used on public hunting 
areas or on private ranches, where hunts are controlled, and 
animals taken must come through a check station. In this 
way, total kill is known. Additional information needed is an 
estimate of  the proportion of  each class (e.g., proportion of  
males and females) in the population just prior to the hunt 
and an estimate of  the proportion of  each class after the 
hunt. Assumptions include: (1) the proportion of  the classes 
will change after the hunt due to selective harvest of  one 
class over the other (e.g., more bucks killed than does), (2) 
observed proportions of  the 2 classes are unbiased (a major 
problem with the estimator to be discussed later), (3) the 
population is closed, and (4) the number of  removals of  
each class is known. If  these assumptions are valid, the pop-
ulation abundance can be estimated using the following 
equation:

 [(T )(p2) – F ]
N1 = ——————

 p2 – p1

 N2 = N1 – T,

 where N1 = pre-hunt population
 T =  total kill (all animals harvested regardless of  

sex class)
 F = number of  females killed
 p1 = proportion of  females in survey before hunt
 p2 = proportion of  females in survey after hunt
 N2 = post-hunt population

Example: On a public hunting area, you observed 300 male 
and 300 female pheasants on a road survey prior to a hunt. 
During the hunt, 400 male and 25 female pheasants (females 
are illegal to shoot) are shot and brought through a check sta-
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Fig. 11.4. Estimating population abundance by plotting the daily 
number trapped against the total number previously captured.  
In this example 10, 8, 9, 8, 5, 6, and 4 mice were trapped on 7 
consecutive days. The regression equation for these data is  
x = 74.7 – 6.94y; therefore, when y = 0 (all mice are removed), 
x would equal 75 mice in the population.
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tion. On a road survey immediately after the hunt, you ob-
serve 100 male and 300 female pheasants. The estimated pop-
ulation abundance prior to the hunt would be calculated as

 [(425)(0.75) – 25]
N1 = ———————— = 1,175. 0.75 – 0.50

 Therefore, post-hunt population is

N2 = 1,175 – 425 = 750.

Comment: Note that a small change in p1 or p2 will have a 
great effect on the estimate. As noted for assumption 2 
above, observed proportions of  the 2 classes should be unbi-
ased. We believe this is a major problem with the estimator, 
and we discuss this issue in some detail here. Prior to a 
hunt, animals have probably not been hunted for at least a 
year, or in the case of  released pheasants, not at all. There-
fore, sighting probabilities for male and females may be un-
biased; however, once hunting centers on 1 sex class, we be-
lieve that sex class will have a lower probability of  sighting 
after the hunt, whereas the nonhunted sex will have a 
higher probability of  being sighted. This bias would exist for 
pheasants or deer and similarly, for different age classes for 
which larger animals (either trophy deer or larger deer hunted 
for meat) are harvested more than are young of  the year 
(i.e., fawns). In addition, the probability of  sighting different 
sex and age classes of  deer varies by month even if  they are 
not hunted (Downing et al. 1977), thereby giving a bias be-
tween pre- and post-hunt observations. We, therefore, do 
not recommend this method to estimate population abun-
dance, and we know of  few people who currently use it. We 
have presented the method here only because readers may 
come across this method in the literature and should be 
aware of  its problems. 

MARKED–RESIGHT METHODS

Unlike previous editions of  the Techniques manual, in which 
this section was usually titled Capture–Recapture or Capture–
Mark–Recapture, we prefer the term marked–resight, because 
animals do not have to be captured to be marked (e.g., they 
may have natural marks, including DNA, or may be marked 
remotely with paint-ball guns, etc.; see Chapter 9, This Vol-
ume), nor do they need to be recaptured (e.g., they can be 
observed; photographed; or DNA fingerprinted from hair, 
feathers, or feces) to determine whether they are marked. In 
fact, they do not need to be marked at all (we explain this 
later). There is only one assumption for marked–resight 
methods: the proportion of  marked to nonmarked individu-
als in a sample is the same as it is in the population. All other 
purported assumptions are just violations of  this assump-
tion. We examine this issue more closely later in this section.
 We consider marked–resight methods to be the gold 
standard for conducting population estimates. For if  done 
correctly, we believe they produce more accurate and reli-

able estimates. However, the percentage of  marked animals 
in the population will affect the accuracy of  the estimates 
(Silvy et al. 1977). Silvy et al. (1977) noted that when 50% of  
the population was marked, more accurate estimates were 
obtained; however, due to cost of  marking animals, they 
recommended that at least 25% of  the population be marked. 
How does one know when 25% of  the animals are marked? 
When 25% of  animals seen on random resight surveys are 
observed, 25% of  the population is marked.

