
12 Counting animals

12.1 Introduction Knowledge of the size or density of a population is often a vital prerequisite to manag-
ing it effectively. Is the population too small? Is it too large? Is the size changing, and
if so in what direction? To answer these questions, we may have to count the individ-
ual animals, or we may be able to obtain adequate information by way of an indirect
indication of abundance. In any event, we need to know when a census is necessary
and how it might be done.
Although census is strictly the total enumeration of the animals in an area, we use

the word here in its less restrictive sense of an estimate of population size or density.
Such an estimate may come from a total count, from a sampled count, or by way of an
indirect method such as mark–recapture.
Closely related to the census is the index, a number that is not itself an estimate of

population size or density but which has a proportional relationship to it. The number
of whales seen per cruising hour is an index of whale density. It does not tell us the
true density but it does allow comparison of densities between areas and between years.
Indices provide measures of relative density and are used only in comparisons. They are
particularly useful in tracking changes in rates of increase and decrease.
Almost all decisions on how a populationmight best bemanaged require information

on density, on trends in density, or on both. There are many methods to choose from
and these differ by orders of magnitude in their accuracy and expense. Hence, before
any censusing is attempted, the wildlife manager should ask a number of questions:
• Do I need any indication of density and what question will that information answer?
• Is absolute density required or will an index of density suffice?
• Will a rough estimate answer the question or is an accurate estimate required?
• What is the most appropriate method biologically and statistically?
• How much will it cost?
• Do we have that kind of money?
• Would that money be better spent on answering another question?
The trick in obtaining a usable estimate of abundance is to choose the right method.
What works in some circumstances is useless in others. Here we present a wide range
of options and indicate the conditions under which each is most effective.

12.2 Total counts The idea of counting every animal in a population, or in a given area, has an attractive
simplicity to it. It is the method used by farmers to keep track of the size of their
flocks. No arithmetic beyond adding is called for and the results are easily interpreted.
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This is why total counting was once very popular in wildlife management and why it
is still the most popular method for censusing people.
Total counts have two serious drawbacks: they tend to be inaccurate and expen-

sive. Nonetheless, they have a place. The hippopotami (Hippopotamus amphibius) in
a clearwater stretch of river can be counted with reasonable facility from a low-flying
aircraft. The number of large mammals in a 1 km2 fenced reserve can be determined to
a reasonable level of accuracy by a drive count. It takes much organization and many
volunteers but it can be done. Every nesting bird can be counted in an adélie penguin
(Pygoscelis adeliae) rookery, either from the ground or from an aerial photograph. That
is an example of a “total count” providing an index of population size, because more
than half the birds will be at sea on any given occasion.
Total counting of largemammals over extended areas was common inNorth America

up to 1950. Gill et al. (1983) describe the system in Colorado:

Biologists attempted to count total numbers of deer comprising the most impor-
tant “herds” in the state. Crews of observers walked each drainage within winter
range complexes and counted every deer they encountered. The sum of all counts
over every drainage of a winter range was taken as the minimum population size
of that herd (McCutchen 1938; Rasmussen and Doman 1943).

Total counting of large mammals from the air was a standard technique in Africa in the
1950s and early 1960s. Witness the total counts of large mammals on the 25 000 km2

Serengeti–Mara plains (Talbot and Stewart 1964) and 20 000 km2 Kruger National
Park, South Africa:

trends in population totals, spatial distribution, and social organization are
obtained by means of surveys by fixed-wing aircraft. Due to the size of the Kruger
National Park these (total count) surveys require three months to complete and
are consequently undertaken only once annually (i.e. during the dry season from
May to August (Joubert 1983)).

These massive exercises continued in Kruger until 1996, when they were abandoned
due to cost. Similar methods are used to count pronghorn antelope in the United States
(Gill et al. 1983). Total counts continue to be used on species that are highly clumped
with wide spacing between clumps. For example, both African buffalo (Syncerus caffer)
and African elephant (Loxodonta africana) live in widely dispersed large herds of sev-
eral hundred animals in both Serengeti and Kruger National Parks, and total counting
is still the best method of obtaining their population size. This is because the disper-
sion pattern of these species means that sample counts produce very high variances
and hence wide confidence limits. A simulated transect sampling strategy for a known
dispersion of buffalo showed that over 90% of the area had to be sampled before con-
fidence limits were reduced to acceptable values (< 15% of the estimated total). Thus,
total counting was more efficient because it was logistically easier than rigidly flown
transects (Sinclair 1973). Similarly, the clumped distribution of pronghorn antelope
(Antilocapra americana) in North Dakota produced such high variances from a variety
of sampling strategies that Kraft et al. (1995) advised against using samples to estimate
numbers.
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12.3 Sampled
counts: the logic

There are two important areas in which scientific thinking differs from everyday think-
ing: the selection of a random or unbiased sample and the choosing of an appropriate
experimental control. Knowing how to sample and knowing how to design an experi-
ment that gives an unambiguous answer are the two attributes distinguishing science
from ideology. Sampling is the technique of drawing a subset of sampling units from
the complete set and then making deductions about the whole from the part. It is used
all the time in wildlife research and management, but often incorrectly.
The next section takes us through some of the mystery of sampling. It explores what

actually happens when we sample a population in several different ways, making the
point that the true estimate is independent of whatever mathematical calculations are
applied to the data.

12.3.1 Precision
and accuracy

If a large number of repeated estimates of density have a mean that does not differ
significantly from the true density then each estimate is said to be accurate or unbi-
ased. Accuracy is a measure of bias error. If that set of estimates has little scatter then
the estimates are described as precise or repeatable. Precision is a measure of sampling
error. A system of estimation may provide very precise estimates that are not accurate,
just as a system may provide accurate but imprecise estimates. Ideally, both should be
maximized, but often we must choose between one and the other according to what
question is being asked. For example, is density below a critical threshold of one animal
per square kilometer? Here we need an accurate measure of density and may be willing
to trade off some precision to get it. But if we had asked whether present density was
lower than that of last year then we would need two estimates, each of high precision.
Their accuracy would be irrelevant so long as their bias was constant. Most questions
require precision more than accuracy. Precision is obtained by rigid standardization
of survey methods, by sampling in the most efficient manner, and by taking a large
sample.

12.3.2 Bias errors Bias errors derive from some systematic distortion in the counting technique, the
observer’s ability to detect animals, or the behavior of the animals. Often, but not
always, the bias produces an undercount. Thus biases can accrue from sampling
schemes that do not properly sample all habitats (e.g. using roads that avoid hills or
riverine areas); from the observer missing animals on transects (because there are
too many animals, because in counting one group the observer overlooks another, or
simply because of observer fatigue); or from animals being hidden in thickets, under
trees, or underwater.
The best way to measure bias error is to compare the census estimate with that from

a known population. Pollock and Kendall (1987) review this method, along with the
use of a subpopulation of marked animals, mapping with multiple observers, line tran-
sect sampling, and multiple counts on the same area. Visibility corrections have been
calculated by comparing fixed-wing aerial surveys of waterfowl with ground counts
(the known or unbiased population) (Arnold 1994; Bromley et al. 1995; Prenzlow and
Lovvorn 1996). A similar approach was used to estimate bias in counts of wood stork
(Mycteria americana) nests in Florida (Rodgers et al. 1995) and great blue heron (Ardea
herodias) nests in south Carolina (Dodd and Murphy 1995). Moose usually live in
dense habitats where they are difficult to see. Rivest et al. (1990) compared fixed-wing
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surveys of moose with themore accurate subsample surveys by helicopter to correct for
visibility bias, an approach also used for counts of chicks in osprey (Pandion haliaetes)
nests (Ewins and Miller 1995).

12.3.3 Sampling
frames

Before an area is surveyed to estimate the number of animals on it, it must be divided
into sampling units, which cover the whole area and are non-overlapping. The sampling
units might comprise areas of land if we count deer, or trees if we count nests, or
stretches of river if we count beavers or crocodiles. To allow us to sample from this
frame list of sampling units, the list must be complete for the whole area. Hence, the
frame of units contains all the animals whose numbers we wish to estimate.
For purposes of explanation, we use the first example: sampling units of land. The

survey areamay be divided up into units in any way the surveyor desires: into quadrats,
transects, or irregular sections of land, perhaps delimited by fences. The choice is
a compromise between what is most efficient statistically and what is most efficient
operationally.

