
1
edward o. garton, 
jon s. horne, 
jocelyn l. aycrigg, 
and john t. ratti

INTRODUCTION

WILDLIFE MA NAGEMENT PROGR AMS must be based on qual-
ity scientific investigations that produce objective, relevant informa-
tion; and quality science is dependent upon carefully designed experi-

ments, estimates, comparisons, and models. This chapter provides an overview of  
the fundamental concepts of  wildlife research and study design and is a revision  
of  Ratti and Garton (1994) and Garton et al. (2005). 

Emergence of Rigor in Wildlife Science
Wildlife science is a term the wildlife profession has only recently nurtured. Our 
profession of  wildlife conservation and management was built on natural history 
observations and conclusions from associations of  wildlife population changes with 
environmental factors, such as weather, habitat loss, or harvest. Thus, we have a 
long tradition of  wildlife management based on laws of  association rather than on 
experimental tests of  specific hypotheses (Romesburg 1981).
	 Although Romesburg (1981, 1989, 1991, 1993) and others (Steidl et al. 2000, An-
derson 2001, Anderson et al. 2003, Belovsky et al. 2004) have been critical of  wild-
life science and its resulting management practices, the wildlife biologist is con-
fronted with tremendous natural variation that might confound the results and 
conclusions of  an investigation. Scientists conducting experiments in cell biology 
and biochemistry have the ability to control variables associated with an experi-
ment, isolating the key components, and repeating these experiments under the 
same conditions to confirm their results. They also have the ability to systemati-
cally alter the nature or level of  specific variables to examine cause and effect.
	 The wildlife scientist often conducts investigations in natural environments over 
large geographic areas, making it difficult to control potentially causal factors. Re-
sponses, such as density of  the species in question, are simultaneously subject to 
the influences of  factors, such as weather, habitat, predators, and competition, that 
may change spatially and temporally. Thus, rigorous scientific investigation in wild-
life science is challenging and requires careful design (Steidl et al. 2000). 

Experimental versus Descriptive Research
Most wildlife research prior to 1985 was descriptive. Experimental research is the 
most powerful tool for identifying cause and effect, and it should be used more in 
wildlife studies. However, descriptive natural history studies, field studies, and care-

Research and Experimental Design



    edward o.  garton et  al .

fully designed comparisons based on probability sampling 
continue to be useful. Descriptive research is an essential 
initial phase of  wildlife science and can produce answers to 
important questions, but it must be expanded to embrace 
interacting causes and variable results. 
	 Descriptive research often involves broad objectives rather 
than tests of  specific hypotheses. For example, we might have 
a goal to describe and analyze gray partridge (Perdix perdix) 
breeding ecology. Thus, we might measure characteristics 
of  nesting habitat, clutch size, hatching success, brood use 
of  habitat, food habits of  chicks and adult hens, and mortal-
ity due to weather events and predators. From this informa-
tion, we can learn details of  gray partridge biology that will 
help us understand and manage the species. If  we observe 
that 90% of  gray partridge nests are in vegetation type “A,” 
10% in vegetation “B,” with none in “C” and “D,” we are 
tempted to manage for vegetation type “A” to increase nest-
ing density. However, many alternatives must be investi-
gated. Possibly vegetation type “A” is the best available habi-
tat, but gray partridge experience high nest mortality in this 
type. Maybe vegetation type “X” is the best habitat for nest-
ing, but it is not available on the study area. What vegeta-
tion types do gray partridge in other regions use? How does 
nest success and predation differ among regions with differ-
ing distributions of  vegetation types, species of  predators 
present, gray partridge densities, and climatic conditions? 
These questions show that defining quality nesting habitat is 
complex. 
	 Combining descriptive studies with other studies pub-
lished in the scientific literature should provide sufficient in-
formation to develop a research hypothesis (i.e., theory or 
conceptual model; Fig. 1.1) that attempts to explain the rela-
tionship between vegetation type and nesting success of  
gray partridge. Such models are general, but can help define 
specific predictions to be tested to examine validity of  the 
model. These predictions can be stated as hypotheses. We 
can test hypotheses by gathering more descriptive observa-
tions or by conducting an experiment (Fig. 1.1) in which ma-
nipulated treatments are compared with controls (no treat-
ment) to measure the change in sign (+ or –) resulting from 
experimental treatments. Random assignment of  plots to 
treatment and control groups dramatically increases our 
certainty that measured differences are due to treatment ef-
fects rather than some ancillary factor. 
	 Consider again the gray partridge study, and assume we 
have developed a theory (Fig. 1.1) that gray partridge adapted 
to be most successful at nesting in areas resembling their na-
tive habitat in Eurasia with its natural complement of  pred-
ators, food sources, and vegetation cover. From this theory, 
we predict that partridge nesting success in grasslands in 
North America would be highest in undisturbed native prai-
rie resembling native Eurasian gray partridge habitat and 
least successful in highly modified agricultural monocultures 
of  corn, wheat, etc. We then formulate the hypothesis that 

gray partridge nesting density and nest success are higher in 
areas dominated (e.g., >75% of  the available landscape) by 
native prairie than in areas dominated by cultivated fields of  
corn or wheat. The strongest test of  this hypothesis we 
could perform would involve a manipulative experiment 
(Fig. 1.1), for which we must establish a series of  control 
and experimental study plots. Our study plots would be 
randomly chosen from large blocks of  land where agricul-
tural practices have not changed in recent years, which con-
tain the types of  agricultural practices common to the re-
gion where we want to apply our findings. Some of  these 
study plots (commonly 50%) will be randomly selected to 
act as control plots and will not change throughout the du-
ration of  the study. On the experimental plots (the remain-
ing randomly selected plots in the same region as our con-
trol plots), cultivated fields will be planted to native prairie 
grass to test the validity of  our hypothesis and predictions 
regarding the effect of  habitat on gray partridge nesting. 
This process is difficult, because it requires large blocks of  
habitat, cooperation from landowners, several years to es-
tablish native prairie grass on the experimental plots, and 
additional years of  study to measure the response of  gray 
partridge to vegetative changes. The comparison between 
control and experimental plots will provide a basis to reject 
the null hypothesis of  no effect, so we can conclude that in-
creasing cover of  native prairie grass, which could be within 
Conservation Reserve Program (CRP) fields in agricultural 
areas, will increase nesting density and success of  gray par-
tridge. If  we fail to reject the null hypothesis, we cannot 
draw a firm conclusion, because the failure to reject might 
be due to insufficient sample size. If  other studies have al-
ready shown higher nest success in areas of  grass or CRP, 
then we must move beyond the potentially silly null hypoth-
esis of  no effect of  grass cover ( Johnson 1999, Läärä 2009). 
Instead we should focus on estimating the magnitude of  ef-
fects from management efforts directed at gray partridge 
nesting success, so that we can build predictive models widely 
applicable to gray partridge management. 
	 Some questions concerning wildlife science are not ame-
nable to experimentation (e.g., effects of  weather on popu-
lations, or differences in survival rates between gender or 
age classes). Other potential treatment effects are too expen-
sive or difficult to accomplish. Some treatments may require 
substantial effort to convince the interested public of  the 
value of  applying them in any single treatment area. Finally, 
the need to evaluate effects of  many habitat or population 
factors simultaneously may preclude experimentation. In 
these cases, construction of  multiple biologically plausible 
models that seek to explain or predict observable phenom-
ena can be a powerful tool for advancing knowledge (Hil-
born and Mangel 1997) when combined with new informa-
tion theoretic tools designed to identify the most likely 
explanatory model (Burnham and Anderson 2002). Incorpo-
rating modeling into the management process is an effective 
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strategy for predicting consequences of  management actions 
while simultaneously learning about key processes affecting 
wildlife populations and their habitats (Walters 1986). A key 
requirement for this process to be successful is the need to 
monitor consequences of  management actions through an 
adaptive management process (Walters 1986). This adap-
tive learning process might be facilitated by application of  
Bayesian statistics, which use additional observations to 
improve estimates of  key relationships assumed prior to the 
management action (Hilborn and Mangel 1997, Gelman et al. 
2003, Bolstad 2007). 

Scientific Method
In one of  the early papers published on the scientific method 
in Science in 1890 Chamberlin (republished in1965) empha-
sized the need to examine multiple working hypotheses to 
explain an observation. Popper (1959, 1968) formalized an 
approach to testing individual hypotheses, referred to as the 
hypothetico-deductive method, that became the accepted 
standard in science. The method is a circular process in that 
previous information is synthesized into a theory; predic-
tions are deduced from the theory; the predictions are 
stated explicitly in the form of  hypotheses; hypotheses are 
tested through an investigation involving experimentation, 
observation, models, or a combination of  these; the theory 
is supported, modified, or expanded on the basis of  the re-
sults of  these tests; and the process starts again (Fig. 1.1). 