Known Number Alive
Many times when conducting marked–resight studies on 
small populations (e.g., bobcats [Lynx rufus] on small areas), 
few if  any animals are resighted. A common method to esti-
mate abundance is to simply use the number of  original 
captures as an estimate of  abundance. Known-to-be-alive 
or minimum-number-live estimates are often the most ap-
propriate estimates when conducting these types of  studies. 
These estimates tend to underestimate population density; 
however, an overestimate of  density may lead to inappro-
priate management action, whereas an underestimate may 
produce inefficient, but safe management strategies.

Lincoln–Petersen Estimator
A known number of  animals in a study is “marked” during a 
short time period, and then within a few days, a random sam-
ple is taken to determine the number marked in the sample. 
A rule of thumb is to use a different method to obtain the 
sample than was used to mark the animals. For example, do 
not use a net gun from a helicopter to capture and mark deer 
and then use a helicopter to obtain the sample, as deer cap-
tured and marked may hide from the helicopter, thereby pro-
ducing a bias in the sample that will cause an overestimation 
of  population abundance. If  the assumption given above is 
valid, an unbiased estimate of  population abundance can be 
obtained using the following equation: 

 MnN = ——, m

 where N = population abundance
  M = number marked in study area
  n =  number of  marked and nonmarked animals 

observed in sample
  m = number marked in sample

Example: You mark 100 deer using box traps on a study area, 
and a week later, you conduct a random road survey and 
see 50 deer, of  which 10 are marked. The estimated popula-
tion abundance would be calculated as

 (100)(50)
N = ———— = 500.

 10

Assuming a normal distribution, the 95%CI would be approx-
imately ±2 standard errors (SE). An estimate for 1 SE can be 
obtained using
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 (m2n) + (n – m)
SEN = 

√
———————.

 m3

Therefore,

 [(100)(100)(50)] + (50 – 10)SEN = 
√

—————————————— = 141.42
 (10)(10)(10)

2 SE = 283; 

therefore, 95%CI = 217–783 deer. Again, we should repli-
cate the sample several times to obtain a mean estimate, a 
95%CI, and conduct a power analysis to determine the sam-
ple size needed to detect a desired effect size.

Comment: The only assumption made in marked–resight 
methods is the proportion of  marked to nonmarked individ-
uals in a sample is the same as it is in the population. If  ani-
mals lose their marks, then fewer marked animals would be 
seen than expected, which would cause an overestimation 
of  population abundance. A rule of thumb is that any fac-
tor (e.g., marked animals leave study area) that causes one 
to see fewer marked animals than expected will cause an 
overestimation of  population abundance. In contrast, fac-
tors (e.g., trap-happy animals) that cause one to see more 
marked than expected will cause an underestimation of  pop-
ulation abundance. There is a premise the Lincoln–Petersen 
estimator is limited to a closed population. This scenario is 
best case; however, if  the ratio of  marked to nonmarked an-
imals leaving a study area is the same as it is in the popula-
tion, an open population will have no effect on the esti-
mate. Similarly, if  the same number of  nonmarked animals 
emigrate from and immigrate to the study area, it will have 
no effect on the estimate. The best way to avoid any prob-
lems with population closure is to mark the animals within 
a short time frame and conduct the resight sample soon 
thereafter. 
 Another misconception is that animals have to be marked 
randomly or uniformly throughout the study area. This 
marking would be ideal; however, if  a random resight sample 
is taken, it does not have to be done, because a random sam-
ple should contain the ratio of  marked to nonmarked as they 
are found in the population. To illustrate this idea, we use an 
extreme example. Say there are 2 identical (e.g., size and veg-
etation types) islands crossed by a single road with a bridge 
between them. On the first island, you mark 100 deer, and on 
the second island you mark none. Later that week you con-
duct a resight road census over both islands. On the first, you 
sight 50 deer, of  which 10 were marked, and on the second, 
you sight 50 deer (this result would be expected if  the islands 
were truly identical), of  which none were marked. Using the 
example given above, your estimate for the first island would 
be 500 deer. Now let us recalculate using all the information 
from both islands. 
 Unlike the example above, n now equals 100 (50 seen on 
each island):