12.3.4 Sampling
strategies

Suppose that we wished to estimate the number of kangaroos or antelopes in a large
area by counting animals on a sample of that area. Several strategies are open to us.
We could sample quadrats or transects, we could select these sampling units systemat-
ically or randomly, and, if the latter, we could ensure that each sampled unit occurred
only once in the sample (sampling without replacement) or that the luck of the draw
allowed units to be selected more than once (sampling with replacement). The effi-
ciency of these systems will be demonstrated with the hypothetical data of Table 12.1,
which may be thought of as the number of kangaroos standing on each square kilome-
ter of an area totaling 144 km2. In all cases 1/3 of the area will be surveyed. We can
test the accuracy of the method by determining whether the mean of a set of repeated
estimates is significantly different from the true total of 1737 kangaroos. The precision
of a sampling system is indicated by the spread of those repeated and independent esti-
mates, and that spread will be measured by the standard deviation of those estimates:

s =

√(
Σx2 − (Σx)2

N

)
∕(N − 1)

where x is an independent estimate of total numbers and N is the number of such
repeated estimates.

Table 12.1 Simulated
dispersion of kangaroos
on a 1 × 1 kmgrid
of 144 cells. Marginal
totals give numbers on
1 × 2 km transects
oriented both across and
down the region.

1 2 7 4 7 14 9 18 24 22 19 15 142
0 1 5 6 12 11 9 15 20 21 27 28 147
2 3 5 6 10 13 16 20 160 14 19 21 147
1 4 4 6 9 13 14 17 20 16 25 20 149
2 2 5 7 10 12 16 19 20 16 18 22 149
2 4 5 6 9 12 16 22 18 18 21 23 156
0 2 5 8 4 7 11 13 17 16 21 30 134
1 0 4 9 8 10 11 16 14 20 17 17 127
0 4 2 7 8 11 11 11 12 19 22 21 128
0 2 5 8 8 12 16 20 24 25 23 25 168
1 0 4 9 8 8 8 17 17 14 18 22 126
2 5 7 6 12 12 13 15 20 21 20 23 156

12 29 58 82 105 135 150 203 222 222 250 269 1737
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We will first sample 1 km2 quadrats randomly with replacement: sampling with
replacement (SWR). The quadrats are numbered from 1 to 144 and a sample of 48
of these is drawn randomly. Quadrats 27, 31, 50, and 53 are drawn twice and quadrat
7 three times, but since these are independent draws they are included in the sample
as many times as they are randomly chosen. The quadrat is replaced in the frame list
after each draw, allowing it the chance of being drawn again. The number of kanga-
roos in this sample of quadrats totals 523, and since we have sampled only a third of
the quadrats we multiply the total by 3 to give an estimate of animals in the study
area: 1569.
Note that this answer is wrong in the sense that it differs from the true total, known

to be 1737 (i.e. it is not accurate). This disparity is called sampling error, which is quite
distinct from errors of measurement resulting from failure to count all the animals on
each sampled quadrat.
We now repeat the exercise by drawing a fresh sample of 48 units and get a sampled

count of 493 kangaroos, which multiplies up to an estimate of 1479. The third and
fourth surveys give estimates of 1836 and 1752. This exercise is repeated a thousand
times with the help of a computer. The thousand independent estimates have a mean
of x = 1741, very close to the true total of 1737. We can be confident, therefore, that
this sampling system produces accurate (i.e. unbiased) estimates. The thousand inde-
pendent estimates have a standard deviation of s = 153, which tells us that there is a
95% chance that any one estimate will fall in the range x ± 1.96s or 1741 ± 300,
between 1441 and 2041. The standard deviation of a set of independent estimates is the
measure of the efficacy of the sampling system and hence of the precision of any one
of the independent estimates. It can be estimated from the quadrat counts of a single
survey (see Section 12.5.1), and when estimated in this way it is called the standard
error of the estimate. Hence the standard error of an estimate is a calculation of what the
standard deviation of a set of independent estimates is likely to be.
With this background, we can now compare the efficiencies of several sampling

systems.

12.3.5 Sampling
with or without
replacement?

When we use sampling without replacement (SWOR), a quadrat may be drawn no more
than once. This is in contrast to the previous system, which allowed a quadrat to be
selected by the luck of the draw any number of times. We draw a unit, check whether it
has been selected previously, and if so reject it and try again. Having drawn 48 distinct
units, we calculate density. The sampling is again repeated a thousand times, yielding
1000 independent estimates – each based on a draw of 48 units – of the total number
of animals. We know the true total to be 1737. These 1000 estimates have a mean of
1743 and a standard deviation of 131, which is appreciably lower than the s = 153
accruing from SWR.
The gain in precision with SWOR reflects the slightly greater information on density

carried by the 48 distinct quadrats of each survey. SWOR is always more precise than
SWR for the same sampling fraction, the relationship being:

s(SWOR) = s(SWR) ×
√
1 − f

where f is the sampling fraction, in this case 0.333. The s(SWR) from the 1000 repeated
surveys is 153, and from this we can estimate, without needing to run the simulation,
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that the precision of the analogous SWOR system would be about:

s = 153 ×
√
0.666 = 125

Our empirical s(SWOR) is 131, which is much the same as the s = 125 predicted the-
oretically.
However, it is not as simple as that. The quadrats chosen more than once in an SWR

sample are not surveyed more than once, so the time taken for the survey is shorter. In
the example, only about 41 of the 48 units drawn in an SWR sample would be distinct
units, the other seven being repeats. To compare the precision of an SWOR sample with
that of an SWR sample entailing the same groundwork, we would have to draw by SWR
about 58 units. Ten are repeats, “free” units that do not need to be surveyed a second
time. Intuitively, we would assume that the SWR sample of 48 distinct units and 10
repeats must give a more precise estimate than the SWOR sample with its 48 distinct
units, none repeated. Not so. The smaller SWOR samples provide estimates that are

more precise by a factor of
√(

1 − 1∕2f
)
. In all circumstances, SWOR is more precise

than SWR (Raj and Khamis 1958). Precision is increased by rejecting the repeats and
cutting the sample size back to that of the analogous SWOR sample.
Why then, if SWOR is always better, is SWR often used? First, when the sampling

fraction is low (< 15%), the precision of the two systems of sampling is similar. At f =
0.1 there is only a 5% difference in precision, reflecting the low likelihood of repeats at
low sampling intensity. Most sampling intensity in wildlife management is of this order.
Second, it is often convenient to sample with replacement when an area is traversed
repeatedly by aerial-survey transects. There is not the same necessity to ensure that no
transect crosses another or overlaps it. This is a useful flexibility for an aerial survey
in a strong crosswind or for a ground survey in thick forest.

12.3.6 Transects or
quadrats?

A frame of transects is a good or a bad sampling system according to how it is oriented
with respect to trends in density. The dispersion of Table 12.1 has a marked increase
in density from left to right. The precision of the estimate of total numbers will be
relatively high if the transects are oriented along this cline but low if oriented at right
angles to it. This can be demonstrated empirically by sampling the column totals at
one-third sampling intensity. Each column represents a transect and each survey com-
prises four transects, randomly chosen. A thousand independent surveys produce a
standard deviation of estimates of 512 for SWR and 427 for SWOR. If these transects
were oriented at right angles, so that the rows rather than the columns formed the tran-
sects, the standard deviation of estimates of a thousand independent surveys would
be approximately 80 for SWR and 69 for SWOR. In this case, precision is increased
enormously by swinging the orientation of the transects through 90∘.
Transects should go across the grain of the country rather than along it, should cross

a river rather than parallel it, and should go up a slope rather than hug the contour.
They should be oriented such that each samples as much as possible of the total vari-
ability of an area. In essence, we must ensure that the variation between transects is
minimized and therefore that the precision of the estimate is maximized.
Much the same principle adjudicates between the use of quadrats as against tran-

sects. So long as the frame of transects is oriented appropriately, the resultant estimate
will be more precise than that from a set of quadrats whose area sums to that of
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the transects. The more clumped ithe distribution of the animals, the greater the gain in
precision of transects over quadrats. A quadrat is likely to land in a patch of either high
or low density, whereas a transect is more likely to cut through areas of both. Table 12.2
shows that transects oriented along the cline in density of Table 12.1 provide estimates
six times more precise than do quadrats of the same size and number.