Platt (1964) re-emphasized the importance of  multiple com-
peting hypotheses and proposed a systematic pattern of  in-
quiry, referred to as strong inference, in which the investi-
gator devises alternate hypotheses, develops an experimental 
design to reject as many hypotheses as possible, conducts 
the experiment to achieve unambiguous results, and repeats 
the procedure on the remaining hypotheses. Other major 
works that provide detailed discussions of  the scientific 
method include Dewey (1938), Bunge (1967), Newton-Smith 
(1981), Ford (2000), and Gauch (2003).
	 The most successful applications of  the hypothetico- 
deductive method have been in physics, chemistry, and mo-
lecular biology, where experiments can isolate the results 
from all but a small number of  potentially causal factors. 
The classic methods of  natural history observation in wild-
life science and other natural sciences have expanded to in-
clude experimentation, hypothesis testing, and quantitative 
modeling. James and McCulloch (1985:1) described this 
transition for avian biologists: “traditional ornithologists ac-
cumulated facts, but did not make generalizations or formu-
late causal hypotheses . . . modern ornithologists formulate 
hypotheses, make predictions, check the predictions with 
new data sets, perform experiments, and do statistical tests.” 
Measuring simultaneous effects of  multiple interacting causes 
(Quinn and Dunham 1983) may be facilitated by application 
of  information theoretic tools to models incorporating 
multiple causes (Burnham and Anderson 2002). In addition 

Fig. 1.1. Iterative nature of the 
scientific method. Data are syn- 
thesized inductively to develop 
theories. These theories form the 
basis for deductively derived 
predictions and hypotheses that 
can be tested empirically by 
gathering new data with experi-
ments, new observations, or 
models. Modified from Ford (2000:6).

Reasoning process Investigation process

Hypothesis: Restatement of predictions in 
the form of testable statements of the 
relation between 2 or more variables (Ford 
2000:54, Kerlinger and Lee 2000:15).

Deduction

Deduction

Predictions: Tentative propositions state the 
relations among 2 or more phenomena or 
variables (Bacharach 1989:500).

Theory: A set of interrelated concepts, 
definitions, and propositions that present a 
systematic view of phenomena by specify-
ing general relations among variables with 
the purpose of explaining and predicting the 
phenomena (Kerlinger and Lee 2000:11).

What we know, think 
we know, or 
conjecture 
determines 
relationships that we 
investigate, 
measurements that 
we gather, and 
results that we 
expect to obtain.

Synthesizing 
information may 
confirm our 
theories or lead us 
to develop or 
change them using 
inductive 
reasoning and 
statistical tests.

Data: Information about the world 
obtained from 1 or more of the 
following approaches.

Model: Construct a conceptual, 
analytical, or simulation model.

New Observations: Conduct a 
survey based on probability 
sampling methods or use 
sophisticated comparison 
techniques to minimize bias in ex 
post facto comparisions or 
quasi-experiments (Cochran 
1983, Campbell 1979).

Experiment: Perform a 
manipulative experiment in which 
treatments are assigned at 
random.
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to James and McCulloch (1985), other excellent reviews of  
scientific approaches applicable to natural systems include 
Romesburg (1981), Diamond (1986), Eberhardt and Thomas 
(1991), Murphy and Noon (1991), Sinclair (1991), Hilborn 
and Mangel (1997), Boitani and Fuller (2000), Williams et al. 
(2002a), and Morrison et al. (2008).
	 The first steps in the scientific method begin with a 
clear statement of  the research problem (Box 1.1), followed 
by a careful review of  literature on the topic and prelimi-
nary observations or data collection. Preliminary data can 
be combined with published data to conduct an exploratory 
data analysis (Tukey 1977). Established theory, including prin-
ciples, concepts and widely accepted models (Pickett et al. 

2007), should be combined with creative ideas and potential 
relationships resulting from the biologist’s observations and 
exploratory data analysis to develop a conceptual model 
(i.e., theoretical framework or general research hypothesis, 
Andrienko and Andrienko 2006). This conceptual model is 
essentially a broad theory (Fig. 1.1) that offers explanations 
and possible solutions, and places the problem in a broader 
context (Box 1.1). The next step is to develop predictions 
from the conceptual model (i.e., statements that would be 
true if  the conceptual model were true). These predictions 
are then stated as multiple testable hypotheses. Research 
should be designed to test these hypotheses; ideally experi-
mentation should be used when possible. A pilot test at this 

Box 1.1. Systematic outline of sequential events in scientific research with an example of 
elk in the northern Rocky Mountains

   1.  Identify the research problem.	� What are the influences of environmental factors, such as wildfire 

  and winter severity, on the carrying capacity of elk winter range?

  2.  Conduct literature review of relevant topics.	� Excellent earlier work by Houston (1982), Merrill and Boyce (1991),  

  DelGiudice (1995), Coughenour and Singer (1996).

   3.  Identify broad and basic research objectives.	� (a) Determine temporal and spatial differences in food habits that  

  may affect elk nutritional condition during winters of varying  

  severity; (b) examine the relationship between energy intake and  

  mobilization of energy reserves at the population level throughout  

  winter.

   4.  Collect preliminary observations and data 	 (a) Winter severity data for 1987–1988, 1988– 1989, and 1989–1990 

	 as necessary.	 �  including snow depth; (b) monthly precipitation during 1988 

reflecting 100-year drought; (c) wet summers contributed to 

increases in elk population; (d) substantial winter kill first post-fire 

winter.

   5.  Conduct exploratory data analysis.	� (a) Analyze food habits data for 2 different spatial locations pre-fire;  

  (b) estimate energy intake by elk pre-fire.

   6.  Formulate a theory (conceptual model or 	 Carrying capacity of elk winter range is influenced by wildfire and 

	 research hypothesis).	   winter severity.

  7.  Formulate predictions from conceptual 	 (a) Carrying capacity of elk winter range increases in post-fire areas; 

	 model as testable hypotheses (Fig. 1.1).	 �  (b) carrying capacity of elk winter range decreases with increasing 

winter severity.

  8.  Design research and methodology for each 	 (a) Collect samples of urine during the same month of each winter 

	 hypothesis.	 �  to assess nutritional condition of elk from each study area. Only 

include urine samples from cows and calves. Collect samples in 

both burned and unburned areas. (b) Construct simulation model 

to translate individual responses to nutritional condition to 

population level responses.

   9.  Conduct a pilot study to test methodologies 	 Pilot study collects urine samples and estimates costs and variances. 

	 and estimate costs and variances. 



10.  Estimate required sample sizes and anticipate 	 Estimated sample sizes feasible and analysis procedures successful 

	 analysis procedures with assistance from a 	   with pilot survey data. 

	 statistical consultant.	

 11.  Prepare written research proposal that reviews 	 Prepare written proposal: Combine steps 1, 3, 6, and 8 to provide 

	 the problem, objectives, hypotheses, 	   background, justification, and methodology for research. 

	 methodology, and procedures for data analysis.	

 12.  Obtain peer review of the research proposal 	 Seek out experts in state wildlife agencies as well as authors of 

	 from experts on the research topic and revise 	   papers found during literature review. 

	 if necessary.	

 13.  Perform experiments, collect observational 	 (a) Collected elk urine samples from each winter and each study 

	 data, or construct a model.	 �  area; (b) constructed model to simulate energy intake and 

movements for the elk population.

14.  Conduct data analysis.	 (a) Non-normally distributed urine sample data analyzed using  

	 �  nonparametric statistics; (b) measured and simulated nutritional 

conditions compared using urine samples with unpaired t-tests.

 15.  Evaluate, interpret, and draw conclusions 	 Combined use of urine samples and model simulations provided 

	 from the data.	 �  strategic approach for assessing subtle changes in nutritional 

condition, physical condition, and mortality rates of elk. During 

winter 1988–1990, snow depth had a pronounced impact on 

nutritional condition; the most dramatic temporal and spatial 

effects occurred during the most severe winter in 1989.

16.  Speculate on results and formulate new 	 Carrying capacity of elk winter range influenced more by winter 

	 hypotheses.	   severity than by wildfire.

 17.  Submit manuscript describing the research 	  Combine steps 9, 11, 12, 13, and 14 to create a well-written and 

	 for peer-reviewed journal publication, agency 	   concise manuscript of research findings, which were published 

	 publication, and/or presentation at scientific 	   in this case as DelGiudice et al. (2001b).

	 meetings.	  

18.  Repeat the process with new hypotheses 	 Repeat process with new hypotheses. 

	 (starting at step 6 or 7).	

Based on DelGiudice et al. (2001b).

stage is invaluable in testing methodologies and gathering 
estimates of  cost and variances. Included in the design, with 
the assistance of  a statistician, is calculation of  the sample 
sizes required to detect the hypothesized effects as well as 
decisions about how the data will be analyzed. Peers and a 
statistician should review the proposed design before data 
collection begins. The data are collected using quality con-
trol. Data analysis with appropriate statistical procedures is 
conducted to test the theory by rejecting fallacious hypothe-
ses, selecting the best models of  relationships or differences, 
obtaining unbiased estimates, or selecting the best alterna-
tive. Final conclusions usually result in further speculation, 
modification of  the original conceptual model and hypothe-

ses, and formulation of  new hypotheses. The publication 
process is the last, but essential, step, and peer-review com-
ments should be considered carefully before research on 
new hypotheses is designed. 

PHILOSOPHICAL FOUNDATION

Why should wildlife biologists and managers care about the 
seemingly endless esoteric debates by philosophers of  sci-
ence? One reason is that modern philosophers have reached 
a perspective on how to gain truth and knowledge that is 
consistent with the approach of  practicing wildlife biologists, 
managers, and scientists. Modern philosophers assert that 
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classic views of  the scientific process are outmoded or in- 
appropriate and propose replacing them with a new inte-
grated approach directly applicable to wildlife science and 
ecology (Pickett et al. 2007). Their approach is founded on 3 
beliefs inherent in scientific realism (Boyd 1992). First, the 
universe is real, and it is possible to gain true knowledge 
about it (Scheiner 1994). Second, knowledge includes ideas 
that we posit in theories, but can only sense indirectly (e.g., 
electrons, plant communities, and carrying capacities). Third, 
all such theories must ultimately be tested empirically 
(Scheiner 1994). The goal of  wildlife research and experi-
mental design must be to advance our knowledge by gath-
ering new information to test and improve our evolving wild-
life theory, which consists of  a set of  interrelated concepts, 
definitions, and propositions (i.e., models and confirmed 
generalizations often referred to as principles).
	 The scientific method consists of  an efficient approach  
to expanding this evolving knowledge base. This expansion 
can be accomplished by gathering new observations to obtain 
unbiased estimates of  important characteristics (e.g., age-
specific survival rates), testing proposed theories (e.g., harvest 
and starvation of  subadults are compensatory), inferring 
new patterns or processes (e.g., harvest is additive to cougar 
mortality in adult elk [Cervus canadensis; Polziehn and Stro-
beck 2002]), and restricting or expanding the domain of  in-
ference for models of  patterns or processes (e.g., deeper 
snows decrease winter survival of  elk and deer, but thresh-
olds for the effects differ among species). This integrated 
approach estimates strength of  contributions (Quinn and 
Dunham 1983) by multiple simultaneously acting causes 
(e.g., survival of  elk calves depends on date of  birth; milk 
production of  cows; quality and quantity of  hiding cover; 
and density of  bears, cougars, and wolves) rather than at-
tempting to falsify all but one causal mechanism (Platt 1964).