 (100)(100)
N = ————— = 1,000 10

 The 1,000 deer would be expected if  the islands were 
truly identical. We use this illustration to debunk the idea 
that marked and nonmarked animals must be evenly mixed. 
What must be done is to obtain a random sample across 
the study area that will give you a true ratio of  marked to 
nonmarked individuals in the population. For large animals, 
such are deer, that can more easily be trapped and marked 
along roads, a resight survey using randomly placed infrared 
motion-sensitive cameras is ideal, especially if  neck collars 
are used to mark the deer. Also, remember the Lincoln– 
Petersen estimator does not require that animals be individ-
ually marked, making this method ideal when photos may 
not get a good angle of  the marked animal. However, addi-
tional information (e.g., movements or survival) can be ob-
tained from animals if  they are individually marked, and we 
recommend that you do so.
 At the beginning of  this section, we made the comment 
that no animals need be marked to conduct a marked–resight 
estimate. In south Texas on large ranches, some landowners 
stock ranches with known numbers of  exotic deer. Given 
this practice, one could use the number of  exotic deer as 
marked animals and all native deer as nonmarked animals 
to estimate the number of  exotic deer and native deer on 
the ranch, especially if  randomly located infrared cameras 
were used to resight animals. Subtracting the known num-
ber of  exotic deer from the estimate would give you an esti-
mate of  native deer abundance. The assumption is that ex-
otic deer and native deer have the same detection probability. 
Only one’s imagination limits the use of  marked–resight 
methods.
 In practice, the major problem we find with marked– 
resight methods is defining the study area. This is not a 
problem if  working on islands or estimating deer abundance 
within high fences. But it is a real problem when using live 
traps in a defined grid to mark–resight small mammals. We 
recommend using the maximum daily movement (i.e., ob-
tained from maximum distance between traps in the grid in 
which an individual was trapped on consecutive days) of  the 
mammals in question to define the limits outside the grid. 
For larger animals (e.g., deer), we also recommend using 
the maximum daily movement (i.e., obtained from maxi-
mum distance between daily sightings of  marked animals 
during resight surveys). This distance is then used to expand 
an area obtained by including all locations of  marked ani-
mals within a convex polygon using the minimum number 
of  locations to connect all other locations.

Schnabel Estimator
In situations where animals are continually being marked as 
resight surveys are conducted, there are several ways to ana-
lyze the data for a population estimate. A common way is to 
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treat each resight survey as a separate data set (i.e., using 
the total number marked at the time of  the survey) to ob-
tain multiple estimates and then calculate a mean estimate 
of  population abundance using the Lincoln–Petersen esti-
mator. Or, because the number of  marked animals in the 
population affects the estimate, one could use only the 
data obtained from the final survey to obtain an estimate. If  
the former is used, then one is giving equal weight to each 
survey and if  only the last survey is used because it has a 
larger sample size, one is not using all data available. To 
overcome this problem, Schnabel (1938) developed a method 
(i.e., weighted average) to use all available data without giv-
ing each survey an equal weight. The assumption for the 
Schnabel estimator is the same as for the Lincoln–Petersen 
estimator; namely, the resight sample has the same ratio of  
marked to nonmarked animals as is found in the popula-
tion. If  the assumption given above is valid, an unbiased es-
timate of  population abundance can be obtained using the 
following equation: 

 ∑MnN = ———,
 ∑m

 where N = population abundance
 M = number marked in study area
 n =  number of  marked and nonmarked animals 

observed in sample
 m = number marked in sample

Example: Over a 5-day period, you trapped and marked mice 
using 100 live traps, with the results shown in Table 11.1. 
The death of  some animals during trapping must be ac-
counted for as noted below. If  no animals die, then A = n. If  
animals are found dead in the sample, they must be ac-
counted for (i.e., dead marked animals must then be sub-
tracted from M, and dead nonmarked animals are then not 
added to M). Using the data from Table 11.1 in the above 
equation yields