12.3.7 Random or
nonrandom
sampling?

Sampling strategies grade from strictly random to strictly systematic. The region in
between is described as restricted random sampling. One might decide, for example,
to sample randomly but to reject a unit that abuts one previously drawn. Or one might
break the area into zones (strata) and draw the same number of samples randomly from
each zone. These two strategies depart from the requirement of strict random sampling,
whereby each sampling unit has the same probability of selection. The extreme is sys-
tematic sampling, in which the choice of units is determined by the position of the first
unit selected.
Systematic or restricted random sampling has several practical advantages over strict

random sampling. First, it encourages or enforces SWOR, which, as we have seen, leads
to a more precise estimate. Second, it reduces the disturbance of animals on a sam-
pling unit caused by the surveying of an adjoining unit. This is particularly important
in aerial survey, where the noise of the aircraft can move animals off one transect on
to another. Third, any deviation from strictly random sampling tends to increase the
precision of the estimate, because the sampled units together provide a more compre-
hensive coverage of total variability. Table 12.2 demonstrates this for our example. The
standard deviation of a thousand independent surveys is lower for restricted random
sampling than for random SWOR, and lower still for systematic sampling.
Statisticians do not like nonrandom sampling because the precision of the estimate

cannot be calculated from a single survey. The formulae given in Section 12.5.1 for
calculating the standard error of an estimate are correct only when sampling units are
drawn at random, and they will tend to overestimate the true standard error when
restricted random or systematic sampling is used. But not always. If a systematically
drawn set of sampling units tends to align with systematically spaced highs and lows
of density, the standard error calculated on the assumption of random sampling will
be too low and the estimate of density will be biased.

Table 12.2 The effect of
the sampling system on the
precision of an estimate. All
systems sample one-third
of an area of 144 km2

containing the dispersion
of kangaroos simulated in
Table 12.1. Each sampling
system is run 1000 times to
provide 1000 independent
estimates of the true total
of 1737.

Sampling system Mean estimate Standard deviation of
1000 estimates

Large quadrants, n = 4
Random with replacement 1746 487
Random without replacement 1738 414

Small quadrants, n = 48
Random with replacement 1741 153
Random without replacement 1743 131

Transects parallel to the density
cline, n = 4
Random with replacement 1732 80
Random without replacement 1734 69
Restricted random 1730 57
Systematic 1736 48
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In practice, this tends not to happen. It is entirely appropriate to sample
systematically or by some variant of restricted random sampling and to approximate
the standard error of the estimate with the equation for random sampling. One can be
confident that the estimate is unlikely to be biased and that the true standard error is
unlikely to exceed that calculated.

12.3.8 How not
to sample

There are a number of traps that sampling can lure one into, which can result in a biased
estimate or an erroneous standard error. Suppose one decided to sample quadrats but,
for logistical reasons, laid them out in lines, with the distance between the lines consid-
erably greater than that between neighboring quadrats within the lines. The standard
error of the estimate of density could not then be calculated by the usual formulae
because the counts on those quadrats would not be independent. Density is correlated
between neighboring quadrats, and this throws out the simple estimate of the standard
error, which returns an erroneously low value. There are ways of dealing with the data
from this design in order to yield an appropriate standard error (see Cochran 1977 for
treatment of two-stage sampling and Norton-Griffiths 1973 for an example using the
Serengeti wildebeest), but they are beyond the scope of this book. The simple rem-
edy is to pool the data from all quadrats on each line, the line rather than the quadrat
becoming the sampling unit. This procedure may appear to sacrifice information, but
it does not (Caughley 1977a).
Another commonmistake is to throw random points on to amap and to declare them

centers of the units to be sampled, the boundary of each being defined by the position
of the point. In this case, the requirement that sampling units cover the whole area
and be non-overlapping is violated and the sampling design becomes a hybrid between
SWR and SWOR, leading to difficulties in calculating a standard error. There is nothing
wrong with choosing units to be sampled by throwing random points on a map so long
as the frame of units is marked on the map first. The random points define the units
to be selected. They do not determine where the boundaries of those units lie.
A third trap to watch for is a biased selection of units to be sampled. The most

common source of this bias in wildlife management is the so-called “road count,” in
which animals are counted from a vehicle on either side of a road or track. Roads are
not random samples of topography. They tend to run along the grain of the country
rather than across it, they go around swamps rather than through them, they tend to
run along vegetation ecotones, and they create their own environmental conditions,
some of which attract animals and others of which repel them.

12.4 Sampled
counts: methods
and arithmetic

Sampled counts of animals fall easily into two categories. The first is the method of
counting in sampling units with fixed boundaries. We might for example walk lines
and count deer in the area within 100m either side of the line of march, or count all
the ducks in a sample of ponds, the shoreline of the pond providing a strict boundary
to the sampling unit.
The alternative is unbounded sampling units (Buckland et al. 1993, 2001). Instead

of restricting the counting to those animals within 100m of a line of march, those
outside the transect being ignored, we might count all the animals that we see. Since
the observed density will fall away with distance from the observer, the raw counts are
no longer an estimate of true density. They must therefore be corrected.
Of these two options (sampling units with boundaries and sampling units without

boundaries), the first has immense advantages of simplicity and realism. If the transect
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width is appropriately chosen, what the observer sees is what the observer gets. The
mathematics of such sampling are simple, elegant, and absolutely solid. In contrast, the
accuracy of a corrected density estimated from unbounded transects depends heavily
upon which model is chosen for the analysis. There are many to choose from and
they give markedly different answers for the same data. The advantage of unbounded
transects lies in all the sightings being used, with none being discarded. Since the
precision of an estimate is related tightly to the number of animals actually counted,
any sampling scheme that increases the number of sightings also tends to increase the
precision of the estimate. That is an advantage if the increased precision is obtained
without the sacrifice of too much accuracy.
The choice of one system or another is often determined by density. If the species

is rare then we might be tempted to use all the data we can get. If it is common, we
might be content to use the more dependable sampling units with fixed boundaries,
knowing that fewer things can go wrong.

12.4.1 Fixed
boundaries
to sampling units

The appropriate analysis depends on whether the sampling units are of equal or
unequal size, and how they are selected. Formulae were originally developed by Jolly
(1969), based on Cochran (1977) (see also Norton-Griffiths 1978).

Notation

y = the number of animals on a given sampled unit;
a = the area of a given sampled unit;
A = the total area of the region being surveyed;
n = the number of units sampled;
D (or d) = the estimate of mean density;
SE(D) = the standard error of estimated mean density;
Y = the estimate of total numbers in the region of size A;
SE(Y) = the standard error of the estimate of total numbers.

The simple estimate (for equal-sized sampling units)
The simple estimate is used when sampling units are of constant size, as when the
region being surveyed is a rectangle, which can be subdivided into quadrats or tran-
sects. It will provide an unbiased, although imprecise, estimate, even when sampling
units differ in size – but more appropriate designs are available for that case. We will
explore this design at some length because most of the principles are shared with the
others.
The region to be surveyed, of area A, is divided on a map or in one’s head into

an exhaustive set of non-overlapping sampling units, each of constant area a. Let us
assume, for illustration, that the region is as given in Table 12.1, and that this region
of A = 144 km2 is to be sampled by n = 4 transects each of area a = 12 km2. Sampling
intensity is hence na∕A = 4 × 12∕144 = 0.333.
In Table 12.1 the rows represent transects and the marginal totals the number of

animals on each. Numbering the transects from 1 to 12 and selecting at random with
replacement from this set, we draw transects 4, 8, 1, and 4. On surveying these tran-
sects, we obtain counts of:

Transect: 1 4 4 8
Count: 142 149 149 127
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Note that transect 4 has been drawn twice, so in practice we survey only three transects,
although the count from transect 4 enters the calculation two times.
Density is estimated as the sum of the transect counts (142 + 149 + 149 + 127)

divided by the sum of the transect areas (12 + 12 + 12 + 12). Thus:

D = Σy∕Σa = 567∕48 = 11.81∕km2
.