INITIAL STEPS

Problem Identification
The initial step in most wildlife research is problem identi-
fication (Box 1.1). Most research is either applied or basic. 
Applied research usually is related to management con-
cerns, political controversy, or public demand. For example, 
we may study specific populations because the hunting pub-
lic has demanded greater hunting opportunity or a nongame 
species decline raises concerns about its long-term survival. 
Other applied studies may be politically supported due to 
projected loss of  habitat by development or concerns over 
environmental problems, such as contamination from agri-
cultural or industrial chemicals. Basic research seeks to gain 
knowledge for the sake of  knowledge and a more complete 
understanding of  factors that affect behavior, reproduction, 
density, competition, mortality, habitat use, and population 
fluctuations. Research on management questions can often 
be designed so that basic research on underlying principles 

can be conducted for minimal extra cost as data are gathered 
to solve the immediate management problem.

Literature Review
Once a research problem has been identified, research should 
begin with a thorough literature review, including collect-
ing published and unpublished management agency data. 
Searching Google Scholar (http://www.scholar.google.com) 
and other free online databases provides instant access to  
titles with links to abstracts and often the full text of  pub-
lished peer-reviewed literature. Membership in The Wildlife 
Society and other professional organizations (Ecological  
Society of  America, Society for Conservation Biology, 
American Fisheries Society, etc.) as well as many public li-
braries provide access to full-text databases of  every paper 
published in societies’ refereed journals and monographs. 
Broadscale Internet searches using Google and other search 
engines may provide unpublished information of  value from 
public agencies and institutions, but information posted by 
individuals or unknown organizations should be treated 
with substantial skepticism. Using a variety of  sources for 
your literature review will ensure that you have compiled 
the most relevant and recent information pertaining to your 
objectives. 

Biological, Political, and Research Populations
Wildlife professionals work with 3 types of  populations that 
impact study design: biological, political, and research popu-
lations. Mayr (1970:424) defined a biological population as a 
group “of  potentially interbreeding individuals at a given  
locality” and species as “a reproductively isolated aggregate 
of  interbreeding populations.” Thus, a population is an ag-
gregation of  individuals of  the same species that occupies a 
specific locality at a particular time, and often the boundaries 
can be described with accuracy. For example, the dusky Can-
ada goose (Branta canadensis) population breeds in a relatively 
small area on the Copper River delta of  Alaska and winters in 
the Willamette Valley near Corvallis, Oregon (Chapman et al. 
1969). Between the breeding and wintering grounds of  the 
dusky Canada goose is the more restricted range of  the rela-
tively nonmigratory Vancouver Canada goose (Ratti and 
Timm 1979). Although these 2 populations are contiguous 
with no physical barriers between their boundaries, they re-
main reproductively isolated and independent. 
	 For most populations, such as red-winged blackbirds  
(Aegolius phoeniceus), grouping individuals into a hierarchical 
organization of  demes, populations, and metapopulations 
within the species may require careful consideration of  5 
facets (Fig. 1.2, Box 1.2): (1) geographical distribution of  in-
dividuals, (2) geographical distribution of  habitats (resources), 
(3) correlations in demographic rates (Bjørnstad et al. 1999, 
Post and Forchhammer 2002, Palsbøll et al. 2006), (4) genetic 
relationships (Manel et al. 2005), and (5) patterns of  move-
ment. Identifying the appropriate level in this hierarchy to 

http://www.scholar.google.com
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sample or assign treatments is critical to obtaining precise 
estimates and performing valid, powerful tests of  ideas (i.e., 
theory), but keep in mind that processes operating at one 
level are influenced by those occurring at both lower levels in 
the hierarchy (i.e., mechanisms) and higher levels (i.e., con-
text). Choosing the level in the biological hierarchy to study 
(Box 1.2) defines the research population or domain (Pickett 
et al. 2007) to which inferences and conclusions apply. 
	 Beletsky and Orians (1996:152) and refuge biologists 
studied red-winged blackbirds at Columbia National Wild-
life Refuge, Othello, Washington, and demonstrated, with 
20 years of  banding data, that territorial males and associ-
ated females occupying a set of  discrete patches of  marsh 
vegetation associated with ponds or streams on the refuge 
constituted a deme (Fig. 1.3). High correlations in demo-
graphic rates among demes and genetic similarity due to 
dispersal among demes make the entire red-winged black-

bird population on the refuge an appropriate biological pop-
ulation for management (Beletsky 1996, Garton 2002:665). 
Surrounding irrigated farmlands isolate red-winged black-
bird populations at refuges from one another to some de-
gree, but populations at refuges throughout the Columbia 
Basin could be treated as a metapopulation within the sub-
species (A. phoeniceus nevadensis; Fig. 1.3). Another example 
of  biological populations with separate boundaries is the bi-
son (Bison bison) populations in Yellowstone National Park 
in the northwestern United States (Olexa and Gogan 2005). 
Biological populations for other species may not be so geo-
graphically distinct as those for Canada geese, red-winged 
blackbirds, and Yellowstone bison, in which case the re-
searcher will have to carefully consider from which biologi-
cal aggregation their samples are selected and to which their 
findings will apply. 
	 The political population has artificial constraints of  po-
litical boundaries, such as county, state, or international en-
tities. For example, a white-tailed deer (Odocoileus virginia-
nus) population in an intensively farmed agricultural region 
in the Midwest might be closely associated with a river 
drainage system due to permanent riparian cover and food 
critical for winter survival. The biological population may 
extend the entire length of  the river drainage, but if  the 
river flows through 2 states, the biological population is of-
ten split into 2 political populations that are subjected to  
different management strategies and harvest regulations. 
Traditionally, this problem has been common in wildlife 
management. When biological populations have a political 
split, it is best to initiate cooperative studies, in which re-
search personnel and funding resources can be pooled to 
benefit both interested agencies.
	 Ideally, the research or statistical population should 
conform closely to the biological population, so that infer-
ences can be applied to the chosen biological population. 
Due to logistical constraints, we often take a sample from 
this research population (i.e., sample frame; Scheaffer et al. 
2005). Thus, sampling methodology is critical, for it pro-
vides the only link between samples and the research popu-
lation. In rare instances, a population may be studied that 
represents all individuals of  a species (e.g., an endangered 
species with few individuals, such as whooping cranes [Grus 
americana]). Or the research population might represent an 
entire biological population, such as one of  the bison herds 
in Yellowstone National Park (Olexa and Gogan 2005). How-
ever, the research population usually is only a portion of  the 
biological population and a small segment of  the species. 
Carefully specifying a research or statistical population is es-
sential in the planning phase of  an investigation and may re-
quire thorough investigation of  the existing literature on 
the species to determine breeding biology and dispersal pat-
terns, geographic sampling to identify distribution of  indi-
viduals and resources, and reviews of  the literature on bio-
logical aggregations (Mayr 1970, Selander 1971, Stebbins 
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Fig. 1.2. Hierarchical arrangement of individuals from organism 
to metapopulation, illustrating multiple facets to consider in 
delineating levels to study: demography, genetics, geographical 
distribution of individuals, distribution and selection of re- 
sources, patterns of movement and interactions (e.g., diet, 
competitors, predators, parasites, and diseases). Processes 
operating at 1 level in this ecological hierarchy are influenced  
by the processes and characteristics at both lower levels (i.e., 
mechanisms) and higher levels in the ecological hierarchy  
(i.e., context). Modified from Pickett et al. (2007:29).
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Box 1.2. Hierarchy of spatial population units

Deme	� The smallest grouping of individuals approximating random breeding within the constraints of the breed-

ing system, where it is reasonable to estimate birth, death, immigration, and emigration rates. Animals in 

this grouping are ideally distributed continuously across one patch of homogeneous to heterogeneous 

habitat, and their movements are restricted to home ranges for breeders during the breeding season. The 

size of this patch ideally would be related to the dispersal distance of juveniles or perhaps equal an area 

20–50 times the size of a female breeding home range (e.g., Fig. 1.3 and Garton [2002] for red-winged 

blackbirds). Note: for some species demes are not feasible to delineate because of complex mating pat-

terns and movements (e.g., in mallards, Anas platyrhynchos, males and females form pair bonds on win-

tering areas and males follow females to nesting areas the following spring, which may be quite distant 

from their natal area; Bellrose 1976:236).