 1,268N = ——— = 66.7. 19

 If  we had run 4 Lincoln–Petersen estimates for days 2–5, 
our estimates would be 60 mice for day 2, 57 mice for day 3, 78 
mice for day 4, and 68 mice for day 5. If  we average these esti-
mates, we get 66 mice with a standard error of  4.70 mice. As-
suming a normal distribution, we have a 95%CI (about ±2 SE) 
of  57–75 mice. Even though the mean Lincoln–Petersen  
estimator (66) and Schnabel estimator (67) are similar, the  
Schnabel estimator gives greater weight to the last days of  trap-
ping when a greater number of  mice were marked. Silvy et al. 
(1977) have shown that accuracy of  estimates is greater when 
more animals are marked; therefore, one should use the  
Schnabel estimator when there are 1 day of  resightings. 

Schumacher–Eschmeyer Estimator
The Schumacher–Eschmeyer estimator (Schumacher and Esch- 
meyer 1943) is a variation of  the Schnabel estimator, itself  a 
variation of  the Lincoln–Petersen estimator. Like the Schnabel 
estimator, it uses all available data without giving each survey 
an equal weight. Using the data from the Schnabel example 
above, 2 additional columns are calculated (Table 11.1). The  
assumption for the Schumacher–Eschmeyer estimator is the 
same as for the Lincoln–Petersen and Schnabel estimators:  
the resight sample has the same ratio of  marked to non-
marked animals as is found in the population. If  the assump-
tion is valid, an unbiased estimate of  population abundance 
can be obtained using the following equation: 

 ∑nM2

N = ———,
 ∑mM

 where  N = population abundance
 M = number marked in study area
 n =  number of  marked and nonmarked animals 

observed in sample
 m = number marked in sample

Using data from the Schnabel example above and the last 2 
columns of  Table 11.1, we obtain

 42,164N = ———— = 69. 611

Table 11.1. Hypothetical example of 5 days of trapping and marking mice with data presented in format suitable for estimation of 
population abundance using the Schnabel and Schumacher–Eschmeyer estimatorsa

 Number Number Number Total marked alive 
 trapped recaptured alive prior to date 
Day (n) (m) (A) (M) Mn nM2 mM 

1 10 0 10 0 0 0 0
2 12 2 11 10 120 1,200 20
3 15 5 15 19 285 5,415 95
4 10 5 9 39 390 15,210 195
5 11 7 11 43 473 20,339 301
Totals  19   1,268 42,164 611

a Note that only the first 6 columns are needed for the Schnabel estimator, whereas all 8 columns are needed for the Schumacher–Eschmeyer estimator.
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Jolly–Seber Estimator
The Jolly–Seber estimator ( Jolly 1965, Seber 1965) is used 
for open populations and estimates population size, survival 
rates, and births. A marked–resight experiment is conducted, 
during which, on ≥3 successive occasions, animals are marked 
from the population. The identity of  marked individuals is 
recorded on each occasion, unmarked animals are marked, 
and all animals are released. An estimate of  population size 
is calculated from the simple relationship that population 
size is equal to the size of  the marked population divided by 
the proportion of  animals marked. Estimates can be ob-
tained for each occasion except the first and last. Calcula-
tions for the Jolly–Seber estimator are complicated and are 
best done with available computer programs; therefore, 
they are not presented here. Estimates of  population size, 
survival rates, and births can be computed directly by pro-
gram JOLLY (Pollock et al. 1990; http://www.mbr-pwrc
.usgs.gov/software.html). Program POPAN-5 (Arnason and 
Schwarz 1999; http://www.cs.umanitoba.ca/~popan/) is based 
on a different approach to the Jolly–Seber model (Crosbie 
and Manly 1985, Schwarz and Arnason 1996). It includes es-
timation of  the total number of  individuals that are in the 
population at any time during the study, and from the pro-
gram computes an estimate of  population size (plus sur-
vival rate and recruitment). To achieve this estimate, one 
must make some assumptions about the values of  parame-
ters at the beginning and end of  the study (Schwarz and Ar-
nason 1996).
 Assumptions of  the Jolly–Seber estimator are: (1) all in-
dividuals have equal probability of  capture; (2) every marked 
animal present in the population has the same probability 
of  survival; (3) marks are not lost or overlooked; (4) all sam-
ples are instantaneous, and each release is made immedi-
ately after the sample; and (5) every animal in the popula-
tion is equally likely to emigrate, and all emigration from 
the population is permanent.