The precision of this estimate is indexed by its standard error SE(D), which is itself
an estimate of what the standard deviation of many independent estimates of density
would be, each derived from four transects drawn at random with replacement:

SE(D) = 1∕a ×
√
(Σy2 − (Σy)2∕n)∕(n(n − 1))

This is a slight approximation. To be exactly unbiased, it should be multiplied by a
further term

√
1 − (Σa)∕A, but that usually makes so little difference that it tends to

be ignored.
The calculation tells us that this hypothetical distribution of estimates, each of them

made in the same way as we made ours, with the same sampling frame and the same
sampling intensity, only the draw of sampling units being different, will have a standard
deviation in the vicinity of ±0.43. In fact, this is likely to be an underestimate because
it is based on only four sampling units, three degrees of freedom. With samples above
30 sampling units we can form 95% confidence limits of the estimate by multiplying
by 1.96, but for smaller samples we must choose a multiplier from a Student’s t -table
corresponding to a two-tailed probability of 0.05 and the degrees of freedom (d.f.) of
our sample. In the case of d.f. = 3, the multiplier is 3.182 and so the 95% confidence
limits of our estimate of density are ±3.18 × 0.43 = ±1.37.
The number of animals Y in the surveyed region can now be calculated as the number

of square kilometers in that region A multiplied by the estimated mean number per
square kilometer D:

Y = AD = 144 × 11.81 = 1701

This has a standard error of:

SE(Y) = ±A × SE(D) = ±144 × 0.43 = ±62

Its 95% confidence limits are calculated as A multiplied by the 95% confidence limits
of D:

±144 × 1.37 = ±197

We can check this against Table 12.2, which shows that the true total number Y is
1737, so the estimate with 95% confidence of Y = 1701 ± 197 is entirely acceptable.
If the sampling is without replacement, the formula for SE(D) yields an overesti-

mate. The standard error for SWOR is estimated by the formulation for the standard
error with replacement multiplied by the square root of the proportion of the area not
surveyed. This finite population correction (FPC) is:

FPC =
√
1 − (Σa)∕A
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The simple estimate may validly be used even when sampling units are of unequal size.
The constant a is then replaced by the mean area of sampling units. The precision of
the estimate will be lower (i.e. the standard error will be higher) than that produced
by the ratio method (see next subsection), but the estimate is unbiased and may be
precise enough for many purposes.
The simple estimate, with minor modification, can be used when the total area A

is unknown. One of us was forced to this exigency while surveying from the air a
population of rusa deer (Cervus timorensis) in Papua New Guinea. The deer lived on
a grassed plain, the area of which could not be gauged with any accuracy from the
available map. The remedy was to measure the length of the plain by timing the aircraft
along it at constant speed, and then to run transects from one side of the plain to the
other at right angles to that measured baseline. The area of a sampling unit is entered
as a = 1, even though they are of different and unknown areas. D then comes out as
average numbers per transect, rather than per unit area. Total numbers Y on the plain
can be estimated by replacing A with N, where N is the total number of transects that
could have been fitted into the area. This is simply the length of the baseline divided by
the width of a single transect. A similar approach was used for censusing of wildebeest
in the Serengeti (Norton-Griffiths 1973, 1978).

The ratio estimate (for unequal-sized sampling units)
This is the best method for a frame of sampling units of unequal size, as might be
provided by a faunal reserve of irregular shape sampled by transects. Statistical texts
warn that the estimate is biased when the number of units sampled is less than 30 or
so, but the bias is usually so slight as to be of little practical importance. The number
of units may be as low as two without generating a bias of more than a few per cent.
The appropriate formulae are given in Table 12.3 and the notation at the beginning

of Section 12.5.1. That for the standard error looks quite different from that for the
simple estimate but they are mathematical identities when the sampling units are of
equal size. The ratio estimate is general, the simple estimate being a special case of it.
Hence, if these analyses are to be programmed into a calculator or computer, the ratio
method is the only one needed.

Table 12.3 Estimates and their standard errors for animals counted on transects, quadrants, or sections. The models are described
in the text.

Model Density Numbers

Simple
Estimate D = Σy∕Σa Y = A × D

Standard error of estimate (SWR) SE(D)1 = 1∕a ×
√
(Σy2 − (Σy)2∕n)∕n(n − 1) SE(Y) = A × SE(D)1

Standard error of estimate (SWOR) SE(D)2 = SE(D)1 ×
√
1 − (Σa)∕A SE(Y) = A × SE(D)2

Ratio
Estimate D = Σy∕Σa Y = A × D

Standard error of estimate (SWR) SE(D)3 = n∕Σa ×
√
(1∕n(n − 1))(Σy2 + D2Σa2 − 2DΣay) SE(Y) = A × SE(D)3

Standard error of estimate (SWOR) SE(D)4 = SE(D)3 ×
√
1 − (Σa)∕A SE(Y) = A × SE(D)4

PPS
Estimate d = 1∕n × Σ(y∕a) Y = A × d

Standard error of estimate (SWR) SE(D) =
√
(Σy∕a)2 − (Σ(y∕a))2∕n)∕n(n − 1) SE(Y) = A × SE(d)

SWR, sampling with replacement; SWOR, sampling without replacement. Notation is given at the beginning of Section 12.5.1.
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The PPS estimate
By the previous two methods, all sampling units in the frame have an equal chance of
being selected. By the probability-proportional-to-size (PPS) method, the probability
of selection is proportional to the size of the sampling unit. Suppose that the area to
be surveyed is farmland. We might decide to declare the paddocks (or “pastures” or
“fields,” depending on which country you are in) as sampling units because the fences
provide easily identified boundaries to those units.
If each sampling unit were assigned a number and the sample were chosen by lot, we

would use the ratio method of analysis. However, we might decide instead to choose
the sample by throwing random points on to a map. Each strike selects a unit to be
sampled, the probability of selection increasing with the size of the unit.
The PPS estimate has the advantages that it is entirely unbiased and that the arith-

metic (Table 12.3) is simple. Its disadvantage is that it can be used only when sampling
with replacement and so it is not as precise as the ratio method used without replace-
ment. Hence, this method should be restricted to surveys whose sampling intensity is
below 15%. The PPS estimate is a mathematical identity of the simple estimate and the
ratio estimate when units of equal size are sampled with replacement.

12.4.2 Unbounded
transects (line
transects)

The observer walks a line of specified length and counts all animals seen, measuring
one ormore subsidiary variables at each sighting (e.g. angle between the animal and the
line of march; radial distance, the distance between the animal and the observer at the
moment of sighting; the right-angle distance between the animal and the transect). If
we know the shape of the sightability curve relating the probability of seeing an animal
on the one hand to its right-angle distance from the line on the other, and if an animal
standing on the line will be seen with certainty, it is fairly easy to derive an estimate
of density from the number seen and their radial or right-angle distances. We seek a
distance from the line at which the number of animals missed within that distance
equals the number seen beyond it. True density is then the total seen divided by the
product of twice that distance and the length of the line.
Therein lies the difficulty. That distance is determined by the shape of the sighta-

bility curve, which can seldom be judged from the data themselves. Consequently, the
shape of the curve must be assumed to some extent, and the validity of the assumption
determines the accuracy of the method.
We present here just two of the many models available, mainly to give some idea

of their diversity. The first is the Hayne (1949) estimate, which is derived from the
assumption that the surveyed animals have a fixed flushing distance and will be
detected only when the observer crosses that threshold. If k is the number of animals
detected and r the radial distance from a detected animal to the observer then:

D = (1∕2L)Σk(1∕r)

where L is the length of the line. Hence, density is the sum of the reciprocals of the
radial sighting distances divided by twice the length of the line.
It is implicit in Hayne’s model that sin 𝜃, the sine of the sighting angle, is uni-

formly distributed between 0 and 1, and that the theoretically expected mean sight-
ing angle is 32.7∘. Hence, the reality of the model can be tested against the data.
Eberhardt (1978) recommended tabulating the frequency of sin 𝜃 in 10 intervals of
0.1 (0.0 − 0.1, 0.1 − 0.2 … 0.9 − 1.0) and testing the uniformity of the frequencies
by chi-square. He gave a worked example for a survey of the side-blotched lizard
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(Uta stansburiana). Robinette et al. (1974) and Burnham et al. (1980) suggested that
most mean sighting distances tended to be around 40∘ or more, the latter authors being
convinced that the Hayne estimate is used far too uncritically in wildlife management.
Robinette et al. (1974) compared the accuracy of the Hayne estimate with that of eight
other line transect models, showing that when applied to inanimate objects or to ele-
phants it tended to overestimate considerably. However, Pelletier and Krebs (1997)
found both the Hayne estimate and line transect estimates provided relatively unbi-
ased results when compared with a known population of ptarmigan (Lagopus species)
in the Yukon. Buckland et al. (1993) provides a starting point for reading further about
line transect methods.
Our second example is a nonparametric method developed by Eberhardt (1978)

from work by Cox (1969). First, we choose arbitrarily a distance, Δ, perpendicular
from the line. Eberhardt’s estimate of density is:

D = (3k1 − k2)∕4LΔ

where k1 and k2 are the number of animals seen on either side of the line transect
at distances that fall within the intervals 0 − Δ and Δ − 2Δ, respectively. Eberhardt
(1978) considered that the method is most useful as a cross-check on the results of
other methods, because its estimate is likely to be imprecise. Precision is enhanced
by choosing a large value of Δ but accuracy is enhanced by choosing a small one
(Seber 1982).
Much of the present use of line transects in wildlife management stems from

the belief that they are somehow more “scientific” than strip transects, just as
there was once a belief that quadrats were statistically superior to transects. There
are rare situations in which transect sampling will not work and where line tran-
sect methodology might (e.g. in very thick cover). The unbounded line transect
method has advanced considerably with the use of the computer software Distance
(http://www.ruwpa.st-and.ac.uk/distance), developed by Buckland et al. (1993, 2001).
Although the use of the software is not easy, it is currently the most powerful tool
for line censuses. In particular, it is most useful for rare observations, although it
does require at least 30 records in order to be reliable. In addition, time must be
allowed to make the necessary estimates of perpendicular distance from the line to
the animal (or groups of animals). If there are insufficient observations of a particular
species (or other category) in a station or habitat then one can repeat the line survey
until a sufficient number have been accumulated. The only proviso is that animals
distribute themselves randomly with respect to the line and there is no spatial
correlation between surveys. The method is particularly suitable for rare species such
as carnivores and rare ungulates and birds. It is less suitable where there are large
numbers of animals (e.g. ungulates on the Serengeti plains).
Note that none of these unbounded methods can be used in aerial survey. They are

all anchored by the assumption that all animals on the line of march (equivalent to
the inner strip marker of aerial survey) are tallied by the observer. This assumption
does not hold for aerial survey because the ground under the inner strip marker is at a
distance from the observer, because an animal under a tree on that line may be missed,
and because an observer cannot watch all parts of the strip at once and may therefore
miss animals in full view on the line. In addition, the speed of the aircraft makes the
measurement of distances from the observer unfeasible.
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The assumption that all animals on the line are counted can be relaxed if the proba-
bility of detecting animals on the line can be estimated. This is particularly important
for marine mammals, where only a fraction of a group or pod is on the surface at
any one time. The probability of detection on the line for harbor porpoises (Phocoena
phocoena) was estimated to be only 0.292, which illustrates just how many remain
unseen. Furthermore, this estimate was made by experienced observers; for inexpe-
rienced observers, the sighting probability was only 0.079; that is, some 90% were
missed. This shows the importance of training and experience (Laake et al. 1997).
The biologist must decide whether the statistical power of line transects justifies

their practical application. Can the difficulty of measuring sighting distances and the
unreliability of the resultant estimates be justified when an alternative with fewer
problems is available? The line transect was originally introduced to circumvent the
difficulty of counting all animals on a transect or quadrat. It cured that problem by
replacing it with several others. Perhaps we should give some thought to ways of treat-
ing the original problem without introducing new ones. If animals are difficult to see
on a transect of fixed width, why not walk two people abreast down the boundaries?
If that does not work, put a third person between them. And so on.

12.4.3 Stratification The precision of an estimate is determined by sampling intensity and by the variabil-
ity of density among sampling units. Suppose there were two distinct habitats in the
survey area and that from our knowledge of the species we could be sure that it would
occur commonly in one and rarely in the other. If we surveyed those two sub-areas
separately and estimated a separate total of animals for each, the combined estimate
for the whole area would be appreciably more precise than if the area had been treated
as an undifferentiated whole.
The process is called stratification and the sub-areas strata. By this strategy, we divide

an area of uneven density into two or more strata within which density is much more
even. The strata are treated as if they were each a total area of survey and the results
are later combined. The estimate from each stratum will be called Yh, which has a
standard error of SE(Yh). Total numbers Y are estimated by Y = ΣYh. The standard error
is the square root of the sum of the variances of the contributing stratal estimates. The
variance of an estimate is the square of its standard error. Here it is designated Var(est)
to distinguish it from the variance of a sample designated s2. Calculate:

Var(Yh) = (SE(Yh))2

for each stratum and then:

SE(Y) =
√
ΣVar(Yh)

to give the standard error of the combined estimate of total numbers.

Optimum allocation of sampling effort
If our aim is to get the most precise estimate of Y as opposed to a precise estimate
of each Yh, sampling intensity should be allocated between strata according to the
expected standard deviation of sampled unit counts in each stratum. This requires a
pilot survey or at least approximate knowledge of distribution and density gained on a
previous survey. Often we have nothing more than aerial photographs or a vegetation
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map to give us some idea of the distribution of habitat, and only knowledge of the
animal’s ecology to guide us in predicting which habitats will hold many animals and
which will hold few. This scant information is in fact sufficient to allow an allocation of
sampling effort between strata that will not be too far off the optimum. The important
point to understand is that for almost all populations the standard deviation of counts
on sampling units rises linearly with density. From this can be derived the rule of thumb
that the number of sampling units put into a stratum should be directly proportional to what
Yh is likely to be.
At first thought, this is a daunting challenge – to guess each Yh before we have

estimated it – but it is easier if we break it down into components. First, guess the
density in each stratum. It does not matter toomuch if this is wrong, even badly wrong,
because all we need to get roughly right is the ratios of densities between strata. Second,
multiply each guessed density by the mapped area of its stratum to give a guess at
numbers in the stratum. Third, divide each by the total area to give the proportion of
total sampling effort that should be allocated to each stratum. Table 12.4 shows the
calculation for a degree block that can be divided into three strata from a vegetation
map and to which a total of 10 hours of aerial survey have been allocated.

12.4.4 Comparing
estimates

If the sampling units are drawn independently of each other, the estimates of den-
sity from two surveys may be compared. The surveys may be of two areas, or of the
same area in two different years, or of the same area surveyed in the same year by two
teams or by different methods. A quick and dirty comparison is provided by the nor-
mal approximation, which is adequate if each survey covered more than 30 sampling
units. The two estimates are significantly different when:

(est1 − est2)
√
Var(est1) + Var(est2) > 1.96

If sample sizes are too low, or if more than two surveys are being compared, the determi-
nation of significance should be made by one-factor analysis of variance. If the surveys
are not independent, as when the same transects are run each year, a comparison may
still be made by analysis of variance but with TRANSECTS now declared a factor in
a two-factor analysis. Chapter 14 goes further into this and other uses of analysis of
variance.

12.4.5 Merging
estimates

If a comparison shows that two or more independent estimates of the same population
are not significantly different we may wish to merge them to provide an estimate that
is more precise than the originals. This procedure is quite distinct from stratification,
where estimates from different populations are combined to give an overall estimate.
Merging is restricted to the same population estimated more than once. We must make

Table 12.4 Allocation of
E = 10 hours of aerial
survey among strata to
maximize the precision of
the estimate of animals in
the total area.

Stratum
(h)

Area (Ah),
km2

Guessed
density
(Dh)

Guessed
numbers
(Yh = AhDh)

Proportion of
total effort
(Ph = Yh∕ΣYh)

Hours
allocated
(Eh = PhE )

1 2000 1 2000 0.03 0.3
2 7000 5 35 000 0.52 5.2
3 3000 10 30 000 0.45 4.5

12 000 67 000 1.00 10.0
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sure that environmental (e.g. different seasons) and biological (e.g. significant mortal-
ity or emigration) conditions do not differ between censuses. Merging is particularly
powerful in obtaining a reduced confidence interval from a series of individual cen-
suses, each with very wide confidence intervals. If we obtain a single estimate with a
wide confidence interval (say, because too few samples were counted) then it will often
pay to repeat the census as soon as possible and merge the two results.
There are twomethods. The first is quick and dirty, to be used only when the individ-

ual estimates were made with about the same sampling intensity. The merged estimate
̂Y can then be calculated as:

̂Y = (Y1 + Y2 + Y3 + … + YN)∕N

where there are N surveys. It has a variance of:

Var(̂Y) = (Var(Y1) + Var(Y2) + Var(Y3) + … + Var(YN))∕N2

Thus, the merged estimate is simply the mean of the individual estimates, and its vari-
ance is the mean of the individual estimate variances divided by their number.
SE(̂Y) is the square root of Var(̂Y). From these, the merged density estimate is D =

̂Y∕A, which has a standard error of SE(D) = SE(̂Y)∕A.
A second, more appropriate method, particularly for surveys utilizing markedly dif-

ferent intensities of sampling, is provided by Cochran (1954), who also considers more
complex merging. Here the contribution of an individual estimate to the merged one
is weighted according to its precision. Letting w = 1∕Var(Y):

̂Y = (w1Y1 + w2Y2 + w3Y3 + … + wNYN)∕(w1 + w2 + w3 + … + wN)

with a variance of:

Var(̂Y) = 1∕(w1 + w2 + w3 + … + wN)

12.5 Indirect
estimates
of population size

This section outlines some of the methods available for calculating the size of a popu-
lation using techniques that do not necessarily depend on accurate counts of animals.
The line transect method could well come under this head but is placed in “Sampled
Counts” because it requires accurate counting of animals on the line.