Population 	� A collection of demes or individuals at one point in time, typically the breeding season, with strong con-

nections demographically (very high correlations in vital rates), geographically (close proximity), geneti-

cally (Manel et al. 2005), and through frequent dispersal. The population occupies a collection of habitat 

patches (relative to dispersal distance) without large areas of nonhabitat intervening. The area is typically 

100 times the size of an average female home range and is not larger than the dispersal distance of 95% 

of natal dispersers, but it may be much larger if habitat patches are linear in shape and widely dispersed 

(e.g., all red-winged blackbirds occupying Columbia National Wildlife Refuge during the breeding season 

might be reasonably treated as a population; Garton 2002; Fig. 1.3). A population is dynamic through 

time: demes or groups of individuals show correlated fluctuations associated with the effects of broad-

scale environmental factors (e.g., weather and fires) or other populations (e.g., competitors, predators, 

and disease outbreaks).

Metapopulation	� A collection of populations sufficiently close together that dispersing individuals from source popula-

tions occasionally colonize empty habitat resulting from local population extinction (Levins 1969). 

Populations in a single metapopulation may show low or high correlations in demographic rates, but 

the low rates of dispersal are sufficient to maintain substantial genetic similarity (e.g., red-winged black- 

bird populations distributed among the 7 national wildlife refuges along 200 km of the Columbia River 

in the south-central part of Washington constitute a metapopulation; Garton 2002; Fig. 1.3). Numer-

ous types of metapopulations have been described, from source-sink to nonequilibrium to classic (or 

Levins) metapopulations (Harrison and Taylor 1997).

Subspecies	� A collection of populations as well as metapopulations, if present, in a geographic region where very rare 

dispersals maintain genetic, morphological, and behavioral similarity. However, populations and meta-

populations occupy habitat patches that may be separated by large areas of nonhabitat, resulting in sub-

stantial demographic independence among populations or metapopulations (Mayr 1982, Garton 2002; 

Fig. 1.3).

Species	� The collection of interbreeding populations as well as metapopulations and subspecies, if present, en-

compassing the entire distribution and geographic range of the populations. The populations may show 

substantial differences in phenotypes (vegetation association, physiology, and behavior) and genotypes 

(Garton 2002; Fig. 1.3).

Modified from Garton (2002).

1971, Ratti 1980, Wells and Richmond 1995, Garton 2002, 
Hanski and Gaggiotti 2004, Cronin 2006).
	 Conclusions from research are directly applicable only to 
the research population from which the samples were drawn. 
However, biologists usually have goals to obtain knowledge 

and solve problems regarding biological populations and 
species. The key questions are: (1) Is the sample an unbiased 
representation of  the research population? (2) Is the research 
population an unbiased representation of  the biological 
population? (3) Is the biological population representative 
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of  the species? Because traits among segments of  biological 
populations (and among populations of  a species) often dif-
fer, broad conclusions or inferences relative to a research  
hypothesis should be avoided until several projects from dif-
ferent populations and geographic locations provide similar 
results. Combining and synthesizing replicate studies across 
large spatial extents should be a long-term goal, but may  
require the use of  new techniques, such as meta-analysis 
(Osenberg et al. 1999). 

Preliminary Data Collection
Making an effort to gather preliminary observations at this 
stage can pay great dividends in the end by allowing the re-
searcher to explore a variety of  potential research tech-

Fig. 1.3. Red-winged blackbird hierarchy of spatial population 
units from demes to species at Columbia National Wildlife 
Refuge, Washington. Beletsky and Orians (1960) as well as refuge 
staff studies of banded birds for >20 years showed that core 
marshes numbered 1–7 are a deme of red-winged blackbirds. This 
deme plus others distributed across marsh habitat protected in 
Columbia National Wildlife Refuge constitute a population. This 
population plus populations of red-wings within other national 
wildlife refuges in the mid-Columbia National Wildlife Refuge 
Complex represent a metapopulation of red-winged blackbirds, a 
subdivision of the nevadensis subspecies of Aegolius phoeniceus. 
After Garton (2002).

niques reported in the literature or recommended by expe-
rienced researchers. If  careful records of  time and effort 
involved in their use are made (as well as preliminary esti-
mates of  variation and precision), then optimal choices on 
techniques can be made at an early stage in the design, be-
fore substantial effort has been expended on methods too 
time-consuming or imprecise to use in answering the im-
portant questions. Likewise, these preliminary investiga-
tions provide valuable information to use in exploring po-
tential relationships among key characteristics of  interest. 
Gathering such open-ended observations also are remark-
ably helpful in identifying key relationships and alternate 
hypotheses that may be meaningful to understanding the 
primary problem.

Exploratory Data Analysis
Exploratory data analysis should be applied to preliminary 
or pilot study observations as well as to data from the litera-
ture or public agencies and institutions (Tukey 1977, James 
and McCulloch 1985, Andrienko and Andrienko 2006). Dur-
ing this process data are quantitatively analyzed in terms of  
means, medians, modes, standard deviations, and frequency 
distributions for important groups, and scatter plots of  po-
tential relationships are generated. Exploration of  the data 
should be as complete and biologically meaningful as possi-
ble, which may include comparison of  data categories (e.g., 
mean values, proportions, and ratios), multivariate analysis, 
correlation analysis, and regression. The “basic aim of  ex-
ploratory data analysis is to look at patterns to see what the 
data indicate” ( James and McCulloch 1985:21). If  the re-
search topic has received extensive previous investigation, 
the exploratory phase might even take the form of  a meta-
analysis of  previous data gathered on the question (Osen-
berg et al. 1999). This phase often involves extensive discus-
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sions with other investigators with field or experimental 
experience on the topic.

THEORY, MODELS, PREDICTIONS,  
AND HYPOTHESES

Exploratory data analysis, literature reviews, and perceived 
associations should lead to the development of  a theoretical 
framework (i.e., conceptual model; Fig. 1.4) of  the problem. 
Wildlife theories (Fig. 1.1) are a set or system of  inter-
related concepts, definitions, assumptions, facts, confirmed 
generalizations, and propositions (Kerlinger and Lee 2000, 
Pickett et al. 2007) that present a structured view of  wildlife 
ecology and management by specifying general relations 
among variables (e.g., waterfowl populations, annual rain-
fall, abundance of  ponds and riparian habitat, and hunter 
harvest), with the purpose of  explaining and predicting the 
phenomena (e.g., changes in waterfowl abundance; Office 
of  Migratory Bird Management 1999, Ford 2000, Conroy 
et al. 2005).
	 We now explore the meaning and value of  theory by 
considering our conceptual model of  waterfowl population 
dynamics (Fig. 1.4), which expresses in a simple way compli-
cated patterns of  autumn waterfowl populations being posi-
tively influenced by spring breeding population size, num-
ber of  ponds, and quantity and quality of  wetland habitat, 
and negatively affected by nest predators, whose influence 
likely interacts with quality and quantity of  wetland habitat 
around ponds. Likewise harvest influences spring popula-
tion sizes the following year (i.e., t + 1 in Fig. 1.4), but the 
interaction may be complex, with either or both compensa-
tory and additive effects coming into play. Utilizing this  
theory to understand dynamics of  any particular waterfowl 
population requires stating a domain of  interest and infer-
ence. For example, Conroy et al. (2005) studied an Ameri-
can black duck (Anas rubripes) metapopulation breeding in 3 

regions and harvested in 6 regions in Canada and the United 
States (Box 1.2). Any individual investigation asks important 
questions and evaluates alternative hypotheses (e.g., models 
of  harvest) in a restricted portion of  the entire theory. For 
example, Conroy et al. (2005) used Bayesian methods to 
evaluate harvest models for American black ducks for this 
metapopulation. Often, important variables (e.g., abundance 
of  nest predators) are very difficult to estimate, so their in-
fluence must be inferred through changes in nest success 
and fledging rates resulting from experimental manipulations 
(e.g., predator removal or manipulation of  nesting cover). 
	 Ford (2000:43) identifies 2 parts of  a theory, consisting of  
(1) a working part providing information and a logical basis 
for making generalizations and (2) a motivational or specu-
lative part that defines a general direction for investigation. 
Stating our theoretical framework (conceptual model) ex-
plicitly requires careful thinking and analysis of  accepted 
generalizations (principles) stated in classic textbooks, re-
views, and the published peer-reviewed literature on the 
topic. Predictions or deductive consequences of  theory 
form the basis for hypotheses, which are variously described 
as assertions subject to verification (Dolby 1982, James and 
McCulloch 1985; Fig. 1.1) or testable statements derived 
from or representing various components of  theory (Pickett 
et al. 2007:63; Box 1.3). Normally, the primary research hy-
pothesis is what we initially consider to be the most likely 
explanation, but if  the question has been placed into the 
proper theoretical framework, several alternate hypotheses 
are presented as possible explanations for observed facts 
(Fig. 1.1). Modern hypotheses commonly take the form of  
quantitative models that explicitly describe the relationships 
or magnitude of  differences (Box 1.3).
	 We take an important step from descriptive natural his-
tory when we formulate conceptual models as research hy-
potheses. Interpretation of  exploratory data analysis, cre-
ation of  a theoretical framework, deduction of  predicted 

+

+

+

+
+

+ +

+

+

--

-

Spring
population

size
Nest

predators

Autumn
population

size

Spring
population

size

Harvest

Rainfall

Riparian
habitat

Rainfall

Ponds

Ponds

t

t

t

t

t

t

t t+1

t-1

t-1

Fig. 1.4. Conceptual model of waterfowl population 
dynamics.



Box 1.3. Components of theory

Component	 Example

Domain. The scope in space, time, and phenomena 	 An individual waterfowl population or metapopulation in

  addressed by a theory.	 �  North America (e.g., American black duck, Anas 

rubripes) during 1971–1994.

Assumptions. Conditions needed to build the theory.	 Conroy et al. (2005) assumed survival and productivity 

		 �   rates estimated for 3 regions in Canada and harvest 

rates from 6 regions in Canada and the United States to 

determine the dynamics of this metapopulation.