COMPUTER SOFTWARE PACKAGES

Several computer software packages are available that can 
be used to estimate population abundance using the meth-
ods described above plus other methods not covered here. 
Prior to the use of  these packages, however, one must be 
aware that errors may exist in these programs (e.g., early 
versions of  program CAPTURE). If  results obtained from 
a software program appear unrealistic, compare them to 
results from a different software package. Also, be aware 
that input errors also can give unrealistic or erroneous re-
sults (i.e., “garbage in is garbage out,” and it is not the 
fault of  the software package). Input errors include, but 
are not limited to (1) data entry, (2) data transfer, (3) col-
umn and/or row selection in spreadsheets, and (4) model 
selection (i.e., assumptions). The best way to test software 
results is to run a small “known” data set through the soft-

ware program, where the outcome has been previously 
determined without the use of  software programs. If  the 
result obtained is the same or similar, then the data have 
been entered correctly and the software program is proba-
bly working properly. 

Program CAPTURE
Program CAPTURE computes tests to select a model from 
several possible models and then computes estimates of  cap-
ture probability and population size for closed population 
marked–resight data. However, some models in CAPTURE 
do not work with small data sets. For those who want to 
learn more about Program CAPTURE, references are pro-
vided in Box 11.1.

Program MARK
Program MARK (http://warnercnr.colostate.edu/~gwhite/
mark/mark.htm) provides parameter estimates from marked 
animals when they are re-encountered later. Generaliza-
tions using program MARK (White and Burnham 1999) or 
DOBSERV (http://www.mbr-pwrc.usgs.gov/software.html) 
give the researcher the option to fit generalized Lincoln– 
Petersen models that allow for probability of  detection to 
depend on covariates, such as species, wind speed, and dis-
tance. MARK and DOBSERV use AIC (Burnham and Ander-
son 1998, 2002) to pick the most parsimonious model that 
explains the data adequately. Currently, no paper documen-
tation is available for MARK. Electronic documentation can 
be found at http://warnercnr.colostate.edu/~gwhite/mark/
mark.htm. This material can be printed if  you want hard 
copy. A reasonably complete description of  MARK can be 
found in White and Burnham (1999). Other references are 
given in Box 11.1.

Program DISTANCE
Program DISTANCE provides an analysis of  distance sam-
pling data to estimate density and abundance of  a popula-
tion. Considerably more detail is provided at the web site 
(http://www.ruwpa.st-and.ac.uk/distance/), that includes 
the software and an electronic manual. The methods used 
by this program are documented in the references listed in 
Box 11.1. 

SUMMARY

Obtaining precise estimates of  animal abundance or density 
in wild populations is difficult, time consuming, and costly. 
Most techniques have problems related to estimating the 
probability of  capturing or detecting animals during a sur-
vey and to taking insufficient and/or nonrandom samples. 
When using indices, it is assumed the detection probability 
is constant, but unknown and that over time nothing 
changes except population abundance. These assumptions 
may or may not be true, and we caution against use of  indi-

http://www.mbr-pwrc.usgs.gov/software.html
http://www.mbr-pwrc.usgs.gov/software.html
http://www.cs.umanitoba.ca/~popan/
http://warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.mbr-pwrc.usgs.gov/software.html
http://warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.ruwpa.st-and.ac.uk/distance/
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ces unless these assumptions can be verified for the compar-
isons being made. In the case of  population estimation, 
techniques range from complete counts, where sampling 
concerns dominate, to incomplete counts, where detection 
concerns dominate. Examples of  population estimation pro-
cedures include multiple observer, removal, and capture– 
resight methods.
 Before conducting a survey to estimate population abun-
dance, determine what information is needed, for what pur-
pose the information will be used, how precise an estimate 

is needed, and the time and cost required to conduct the 
survey. The key to deriving population abundance estimates 
is to select a method that fits the situation. If  necessary, 
techniques can be adapted to meet a particular need. Gener-
ally, a biometrician familiar with population estimation liter-
ature should be consulted. However, most biometricians 
consider a method “better” when it has greater precision 
than another method, but remember that most of  these 
methods have never been tested for accuracy under field 
conditions. Great precision does not mean great accuracy.
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