12.5.1 Index–
manipulation–index
method

If we obtain two indices of population size, I1 and I2, the former before and the latter
after a known number of animalsCwas removed, the population’s size can be estimated
for the time of the first index by:

Y1 = I1C∕(I1 − I2)

The proportion removed is estimated as p∗ = (I1 − I2)∕I1 and the proportion of those
remaining as q∗ = 1 − p∗. Following Eberhardt (1982), the variance of the estimate of
Y can be approximated by:

Var(Y1) ≈ Y1
2 (q∗∕p∗)2 (1∕I1 + 1∕I2)
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from which SE(Y1) =
√
Var(Y1). Eberhardt (1982) gives three examples from popula-

tions of feral horses. The data from his Cold Springs population were:

I1 = 301;
I2 = 76;
C = 357;
p∗ = 0.748.

Thus, the population at the time of the first index is estimated as:

Y1 = (301 × 357)∕(301 − 76) = 478

with the following estimated variance:

Var(Y1) ≈ 4782 (0.252∕0.748)2 (1∕301 + 1∕76) = 428

from which SE(Y1) =
√
428 = 21.

The index–manipulation–index method assumes that the population is closed (no
births, deaths, immigration, or emigration) between the estimation of the first and
second indices. This assumption is approximated when the entire experiment is run
over a short period.

12.5.2 Change-of-
ratio method

If a population can be divided into two classes, say males and females or juveniles
and adults, and one class is significantly reduced or increased by a known number of
animals, the size of the population can be estimated from the change in ratio. Kelker
(1940, 1944) introduced this method to estimate the size of deer populations manip-
ulated by bucks-only hunting.
The two classes are designated x and y. Before themanipulation, there is a proportion

p1 of x individuals in the population; this becomes p2 after the manipulation, which
removes or adds Cx x individuals (additions are positive, removals negative) and Cy y
individuals. C = Cx + Cy. The size of the population before the manipulation may be
estimated as:

Y1 = (Cx − p2C)∕(p2 − p1)

As with the index–manipulation–index method, Kelker’s method assumes that the
population is closed. Hence, the two surveys to estimate the class proportions must be
run close together. Additionally, all removals or additions must be recorded and the
two classes must be equally amenable to survey.
Cooper et al. (2003) have extended this approach using likelihood estimates of the

ratios. When harvesting is highly skewed towards a single sex or age class, the change
in these ratios provides information about the exploitation rate, and when combined
with absolute numbers removed also provides information on absolute abundance.

12.5.3 Mark–
recapture

Mark–recapture is a special case of the change-of-ratio method. A sample of the pop-
ulation is marked and released and a subsequent sample is taken to estimate the ratio
of marked to unmarked animals in the population. From data of this kind we can esti-
mate the size of the population, and with further elaboration (individual markings,
multiple recapturing occasions) the rate of gain and loss.
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The huge number of mark–recapturemodels available has been reviewed adequately
by Blower et al. (1981) and in detail by Seber (1982) and Krebs (1999). Bowden
and Kufeld (1995) present some methods for estimating confidence limits for general
mark–recapture calculations, using the example of Colorado moose (A. alces). Here
we outline the range of methods, provide an introduction to the most simple cases,
and emphasize their pitfalls, as well as mentioning some recent advances which might
circumvent these pitfalls.

Petersen–Lincoln models
A sample of M animals is marked and released. A subsequent sample of n animals is
captured, of whichm are found to bemarked. If Y is the unknown size of the population
then clearly:

M∕Y = m∕n

within the limits of sampling variation. With rearranging, this allows an estimate of
population size as:

Y = Mn∕m

Intuitively obvious as this is, it is not quite right because of a statistical property of
ratios that leads on average to a slight overestimation. This bias may be corrected by
(Bailey 1951, 1952):

Y = (M(n + 1))∕(m + 1)

which has a standard error of approximately:

SE(Y) =
√
[(M2(n + 1)(n −m))∕((m + 1)2(m + 2))]

These formulae are for “direct sampling,” where the number of animals to be recap-
tured is not decided upon prior to recapturing. There are further variants for SWR and
for inverse sampling (see Seber 1982).
Except in the unlikely case of half or more of the population being marked, the

distribution of repeated independent estimates of population size is always strongly
skewed to the right – a positive skew. (The direction of skew is the direction of the
longest tail.) Fig. 12.1 shows this effect from a computer simulation of 1000 estimates
of a population of 500 animals containing 100 marked individuals. Each estimate is
derived from a capturing of 50 animals. Apart from demonstrating the skew of esti-
mates, this figure makes the point that only a limited number of estimated values is
possible. With Y = 500 and M = 100, the probability of a given animal being marked
is 0.2, so the expected number of marked animals in a sample of 50 is 10. This would
give a population estimate of Y = 464. If nine were recaptured, the estimate would be
Y = 510. No estimate between 464 and 510 is possible.
Since the estimates are skewed, the confidence limits of an estimate are also

skewed and cannot easily be calculated from the standard error. Blower et al. (1981)
recommended an approximating procedure. Let a = m∕n. In a large sample, the 95%
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Fig. 12.1 Simulated
replications of estimates
of a population of 500
individuals by
mark–recapture where
100 are marked and 50
captured. Note the
positive skew of
estimates and the fact
that only a limited
number of estimated
values are possible.
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confidence limits of a are approximately ±1.96
√
(a(1 − a)∕n). Since Y = M∕a, the

upper and lower 95% confidence limit of a can each be divided into M to give upper
and lower 95% confidence limits of Y.
The Petersen estimate is the most simple of a family of estimation procedures. If

animals are marked on more than one occasion and recaptured on more than one
occasion then it is possible to estimate gains and losses from the population, in addition
to its size. Seber (1982) describes most of the options.
The Petersen estimate depends on these assumptions:

1 All animals are equally catchable.
2 No animal is born ormigrates into the population betweenmarking and recapturing.
3 Marked and unmarked animals die or leave the area at the same rate.
4 No marks are lost.
Assumption 2 is not needed when marked animals are recaptured on more than one
occasion, but the others are common to all elaborations of the Petersen estimate. The
least realistic is the assumption of equal catchability, which is routinely violated by
almost any population the wildlife manager is called upon to estimate (Eberhardt
1969). For this reason, the Petersen estimate and its elaborations (Bailey’s triple catch,
Schnabel’s estimate, the Jolly–Seber estimate, and many others) are of limited utility
in wildlife management.

Frequency-of-capture models
Petersen models work only when all animals in the population are equally catchable.
Frequency-of-capture models are not constrained in this way but will work only if
the population is closed: if there are no losses from or gains to the population over the
interval of the experiment. This is easy enough to approximate by running the exercise
over a short period.
Animals are captured on a number of occasions, usually on successive nights, and

marked individually at the first capture. At the end of the experiment, each individual
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caught at least once can be scored according to the number of times it was captured.
The data come in the form:

Number of times caught (i): 1 2 3 4 5 6 7 8 … 18
Number of animals (fi): 43 16 8 6 0 2 1 0 … 0

which are from Edwards and Eberhardt (1967), who trapped a penned population of
wild cottontail rabbits for 18 days. Of these, 43 were caught once only, 16 twice, 8
three times, and so on. Σfi = 76 gives the number of rabbits caught at least once and
so the population must be at least that large. If we could estimate f0, the number of
rabbits never caught, we would have an estimate of population size:

Y = f0 + 76

Traditionally, this has been attempted by fitting a zero-truncated statistical distribu-
tion (Poisson, geometric, negative binomial) to the data and thereby estimating the
unknown zero frequency. Eberhardt (1969) exemplifies this approach. More complex
mark–recapture models use sophisticated analytical techniques to cope with variation
in the probability of capture due to time (seasonal trends, changes in weather), varia-
tion among individual animals (site fidelity, sex differences, dominance relationships),
prior trapping history (capture-shyness and capture-proneness), and various combina-
tions of these (Pollock 1974; Burnham and Overton 1978; Otis et al. 1978). The fit of
each model can be tested against the data and an objective decision can be made as to
which is the most appropriate, often using information theory (see Chapter 15). The
computations are too lengthy to be attempted by hand, but several software programs
are freely available on the Web: CAPTURE (White et al. 1982), SURGE (Lebreton et al.
1992), and MARK (White and Burnham 1999).