Concepts. Labeled regularities in phenomena.	 Harvest refers to waterfowl shot during a legal hunting 

		    season and retrieved by the hunter.

Definitions. Conventions and prescriptions necessary for 	 Conroy et al. (2005) defined harvest rate as the probability

  the theory to work with clarity.	 �  of harvest based on direct recoveries (hunter reports of 

banded birds shot or found dead in the hunting season 

immediately following release; Williams et al. 2002a).

Facts. Confirmable records of phenomena.	 All data on harvest regulations (season length and bag 

		 �   limit) and hunter numbers for 1971–1994 were obtained 

from the Canadian Wildlife Service and U.S. Fish and 

Wildlife Service (Conroy et al. 2005).

Confirmed generalizations. Condensations and abstractions 	 Harvest rates of male and female waterfowl generally

  from a body of facts that have been tested or system-	   differ, and Conroy et al. (2005) estimated harvest rates 

  atically observed.	 �  for males only to eliminate the need for estimating 

sex-specific harvest rates.

Laws or principles. Conditional statements of relationship 	 Better wetland habitat conditions positively influence

  or causation, statements of identity, or statements of 	   productivity in waterfowl populations (Fig. 1.4). 

  process that hold in a domain.	

Models. Conceptual constructs that represent or simplify 	 Conroy et al. (2005) developed statistical models for

  the structure and interactions in the material world. 	   harvest rates in American black ducks. They found that 

  (Scientific models can project consequences of ideas; 	   harvest rates depended on both season length and bag

  statistical models draw inferences and discriminate 	   limit, but differed between years and areas during

  among competing ideas based on limited observations).	   1971–1994.

Translation. Procedures and concepts needed to move 	 Annual changes in wetland conditions are estimated from

  from the abstractions of a theory to the specifics of 	   aerial strip transect counts of pond densities through- 

  applications or test or vice versa.	 �  out waterfowl breeding areas in North America (U.S. 

Fish and Wildlife Service and Canadian Wildlife Service 

1987).

Hypotheses. Testable statements derived from or repre-	 Harvest rates for American black ducks increase with

  senting various components of theory.	 �  season length and bag limits in an area (tested and 

confirmed by Conroy et al. 2005).

Framework. Nested causal or logical structure of a theory.	 During the fall, groups of American black ducks join with 

		 �   other groups on the same wetlands and other nearby 

wetlands to form populations that join 3 other popula-

tions in Canada during their migration south; they form 

a metapopulation occupying 6 regions of Canada and 

the United States (Conroy et al. 2005; Fig. 1.2).

After Pickett et al. (2007:63).
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consequences, and formulation of  testable hypotheses as al-
ternative models are difficult aspects of  science that require 
creativity and careful reasoning, but they are essential to the 
future of  wildlife science.

OVERVIEW OF STUDY DESIGN

Introduction
Many different study designs are available for answering 
questions about the biology and management of  wildlife 
species (Eberhardt and Thomas 1991, Morrison et al. 2008; 
Fig. 1.5). These options differ dramatically in terms of  2 cri-
teria: How certain are the conclusions reached? How widely 
applicable are the conclusions? No single option is perfect. 
The biologist must weigh the available options carefully to 
find the best choice that fits the constraints of  time and re-
sources. Here we provide an overview of  the most promi-
nent study designs with further explanation in subsequent 
sections.
	 Experiments consisting of  manipulative trials are under-
used in wildlife science (Fig. 1.5). Laboratory experiments, 
in which most extraneous factors are controlled, provide 
the cleanest results with the most certainty, but results gen-
erally have only narrow inference to free-ranging wildlife 
populations, unless they concern basic processes (e.g., dis-
ease susceptibility or nutritional biology). Natural experi-
ments, in which large-scale perturbations (e.g., wildfires, 
disease outbreaks, and hurricanes) affect populations and 
landscapes naturally, provide only weak conclusions because 
of  lack of  replication and inability to control extrinsic fac-
tors through random assignment of  treatments (Diamond 
1986, Underwood 1997, Layzer 2008, Diamond and Robin-
son 2010; Fig. 1.5). Field experiments, in which manipula-
tive treatments are applied in the field, combine some of  the 
advantages of  laboratory and natural experiments (Hurlbert 
1984, Scheiner and Gurevitch 2001; Fig. 1.5). They have sin-
gular advantages, because truly replicated field experiments 

combine both breadth of  inference and relatively certain 
conclusions ( Johnson 2002). By assigning treatments to field 
replicates randomly, we can be certain that conclusions are 
valid rather than resulting from extrinsic factors beyond our 
control.
	 Some questions of  importance in wildlife biology and 
management are not appropriate for experimentation. For 
example, we may be interested in the effects of  weather on 
a particular animal population, but we cannot manipulate 
weather at will, in spite of  the apparent human impact on 
its long-term trajectory. In addition, we may be interested in 
the relative importance of  such factors as predation, habitat, 
and food limitations on population changes (Quinn and 
Dunham 1983, Mills 2007). In these cases we should formu-
late primary and alternate hypotheses in the form of  mod-
els, estimate their maximum likelihood parameters, and test 
them statistically with likelihood ratios or compare them 
with information criteria (Hilborn and Mangel 1997, Burn-
ham and Anderson 2002). Case studies consisting of  unrepli-
cated natural history descriptions are most useful at early 
stages in development of  the research process (Fig. 1.5). 
Pseudoreplicated field studies, in which replicates are not 
statistically independent or samples rather than treatments 
are replicated, are only slightly better than descriptive nat-
ural history studies. At the other extreme are replicated 
field studies, wherein no manipulation or randomization of  
treatments occurs, but true replication occurs in a probabil-
ity sampling framework, and information is gathered to 
evaluate alternate hypotheses. Conclusions from replicated 
field studies are broadly applicable, but are less certain than 
those from replicated field experiments. 
	 Designing good field studies is more difficult than de-
signing good experiments because of  the potential for extra-
neous factors to invalidate tests or comparisons. One key 
step for both experiments and field studies is designing a 
sampling procedure to draw observations (experimental units 
or sample units) from the populations of  interest. Only if  
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this step is done properly can conclusions of  the tests be ap-
plied to these populations. Survey sampling provides meth-
ods that are helpful in designing such sampling procedures 
(Cochran 1977). These methods are particularly important 
for field studies, but also are useful in field experiments for 
drawing experimental units and subsamples (samples within 
an experimental unit).
	 Impact assessments are another type of  study design, 
but typically there is no replication, because the impact only 
occurs at a single site (e.g., an oil spill in a national wildlife 
refuge). However, they are useful for collecting baseline 
data as long as the type, time, and place of  the impact are 
known; germane variables can be measured; and spatial and 
temporal controls exist (Green 1979, Williams et al. 2002a). 
Frequently, impact assessments are planned (e.g., prescribed 
fire), which allows for before-and-after measurements. The 
inference can be improved by monitoring both impact and 
nonimpact sites at several replicated sites of  both types 
rather than only monitoring impact sites (Anderson 2002b, 
Williams et al. 2002a).
	 Models, which are a simplified representation of  a sys-
tem or process, are a versatile way to address a wide range 
of  research questions that emphasizes being certain the con-
clusions do follow from the estimates, relationships, and as-
sumptions (Fig. 1.5). The inference space of  such models 
spans a continuum from large and general for theoretical or 
mathematical models (simple differential or difference equa-
tions) to smaller, more realistic for simulation models (com-
plex multicausal, multiscale simultaneous differential and/
or difference equations; Fig. 1.5). The certainty of  conclu-
sions based on models is in part influenced by the measure-
ment of  model variables and estimation of  model parame-
ters; it can thus be portrayed in predictions of  models 
incorporating both process and estimation uncertainties 
(Hilborn and Mangel 1997:59). Models provide an impor-
tant framework from which to begin to understand the pro-
cesses influencing questions in wildlife science. They can 
help gauge the influence of  one variable on others. For ex-
ample, models can be used to assess how much juvenile dis-
persal influences population growth. By holding all other 
variables that influence population growth constant and 
then varying juvenile dispersal rates in the model, we can 
estimate how much the population growth is altered by 
small or large variation in juvenile dispersal rates. Conduct-
ing this type of  sensitivity analysis makes such models an 
important tool for wildlife scientists.
	 In a subsequent section we describe an integrated re-
search process that combines many aspects of  study de-
sign, such as natural history observations, natural experi-
ments, and laboratory experiments (Fig. 1.5). Using this 
process makes the research inference space large and in-
creases the certainty of  research conclusions by combining 
multiple study components. The complexities of  the ecosys-
tems in which wildlife science takes place are best addressed 

with the integrated research process, because it enables the 
wildlife scientist to capture more of  the natural variability 
inherent in ecosystems (Clark and Stankey 2006, Morrison 
et al. 2008). 
	 Once a research option has been chosen for each hypoth-
esis or predictive variable, careful planning of  the actual 
testing process can proceed. We must identify exactly what 
data will be collected for each hypothesis or predictive vari-
able as well as when, how, how much, and for how long. 
Furthermore, how will these data be treated statistically? 
Will the data meet assumptions of  the statistical test? Is the 
sample size adequate? Will the statistical hypothesis provide 
information directly related to the theory or model? Do bi-
ases exist in data collection, research design, or data analysis 
that might lead to a spurious conclusion? These questions 
must be considered carefully for each hypothesis before 
fieldwork begins. Consulting a statistician is important, and 
the statistician should understand the basic biological prob-
lem, the overall objectives, and the research hypotheses. 
	 Peer review (evaluation by independent qualified re-
viewers) of  the proposed research, including both study de-
sign and subsequent data collection and analysis, should be 
obtained from several people with expertise and experience 
in the research topic. Peer review will usually improve a re-
search design and may disclose serious problems that can  
be solved during the planning stage. Unfortunately, most 
peer reviews occur too late for remedial work: after data 
collection, when the final report or publication manuscript 
is written. 

Laboratory Experiments
Drawing inferences from laboratory experiments is easy 
because of  the high level of  control, yet this advantage must 
be weighed against the disadvantages (Table 1.1) in terms of  
(1) scale—laboratory experiments are restricted to small 
spatial scales and short time periods, (2) scope—only a re-
stricted set of  potential manipulations is possible in the lab-
oratory, (3) realism—the laboratory environment places 
many unnatural stresses and constraints on animals, and (4) 
generality—some laboratory results cannot be extrapolated 
to natural communities. In a continuation of  our example, 
laboratory experiments could be designed to examine whether 
geese really can select the most nutritious forage when 
given several alternatives in a cafeteria feeding trial. Diamond 
(1986) provided examples of  the 3 types of  experiments 
(laboratory, natural, and field) and made excellent sugges-
tions for improving each type. Other examples and discus-
sions of  experiments are provided by Cook and Camp- 
bell (1979), Milliken and Johnson (1984), Kamil (1988), 
Hairston (1989), Underwood (1997), Tilman et al. (2006), 
and Chalfoun and Martin (2009). 
	 Laboratory experiments in biology have been most use-
ful for studying basic molecular or biochemical processes 
common to all organisms of  a class. Laboratory experi-



    edward o.  garton et  al .

ments also have provided valuable information on emerging 
issues, such as wildlife diseases (e.g., Cooke and Berman 
2000, Woodhams et al. 2008), efficacy of  fertility control 
(Chambers et al. 1999, Hardy et al. 2006), and interactions 
between exotic and native species (e.g., Komak and Cross-
land 2000, Kopp and Jokela 2007).
	 Identifying one research design as best for all situations is 
not possible. All options should be considered as possibili-
ties for evaluating hypotheses. Sometimes the best evalua-
tion of  a hypothesis involves using a combination of  field 
studies and several types of  experiments. For example, field 
observations by Ratti et al. (1984) indicated that spruce 
grouse (Dendragapus canadensis) fed exclusively on certain 
trees while ignoring numerous other similar trees of  the 
same species. This observation led to a laboratory experi-
ment with captive birds that tested the hypothesis that trees 
selected for feeding had higher nutritional content than did 
trees selected at random (Hohf  et al. 1987). 

Natural Experiments
Natural experiments are similar to field studies, except that 
in them we study the effects of  uncontrolled treatments, 
such as wildfires, hurricanes, mass mortality from diseases, 
agricultural practices, and range expansions by animals or 
plants (Layzer 2008, Diamond and Robinson 2010). A key 
problem in evaluating natural experiments is that we cannot 
assign treatments randomly and therefore cannot be certain 
that any differences between treated and untreated units are 
not due to other factors that differed between them before 
some were “treated.” In natural experiments the treatment 
precedes the hypothesis and most comparisons must be 
made after the fact. With our Canada goose example, a nat-
ural experiment might be to survey farmers in the region to 
locate pastures that have been fertilized and those that have 
not been fertilized in recent years. If  our observations of  
feeding geese show more use of  pastures that had been fer-
tilized, we have more evidence indicating the birds select 
more nutritious forage. However, many alternative explana-

tions remain. For example, perhaps those pastures that were 
fertilized were grazed later in the summer, and geese pre-
ferred fields with the shortest grass, where their ability to 
detect approaching predators is greatest. Many hypotheses 
of  interest to wildlife biologists can be tested only with nat-
ural experiments, yet it is difficult to draw inferences from 
such experiments. The applied nature of  wildlife manage-
ment makes the realism and generality of  natural experi-
ments an important advantage, but their applicably to other 
populations is questionable unless multiple similar natural 
events are analyzed. 

Field Experiments
Field experiments span a range from pseudoreplicated field 
experiments (Hurlbert 1984), in which no true replication is 
used (or possible) and conclusions are not certain, to repli-
cated field experiments, for which conclusions are relatively 
certain ( Johnson 2002). Replicated field experiments pro-
vide conclusions that are broadly applicable to free-ranging 
wildlife populations. Field experiments offer advantages 
over natural experiments in terms of  certainty of  inference 
and control of  confounding factors, but they suffer the dis-
advantages of  restricted scale and lower generality (Table 1.1). 
Compared to laboratory experiments, field experiments 
have greater scope and realism. Their main advantage is 
that we can randomly assign treatments and thereby elimi-
nate fallacious conclusions due to effects of  confounding 
factors. In field experiments, manipulations are conducted, 
but other factors are not subject to control (e.g., weather). 
In many situations in wildlife science, field experiments of-
fer the best compromise between the limitations of  labora-
tory and natural experiments (Wiens 1992, Krebs et al. 
2001). In our Canada goose example, a subsequent field ex-
periment would be to select random pairs of  plots in 
known foraging areas. One member of  each pair would be 
randomly assigned to be fertilized to learn whether geese 
select fertilized plots more often than they do the nonfertil-
ized control plots. If  they do select fertilized plots more  
often, a stronger inference about selection of  nutritious 
foods could be made, because random assignment of  a 
large number of  plots to fertilization and control groups 
should have canceled effects of  extraneous confounding 
factors. Interspersion of  treatment and control plots (Hurl-
bert 1984, Johnson 2002) in fields naturally used by geese 
strengthens our belief  that our conclusion would apply in 
systems where geese typically forage. Adaptive manage-
ment could successfully incorporate field experiments by 
breaking management zones into replicates that are as-
signed various treatment levels for comparison to a stan-
dard management action (Connelly et al. 2003a). The strong 
advantages of  field experiments are that random assign-
ment of  treatments to units interspersed among units to 
which the conclusions will apply protects against reaching 
invalid conclusions due to extrinsic factors.

Table 1.1. Strengths and weaknesses of different types 
of experiments

	 Experiment type

	 Laboratory	 Field	 Natural

Control of  independent variablesa	 Highest	 Medium	 Low
Ease of  inference	 High	 Medium	 Low
Potential scale (time and space)	 Lowest	 Medium	 Highest
Scope (range of  manipulations)	 Lowest	 Medium	 High
Realism	 Low	 High	 Highest
Generality	 Low	 Medium	 High

Modified from Diamond (1986).

a Active regulation and/or site matching.
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Field Studies
Field studies may appear similar to experiments when they 
are conducted to test hypotheses, but they differ in that 
treatments are not assigned at random. For example, in a 
field study of  dietary selection by Canada geese we might 
randomly select plots where flocks of  geese have fed and 
those where they have not fed to examine whether geese 
choose areas with vegetation that is more nutritious. If  they 
do, a weak inference would be that geese are choosing nu-
tritious food, but numerous alternative explanations remain 
untested (e.g., maybe geese preferred hilltop sites, where 
visibility was good, and coincidentally these also were sites 
farmers fertilized most heavily to compensate for wind-
driven soil erosion from previous years of  tillage). Making 
inferences from field studies is difficult, because we make ex 
post facto comparisons among groups (Kerlinger 1986). 
Drawing firm conclusions is difficult, because these groups 
also differ in many other ways. The important characteristic 
of  a field study is that we have comparison groups (e.g.,  
use versus nonuse plots), but we have no treatments. Well-
designed field studies can make important contributions to 
wildlife science and management (e.g., Paltridge and South-
gate 2001), but their limitations must not be overlooked. 

Impact Assessment
The most basic form of  impact assessment compares mea-
surements of  wildlife and other characteristics at a site po-
tentially affected by pollution or development to similar 
measurements at an unaffected reference site (Anderson 
2002b; Fig. 1.5). This most simple form of  impact assess-
ment provides almost no basis for inference, because the ref-
erence site may differ for a multitude of  reasons besides ab-
sence of  the pollution source or development. Green (1979) 
noted the potential improvement in this design that results 
from making measurements before and after development 
at both reference and development sites. The basic before–
after/control–impact (BACI) design has become standard in 
impact assessment studies (Anderson 2002b, Morrison et al. 
2008) and also has been used in predator removal studies 
(e.g., Risbey et al. 2000). However, differences from before 
to after at reference (control) and impacted (treatment) sites 
are confounded by natural temporal variation and may not 
be produced by the impact itself  (Hurlbert 1984, Under-
wood 1994, Williams et al. 2002a). In contrast to a well-
designed field experiment, neither reference nor impacted 
sites are chosen randomly over space, and treatments are 
not assigned randomly. These limitations severely reduce 
the certainty of  conclusions and the application of  infer-
ences to other areas. The goal is not to make inferences to 
all possible sites (Stewart-Oaten et al. 1986) for a power 
plant, for example, but to the particular power plant site be-
ing developed. For larger impact studies in which the goal is 
to make inferences with more certainty that are applicable 
to more sites (Fig. 1.5), the basic BACI design must be im-

proved by the addition of  replication and randomization 
(Skalski and Robson 1992, Underwood 1994). Stewart-Oaten 
et al. (1986) emphasized the value of  expanding the BACI 
design to include temporal replication and noted the advan-
tage of  taking samples at irregular time intervals rather 
than on a fixed schedule. Hurlbert (1984) emphasized that 
comparing abundances of  wildlife from repeated surveys at 
1 impact and 1 reference site constitutes pseudoreplication 
that is only eliminated by having several replicated impact 
and reference sites. Replicated reference sites with environ-
mental characteristics similar to the impact site are quite 
possible and highly desirable; however, replicated impact 
sites are only feasible in large-scale impact studies, typically 
involving meta-analysis of  many single impact site studies.