Estimation of density
All previously reviewed mark–recapture methods yield a population size Y that can be
converted to a density D only when the area A relating to Y is known. In most studies,
Y itself is meaningless because the “population” is not a population in the biological
sense but the animals living on and drawn to a trap grid of arbitrary size.
Seber (1982) and Anderson et al. (1983) reviewed the methods currently used to

estimate A as a prelude to determining density. Most rely on Dice’s (1938) notion of a
boundary strip around the trapping grid such that the effective trapping area A is the
grid area plus the area of the boundary strip. Most of these methods are ad hoc and sub-
ject to numerous problems, or require large quantities of data to produce satisfactory
estimates, or require supplementary trapping beyond the trapping grid.
Anderson et al. (1983) circumvented this problemwith a method of mark–recapture

that provides a direct estimate of density. The traps are laid out not in a grid but
at equal intervals along the spokes of a wheel. Trap density therefore falls away
progressively from the center of the web. The method pivots upon the assumption
that the high density of traps at the center guarantees that all animals at the center
will be captured. This is analogous to the assumption of line transect methodology
that all animals are tallied on the line itself. The data collected as “distance of first
capture from the center of the web” are analyzed almost exactly as if they were from a
line transect (Buckland et al. 1993, 2001). This analysis can be run on the computer
program Distance (Laake et al. 1993).
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12.5.4 Incomplete
counts

The problem of estimating the size of a population from “total counts” known to be
inaccurate has been approached from three directions. One family of methods requires
a set of replicate estimates, the second requires two estimates, and the third provides
an estimate known with confidence to be below true population size.

Many counts
Hanson’s (1967) method assumes that all animals have the same probability of being
seen but that this probability is less than one. Hence, whether a given animal is seen
or not on a given survey is a draw from a binomial distribution. It follows from the
mathematics of the binomial distribution that Y = x x∕(x − s2), where Y is the popu-
lation size, x the mean of a set of (incomplete) counts, and s2 the variance of those
counts.
This method is not recommended, because of the restriction that all animals have the

same sightability. In practice, sightability varies by individuals and between surveys.
The variance of a set of replicate counts tends to be greater than their mean (a binomial
variance is always less than the mean), indicating that the method is unworkable.
Amodification of themethod to circumvent this restriction was suggested by Caugh-

ley and Goddard (1972). It requires repeated counts made at two levels of survey
efficiency (e.g. two sets of aerial surveys, one flown at 50m and the other at 100m
altitude). However, Routledge (1981) showed by simulation that this method yields a
very imprecise estimate unless the number of surveys is prohibitively large, and hence
we do not recommend it.
The nonparametric method of bounded counts (Robson and Whitlock 1964) provides

a population estimate from a set of replicate counts as twice the largest minus the
second largest. Routledge (1982) dismissed this method also (as do we), because in
most circumstances it greatly underestimates the true number.

Two counts
Caughley (1974) showed that if the counts of two observers of equivalent efficiency
are divided into those animals (or groups of animals) seen by only one observer and
those seen by both, the size of the population can be estimated. Henny et al. (1977)
and Magnusson et al. (1978) extended the method to allow for the two observers being
of disparate efficiency.
Essentially the method is a Petersen estimate, although animals are neither marked

nor captured. Suppose that the entities being surveyed are stationary and that their
individual positions can be mapped. Magnusson et al. (1978) surveyed crocodile nests
and Henny et al. (1977) the nests of ospreys. If the area is surveyed independently
twice, perhaps once from the ground and once from the air, the entities can be divided
into four categories:

1 S1 = the number seen on the first survey but missed on the second.
2 S2 = the number seen on the second survey but missed on the first.
3 B = the number tallied by both surveys.
4 M = the number missed on both surveys.

This is equivalent to a mark–recapture exercise. The first survey maps (marks) a set of
entities, each of which may or may not be seen (recaptured) on the second. But unlike
a true mark–recapture exercise, the model is symmetrical and the first and second
surveys are interchangeable.
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If P1 is the probability of an entity being seen on the first survey and P2 the probability
of its being seen on the second then:

P1 = B∕(B + S2);
P2 = B∕(B + S1);
M = S1S2∕B;
Y = ((B + S1) (B + S2))∕B.

where Y is an estimate of the size of the population.
The last equation may be corrected for statistical bias (Chapman 1951) to:

Y = [((B + S1 + 1) (B + S2 + 1))∕(B + 1)] − 1

which has a variance given by Seber (1982) of:

Var(Y) = (S1 S2 (B + S1 + 1)(B + S2 + 1))∕((B + 1)2 (B + 2))

Magnusson et al. (1978) reported that although the method is based on the assump-
tions that the two surveys are independent and that there is a constant probability of
seeing an entity on a given survey (equal catchability), the second is not critical. The
population estimate is close enough even when the probability of being seen varies
greatly between individuals.
Caughley and Grice (1982) extended the method to moving targets, dropping the

requirement that the position of stationary entities must be mapped so that they could
be identified as seen or not seen at the two surveys. Groups of emus (Dromaius novae-
hollandiae) were tallied simultaneously but independently by two observers seated in
tandem on one side of an aircraft. Their counts of S1 = 7, S2 = 3, and B = 10 yielded
P1 = 0.77 and P2 = 0.59, the population estimate being Y = 22 emu groups on the
843 km2 of transects that they surveyed together, a density of 0.03 groups∕km2.
This method of simultaneous and fully independent tallying carries two dangers,

one technical, the other statistical. First, the two observers must not unconsciously
cue each other to the presence of animals in their field of view and ideally should
be screened from each other. Second, the chances of “marking” and “recapturing” an
entity should be uncorrelated, but they are not, becausemarking and recapturing occur
at the same instant, the search images transmitted to each observer being nearly iden-
tical. Caughley and Grice (1982) showed by simulation that the effect of the close
correlation was to underestimate density but that the underestimation became serious
only when the mean of P1 and P2 was less than 0.5.

Known-to-be-alive
Most estimates of population size require that the manager makes a leap of faith. There
is seldom any certainty whether the population fits the assumptions of the model,
whether the estimate is wildly inaccurate, or whether the confidence limits have
much to do with reality. The more complex the model, the greater the uncertainty.
Many ecologists, particularly those working on small mammals, have decided that
the work needed to achieve an unbiased estimate is not worth the effort. They would
prefer an estimate that, although perhaps inaccurate, is inaccurate in a predictable
direction and does not depend on a set of assumptions of dubious reliability. Hence
the known-to-be-alive estimate, the number of animals that the researcher knows with
certainty to be in the study area. These estimates for small-mammal populations are
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usually made by trapping an area at high intensity over a short period. Each animal
is marked at first capture, the estimated population size being simply the number of
first captures. Such estimates are acknowledged as underestimates but they have the
advantage of yielding a real number, not an abstract concept, to work with.
Known-to-be-alive estimates are often the most appropriate in wildlife management.

There are several problems of conservation and of harvesting for which an overesti-
mate of density might lead to inappropriate management action. An underestimate,
on the other hand, should simply produce inefficient but entirely safe management.
The penalty for a poor estimate is often distributed asymmetrically around the true
population size. It is not good to overestimate the number of individuals of an endan-
gered species. It is not safe to apply a harvesting quota known to be safe for a given
population size to one that is much smaller than you thought. Where the undesirable
consequences of an overestimate are considerably greater than those accruing from an
underestimate, the known-to-be-alive number is often the most appropriate estimate
to work with.

12.6 Indices An index of density is some attribute that changes in a predictablemanner with changes
in density. It may be the density of bird nests, the density of tracks of brown bears,
or the number of minke whales (Balaenoptera acutorostrata) seen per cruising hour. A
common index is the pellet or fecal dropping count (often used in studies of deer). This
was used for endangered marsh rabbits (Sylvilagus palustris) in Florida, where pellet
counts were closely correlated with radiotelemetry estimates (Forys and Humphrey
1997). Active burrow entrances were used for ground squirrel populations (van Horne
et al. 1997) and call counts for mourning dove (Zenaida macroura) densities (Sauer
et al. 1994). The North American Breeding Bird Survey is a standardized method in
which some 2000 routes are sampled in June each year and the number of singing
birds of each species is scored (Droege and Sauer 1989).
These indices reveal something about the density of birds, mammals, or whales.