Modeling
Modeling can be used as a deductive tool to synthesize theo-
retical understanding together with creative ideas about  
potential solutions to a problem or question. Creating a 
quantitative model makes the assumptions, accepted facts, 
generalizations, and laws or principles explicit for use in 
making valid and/or testable predictions. Kitching (1983:31) 
suggested this process of  modeling involves 18 steps that 
correspond exactly to steps in the scientific method (Box 
1.1; see details below under Modeling). Starfield and Bleloch 
(1991) describe this process in a straightforward manner 
with many wildlife examples created in spreadsheets. Clark 
(2007) presents a very rigorous account of  ecological mod-
eling utilizing free statistical and modeling software, such as 
R (R Development Core Team 2006), and Otto and Day 
(2007) provide a more mathematical, but very readable 
treatment of  ecological modeling for biologists.
	 Modeling currently plays an essential role in 2 widely 
practiced processes of  wildlife science: adaptive management 
and population viability analysis. Adaptive management re-
quires building predictive models that summarize what is 
known or assumed about a management issue to examine 
alternative management actions. Managers choose one of  
the alternatives, and monitoring is conducted to: (1) ensure 
the action was accomplished; (2) evaluate whether the pre-
dicted consequences did in fact result; and (3) use feedback 
of  results to improve understanding of  the system, its be-
havior, key parameters, and relationships incorporated into 
the model. Population viability analysis uses models and 
data for populations to estimate the probability that popula-
tions of  rare species will persist for specified times into the 
future (Mills 2007:254). These forecasts are essential to 
make scientifically defensible decisions concerning the list-
ing or delisting of  a species under the Endangered Species 
Act of  1973 (U.S. Fish and Wildlife Service 1973). Clearly 
building models such as these is an application of  the scien-
tific method that produces knowledge in the form of  fore-
casts, but other applications of  modeling strive to increase 
our general understanding of  interrelationships (e.g., long-
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term impacts and dynamics of  wolf, cougar, and coyotes on 
deer and elk; Garton et al. 1990, Varley and Boyce 2006), 
which are difficult to manipulate experimentally. Likewise 
building conceptual and quantitative models acts as a help-
ful early step in any investigation, because it sharpens our 
focus on identifying critical relationships and assumptions. 
It is an essential step in an integrated research process.

Integrated Research Process
The integrated research process (Fig. 1.5) builds on a solid 
base of  natural history observations. Field observations and 
conceptual models should lead to experiments, and the re-
sults of  natural experiments should lead to field and labora-
tory experiments. For example, Takekawa and Garton (1984) 
observed birds feeding heavily on western spruce bud-
worms (Choristoneura occidentalis) during a budworm out-
break, which suggested that birds were a major source of  
budworm mortality. Field experiments were conducted to 
test this hypothesis by placing netting over trees to exclude 
birds. Survival of  budworms on trees with netting was 3–4 
times higher than on the control trees exposed to bird pre-
dation (Takekawa and Garton 1984). The level of  certainty 
increases as many predictions from the research hypothesis 
are supported and alternate hypotheses are rejected in suc-
cessively more rigorous tests that use replicated research  
options. After such findings are repeated over broad geo-
graphic areas or throughout the range of  the species, the 
research hypothesis may become a principle of  wildlife sci-
ence ( Johnson 2002). The integrated research process should 
be the goal of  wildlife science (Clark and Stankey 2006, 
Morrison et al. 2008).
	 Outstanding examples of  integrated research programs 
include long-term research on red grouse (Lagopus lagopus 
scoticus) in Scotland ( Jenkins et al. 1963, Watson and Moss 
1972, Moss et al. 1984, Watson et al. 1994, Kerlin et al. 2007, 
New et al. 2009), red deer (Cervus elaphus) on the Isle of  
Rhum, Scotland (Lowe 1969, Guinness et al. 1978, Clutton-
Brock et al. 1985, Coulson et al. 1997, McLoughlin et al. 
2008, Stopher et al. 2008, Owen-Smith 2010), and snowshoe 
hare (Lepus americanus) in North America (Keith 1963, 1974; 
Windberg and Keith 1976; Keith and Windberg 1978; Keith 
et al. 1984; Krebs et al. 2001). Research on red grouse and 
snowshoe hare has focused on hypothesized causes of  pop-
ulation cycles, whereas research on red deer has focused on 
population regulation and density-dependent effects on sur-
vival, fecundity, reproductive success, spacing behavior, and 
emigration. Research on snowshoe hare has evaluated the 
role of  predators (i.e., lynx [Lynx lynx] primarily, but other 
mammals and birds, too) as well as alternate proposed 
causes of  the classic 10-year cycle in snowshoe hare and lynx 
numbers. For all 3 example species, descriptive studies and 
field observations formed the groundwork for subsequent 
research that included a series of  innovative field studies and 
experiments (natural, field, and laboratory). 

	 For example, preliminary studies of  red grouse in Scot-
land ( Jenkins et al. 1963) provided information on funda-
mental population parameters: births, deaths, immigration, 
and emigration. This information was used to form research 
hypotheses about causes of  population fluctuations. Postu-
lated causes initially included food quality, breeding success, 
spacing behavior, and genetics (Watson and Moss 1972, Ker-
lin et al. 2007). Using data from long-term field studies cou-
pled with field and laboratory experiments, Watson and 
Moss (1972) concluded that quality of  spring and summer 
foods (heather [Calluna vulgaris] shoots and flowers) affected 
egg quality, breeding success (viability of  young), and spac-
ing behavior of  males and females, but territory size ulti-
mately affected recruitment and population density (but see 
Bergerud [1988] for a critique of  the self-regulation hypoth-
esis and inferences based on red grouse research). Watson  
et al. (1984b) tested these conclusions with innovative field 
experiments, in which they (1) fertilized fields to assess grouse 
response to increased nutritional quality of  the heather and 
(2) implanted males with time-release hormones to monitor 
changes in territory size associated with aggressiveness in-
duced by higher or lower levels of  androgens and estrogens 
(Watson 1967). Additional and more rigorous research re-
jected hypotheses that nutrition, genetics, and parasitism 
were causal factors (although Dodson and Hudson [1992] 
make a counterargument for the role of  the parasite Tricho-
strongylus tenuis), and instead focused on emigration as the 
key factor in population declines (Moss et al. 1984, 1990; 
Watson et al. 1984a; New et al. 2009). These findings led to 
more research, because the mechanisms underlying density-
dependent relationships, including summer and winter emi-
gration, were unclear. Recent research has focused on the 
hypothesis of  kin selection and differential aggression be-
tween kin and non-kin to explain cyclic changes in red grouse 
(Moss and Watson 1991, Watson et al. 1994) and synchroni-
zation of  cycles across large regions according to weather 
(Watson et al. 2000, Kerlin et al. 2007). Thus, the integrated 
research process continues. 

EXPERIMENTAL DESIGN

A variety of  designs is available for researchers planning an 
experiment or quasi-experiment. This brief  overview of  some 
designs that have seen wide and innovative application to 
wildlife science should augment information provided in 
standard courses and references on experimental design 
(Underwood 1997, Scheiner and Gurevitch 2001, Quinn and 
Keough 2002, Morrison et al. 2008). 

Single-Factor versus Multifactor Designs
Single-factor analyses are the simplest, because they in-
volve only comparisons between 2 or more levels of  1 fac-
tor. Evaluating the simultaneous effect of  2 or more in- 
dependent variables (multifactor designs) at once requires 
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the use of  complicated statistical methods, which should be 
discussed with a statistician. Under many conditions we can 
test 2 factors at once without expending more effort than 
would be required to test either of  the factors alone. A com-
plicating issue is the potential for interaction among factors 
(Steel and Torrie 1980). An interaction occurs if  the effects 
of  one factor on the response variable are not the same at 
different levels of  another factor. For example, if  we are in-
terested in the effect of  snowmelt date on nest success by 
arctic-nesting polymorphic snow geese (Chen caerulescens), 
we might discover an interaction between color phase and 
the onset of  spring snow melt. Thus, darker, blue-phase 
birds would have higher nesting success during early snow-
melt years, because they are more cryptically colored once 
snow has melted and experience less nest predation. During 
late snowmelt years white-phase birds are more cryptically 
colored and experience less nest predation. Many observa-
tions might be required to clarify possible relationships in 
these situations.