Without knowing anything about the proportional relationship between the index and
the abundance of the animal, we could be confident that if the index halved or doubled
it would reflect roughly a halving or doubling of animal density. Formally, this holds
only when the relationship between index and density is a straight line that passes
through the point of zero index and zero density.
Indices of density, if comparable, are useful for comparing the density of two pop-

ulations or for tracking changes in the density of one population from year to year.
Often a comparison is all we need. The relevant question may be not how large is the
population but has it declined or increased under a particular regime of management.
In such circumstances, the accuracy of an index is irrelevant; precision is paramount.
Let us compare an aerial survey designed to yield an estimate of absolute density with

one designed to yield an index of density, as was conducted for pronghorn antelope
in Colorado (Pojar et al. 1995). The first maximizes accuracy, the second precision.
The “accurate” survey would probably inspect small quadrats by circling at a low but
varying height above the ground. This is a good way to see animals but it is difficult to
standardize between pilots. The “precise” survey would sample transects from a fixed
height above ground at a constant speed. Since there is no requirement that all animals
be counted on the sampled units, only a fixed proportion being sought, the survey
variables are set according to how easily they may be standardized. Groundspeed is
higher than for an “accurate” survey, to allow the pilot to maintain constant ground-
speed safely even with a strong tailwind. Height above ground is set higher so that
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the inevitable variations in height will be proportionally less than at low level; ±10m
around a height of 30m results in large variations in search image. The same variation
around 90m has little effect. We might choose a transect width of 50m per observer
for an accurate survey but 200m for a precise survey. The precision of the estimate is
approximately proportional to the square root of the number of animals actually tallied
(Eberhardt 1978) and so, although proportionally fewer will be seen on a 200m strip,
we choose the wider one in order to increase the absolute number that we see.
Consistency and rigid standardization of techniques are crucial when estimating an

index. A good observer is not one who gets a high tally but one who has a consistent
level of concentration and who produces results of high repeatability.
All the rules of sampling and of analysis hold as well for indices as for absolute

counts of animals. Remember however that indices are useful only in comparisons
and, therefore, the quantity to be estimated is the difference between two indices. The
variance of an estimate of difference is the sum of the variances of the two estimated
indices. As a rule of thumb, we should measure the two indices with a precision such
that each standard error is less than a third of the difference we anticipate. Hence,
an index must often be estimated much more precisely than is a one-off estimate of
population size or density.
Errors in indices can be estimated by comparing results with a known population,

similar to the way we estimate bias errors in counts (see Section 12.4.2; Eberhardt and
Simmons 1987). For example, the number of sightings of fallow deer (Dama dama) in
France along a transect (the index) was calibrated against a known population. The
sighting index was found to be an effective standardized method for detecting trends
in the population (Vincent et al. 1996).

12.6.1 Known-to-
be-alive used as an
index

Although known-to-be-alive is sometimes used as a one-off estimate of population size,
it is more often used to track trends in population size. The operating rules govern-
ing these two uses are quite different. In the first exercise we seek the most accurate
estimate we can get. In the second we seek consistency of method among several esti-
mates, such that their bias is held constant. In the first case we put in as much work
as possible. In the second we put in precisely the same amount of sampling on each
surveying or capturing occasion. Otherwise, the trend in the estimates may reflect no
more than variation in capturing effort.
A variant of this aberration of effort, very common in ecological research, is to boost

the number known to be alive (because they were caught) on a given occasion by the
number of individuals not caught on that occasion but which must have been there
because they were caught on both previous and subsequent occasions. Although the
accuracy of the estimate of absolute numbers is thereby enhanced, the consistency
of the string of estimates is lowered. Estimates for the earlier occasions are inflated
relative to those of later occasions, the rate of increase being underestimated if density
is rising and the rate of decrease being overestimated if density is falling.

12.7 Harvest-based
population estimates

In many cases, the only information that is available on wildlife or fishery abundance
derives from harvest statistics. Indeed, many fisheries are managed almost exclusively
on the basis of catch statistics, so the subject has attracted a great deal of attention from
fisheries scientists. Harvest data vary widely in detail and in quality, depending largely
on the time and resources that are used in collecting them, but they can be enormously
useful if applied properly.
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The simplest, but least reliable, index of abundance derived from harvests is a simple
assumption that population size is proportionate to total harvest. This logic has been
used to interpret long-term fur harvest records from the Hudson’s Bay Company in
order to study the well-known 10-year cycle of snowshoe hares and lynx, for example
(Elton 1924; MacLulich 1937). There are several drawbacks to such an approach. Most
importantly, in our example it assumes that the number of fur trappers and the effi-
ciency with which they trap remains constant over time. This is highly unlikely given
that economic climate varies over time, trapping techniques often evolve, and trapping
is only possible in areas that haven’t been turned over to other land use activities, such
as agriculture. Nonetheless, such data represent our longest-standing records of crude
abundance in the ecological record and have led to important scientific insights.
A much more robust method is to combine harvest totals with the effort expended

to calculate catch per unit effort (CPUE). The logic for this approach is quite straight-
forward, being based on the same sort of behavioral processes that influence predation
(see Chapter 10). Let us imagine that over the course of each full day of hunting a
grouse hunter can effectively search 3 km2. If we further assume that hunters are 100%
successful in killing any animals that are encountered and that there is no limit on
the number of animals hunted, then hunts would be expected to increase proportion-
ately with grouse density. Following this logic, if the population density of grouse is
1 per km2 then over the course of 5 days a single hunter would be expected to harvest
15 grouse. If the population density of grouse were to double, that number would be
expected to jump to 30 grouse. In practice, harvesters cannot kill all animals encoun-
tered, and we don’t know how efficiently they search the environment. Nonetheless,
we would still expect harvest to scale proportionately with effort and abundance in the
following manner:

H = qEN

where H is the harvest, E is effort, and q is the so-called catchability coefficient, which
relates effort to the efficiency of search by hunters or fisherman. By rearranging this
equation, we can show that:

N = H
qE

A minor modification (called the random search equation) is sometimes applied to
accommodate the fact that a large number of hunters hunting over a large number
of days will often tend to revisit sites that have already been well travelled. Under
these circumstances, the relationship between harvest, abundance, and effort is better
represented by a gentle curve than a straight line:

H = N(1 − e−qE)

or equivalently:

H
N

= 1 − e−qE

As an example, Fig. 12.2 shows that the proportion of white-tailed deer harvested
from a game management area in Ontario varies in curvilinear fashion with the total
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Fig. 12.2 Proportion of
white-tailed deer
harvested by hunters in
Canada in relation to the
number of days of
hunting effort (males
shown with filled
symbols, females by
open symbols). Lines
indicate the best-fit
models based on the
random search formula
(males solid line, females
dotted line).
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number of days of hunting (Fryxell et al. 1991), well approximated by the random
search equation.
A more explicit calculation of abundance is possible when age-specific data are also

available with respect to harvest. This methodology, known as virtual population anal-
ysis or catch-at-age analysis, is based on keeping track of the fates of specific cohorts
(groups of individuals born in the same year) as they work their way through the pop-
ulation. For example, let Hi,t represent the catch of age i individuals in year t. Let us
further assume that all individuals have a constant probability of survival p and that no
individuals live beyond 𝜏 = 5 years of age. We start by recognizing that at minimum
we know that Hi,t individuals were alive before the harvest occurred at time t, hence
age-specific abundanceNi,t = Hi,t. We similarly estimate the number of individuals that
were alive the year prior to the harvest:

Ni−1,t−1 = Hi−1,t−1 + Hi,t∕p

In other words, the number of individuals in the same cohort that were a year
younger the previous year is determined by the number that show up in the harvests
in both years, scaled by the proportion (1∕p) that survived long enough to be captured.
Similar logic can be used to estimate abundance from age-specific harvest data using
the generic formula:

Ni,t = H0,t + Σ𝜏

i Hi∕pi

This procedure is sufficient to estimate abundance in completed cohorts (i.e. those that
have worked their way to the maximum age 𝜏). For incomplete cohorts, we need to
estimate abundance in each age class for the final year, usually from CPUE:

Ni,t =
Hi,t

qEt
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and then use these values in the last year of the dataset to calculate abundance in
previous years:

Ni−k,t−k = Ni,t + Σk
j=1Hi−j,t−j∕pj

While the formulae look daunting because of all the subscripts, in practice this repet-
itive calculation is straightforward to apply within a spreadsheet.

12.8 Summary Animal numbers can be estimated by total counts, sampled counts, mark–recapture,
or various indirect methods. In each case, the usefulness of the method is determined
by how closely its underlying assumptions are matched by the realities of what the
animals do and how difficult they are to see, trap, or detect. The range of methods
provided should allow wildlife managers to choose one that will be adequate in any
given circumstance.