Dependent Experimental Units
Special designs have been developed to handle many types 
of  dependency in experimental units, where dependence 
means that units tend to be more similar to one another 
than if  we were to pick units at random from the entire 
population. For example, animals in one group tend to be 
more similar to one another (e.g., doe–fawn groups of  deer 
have few bucks), and vegetation plots that are spatially prox-
imate tend to be more similar to one another than are plots 
picked at random from the entire study area. A common de-
sign involves pairing. In a paired design we match experi-
mental units in pairs that are as similar as possible. The 
treatment is then applied to one member of  each pair at 
random. If  there is a confounding factor, which we succeed 
in matching in the pairs, this approach will lead to a more 
powerful test than if  pairing is not performed. For example, 
if  we were studying the effects of  spring burning on north-
ern bobwhite (Colinus virginianus) habitat, we could estab-
lish pairs of  plots throughout our study area, being careful 
to place each pair in a homogeneous stand of  vegetation. 
We would then randomly assign one member of  each pair 
to be burned in the spring. The analysis would then exam-
ine the differences between the members of  a pair and test 
for a consistent improvement or decline in the burned 
member of  the pair. Pairing would remove the effects of  
vegetation difference from one part of  the study area to an-
other and would result in a more sensitive experiment. If  
members of  pairs are not more similar than members of  
the general population, the test will be less powerful be-
cause of  the pairing. 
	 When more than 2 levels of  a factor are compared, pair-
ing is referred to as blocking. A block is a set of  similar ex-
perimental units. Treatments are randomly assigned to units 
in each block, and the effectiveness of  blocking can be 

tested during the analysis. For example, if  we expanded our 
study of  burning to include spring and autumn burning as 
treatments, a block design would be appropriate. Three ad-
jacent plots would be placed in homogeneous vegetation 
stands, and spring and autumn burning would be applied 
randomly to 2 of  the 3 plots in each block (e.g., set of  3). 
This powerful design is normally referred to as a random-
ized block. 
	 Another common form of  dependency occurs when re-
peated measurements are taken on the same experimental 
unit through time. This practice is common in wildlife re-
search, wherein the effects of  treatments may change over 
time and must be monitored over a series of  years. For ex-
ample, in our study of  spring and autumn burning the ef-
fects may be different in the first, second, and third growing 
seasons after treatment. The plots should be monitored 
over several years to measure these effects. The measure-
ments are repeated on the same plots, so they are not inde-
pendent. This repetition must be treated correctly in the 
analysis by using repeated measures or multivariate analysis 
of  variance (ANOVA; Milliken and Johnson 1984, Johnson 
and Wichern 1988, Williams et al. 2002a). Dependency also 
is common in count data, especially when animals occur in 
groups (Eberhardt 1970). This lack of  independence is often 
referred to as overdispersion. To properly cope with signifi-
cant overdispersion the dependency should be modeled. 
Unless the biologist has extensive training in this topic, close 
cooperation with a consulting statistician is essential when 
designing and analyzing experiments involving such compli-
cated designs.

Crossover Experiments
Crossover experiments provide a powerful tool to evaluate 
treatments that do not produce a long-lasting effect. Select-
ing pairs of  experimental units and randomly assigning one 
member of  each pair to be treated during the first treatment 
period initiates a crossover experiment. The second mem-
ber serves as the control during this treatment period. In  
the second treatment period, the control unit becomes the 
treatment and the former treatment becomes the control. 
In this way the effects of  any underlying characteristics of  
experimental units are prevented from influencing the re-
sults. This technique is valid only if  treatment effects do not 
persist into the second treatment period.
	 Consider the following example. Suppose we wanted to 
test the hypothesis that mowing hay before 4 July decreases 
ring-necked pheasant (Phasianus colchicus) nest success. We 
could test this idea by dividing our study area into 5 homo-
geneous hayfield regions and then dividing each region into 
2 portions. In one randomly selected portion of  each region 
we could pay farmers not to mow their hay fields until after 
4 July (treatments). In the other portion of  each region, hay 
mowing would proceed as in most years, with the first cut-
ting during mid-June; these portions would serve as con-



    edward o.  garton et  al .

trols. To monitor nest success, we locate nests by systematic 
field searches, being sure to search treatment and control ar-
eas with identical methodology (e.g., search intensity and 
seasonal timing). Nest success would be measured with 
standard techniques. After 1 year, we might measure signifi-
cantly higher nesting success in the treatment portions (i.e., 
those areas with delayed hay mowing). However, the num-
ber of  treatments is small, and we are not able to conclude 
with confidence whether higher nest success resulted from 
the treatment or from some undetected, inherent differ-
ences in treated portions of  each region, such as nest preda-
tors. We would implement the crossover experiment by 
switching in the second year, so the original control por-
tions of  the study regions now have mowing delayed until 
after 4 July (new treatments), and the original treatment 
portions revert to the standard practice of  first cutting in 
mid-June (new controls). If  the portions with late cutting 
treatments again have higher nest success, we have better 
evidence that delayed mowing is responsible for higher nest 
success than we had at the end of  the first year (i.e., we have 
better evidence for a cause-and-effect relationship). If  even 
stronger support for the hypothesis is desired, the crossover 
experiment might be repeated in the same region and in 
other farming regions. 

Fixed, Random, Mixed, and Nested Effects
One of  the most critical decisions we must make in design 
concerns choosing the population for which we want to 
make inferences. If  only a few levels of  a treatment factor 
are relevant or would occur, we set a limited number of  val-
ues at which the treatment would be applied, and the factor 
is termed a fixed effect (Model I). If  we want the conclu-
sion to apply to any level of  a treatment factor, we must se-
lect the treatment levels as a random sample from the popu-
lation of  potential values, so that a conclusion drawn about 
the effect of  this factor applies across all levels at which it 
occurs. This design is termed a random effect (Model II). A 
mixed model (Model III) includes both fixed and random 
effects. In simple 2-factor or multifactor designs all levels of  
each factor are applied to all levels of  other factors, and 
the design is considered to be a crossed design. When this 
is not possible, the design must use approaches in which 
one factor is nested in another. A nested design can be de-
scribed as hierarchical, which occurs most commonly 
where certain levels of  one factor only occur in some levels 
of  another factor. For example, a study evaluating the effect 
of  vegetation treatment on bird communities might have 3 
plant communities (ecological systems) with treatments of  
clearcut, burn, partial-cut, and controls. These factors would 
need to be nested if  one of  the plant communities was a 
shrub community where timber harvest does not occur. De-
cisions about the design of  experiments must be reflected 
correctly in the analysis, as different measures of  variance 
are appropriate for fixed, random, mixed, or nested effects.

Replication
Sample size refers to the number of  independent random 
sample units drawn from the research population. In experi-
ments, sample size is the number of  replicates to which a 
treatment is assigned. For logistical reasons, we may measure 
numerous subsamples closely spaced in a single sample 
unit. However, we must be careful to distinguish these sub-
samples from independent random samples. Subsamples are 
not independent random sample units, because they typi-
cally are more similar to one another than are widely spaced 
samples. Similarly, subsamples in experiments are not true 
replicates if  they cannot be independently assigned to a 
treatment category. The precision of  a statistic is measured 
by its standard error. Standard error is calculated from the 
variation among the true sample units or replicates and the 
number of  samples. If  subsamples are mistakenly treated as 
true sample units or replicates, sample variance will under-
estimate the actual amount of  variation in the populations; 
sample size will overestimate true sample size; and we will 
be overconfident in the precision of  the estimate, because 
its true standard error will be underestimated. 
	 To illustrate this point, suppose we wanted to evaluate 
the effect of  prescribed fire on northern bobwhite habitat in 
a large valley (1,000 km2). We might conduct research on a 
habitat improvement project that involves burning 1 km2 of  
grassland and brush (e.g., Wilson and Crawford 1979). We 
could place 20 permanent plots in the area to be burned and 
20 in an adjacent unburned area. Measurements on burned 
and unburned plots before and after the fire could be com-
pared to examine the effects of  fire on bobwhite habitat. 
However, the 20 plots on the burned area are not really rep-
licates, but are merely subsamples or pseudoreplicates 
(Hurlbert 1984). In fact, we have only one observation, be-
cause we have only one fire in a 1-km2 plot in the 1,000-km2 

valley. What would happen if  we were to redesign the study 
to conduct 20 burns on 20 randomly chosen areas scattered 
throughout the valley? We would expect to see more varia-
tion among these plots than among 20 plots in a single 
burned area. The fallacy of  the first design is obvious. A sta-
tistical test would evaluate only whether the burned 1-km2 
area differed from the unburned 1-km2 area and could lead 
to false conclusions about effects of  burning on bobwhite 
habitat in this area. A more appropriate design would re-
quire randomly selecting 40 sites from throughout the en-
tire valley and randomly assigning 20 to be burned (treat-
ments) and 20 to be control (unburned) sites. Each burned 
and control site would be sampled with 5 plots to measure 
bobwhite habitat before and after the treatment, and data 
would be analyzed by ANOVA; the 40 sites are samples and 
the 5 plots per site are subsamples. Thus, the 20 sites of  
each type would be true replicates. Treating the 100 burned 
and 100 unburned plots as experimental replicates would be 
an example of  pseudoreplication. Psuedoreplication is a 
common problem, and investigators must understand the 
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concept of  replication and its importance in ecological re-
search (Hurlbert 1984, Johnson 2002).

Controls
In experimental research, a control may be defined as paral-
lel observations used to verify the effects of  experimental 
treatments. Control units are the same as experimental units 
except they are not treated; they are used to eliminate the 
effects of  confounding factors that could potentially influ-
ence conclusions or results. Creative use of  controls would 
improve many wildlife studies. Experimental studies in wild-
life that involve repeated measurements through time must 
include controls because of  the importance of  weather and 
other factors that vary with time (Morrison et al. 2008). 
Without adequate controls, distinguishing treatment effects 
from other sources of  variation is difficult. For example, in 
the northern bobwhite study, control sites were required to 
distinguish the effects of  burning from those of  rainfall and 
other weather characteristics that affect plant productivity. 
There might be an increase in grass production in the year 
following burning because the rainfall was higher that year. 
Without control sites we cannot tell whether increased grass 
production resulted from increased rainfall, from burning, 
or from a combination of  both factors. Thus, we cannot 
evaluate the relative importance of  each factor.

Determining Sample Size
One of  the more challenging steps prior to starting actual 
data collection is to set goals for sample size using a pro-
spective power analysis. The power of  any hypothesis test 
is defined as the probability of  rejecting the null hypothe-
sis when, in fact, it is false. Power depends on the magni-
tude of  the effect (e.g., magnitude of  difference between 
treatment and control or a bound on the estimate), varia-
tion in the characteristic, significance level (α), and sample 
size. Zar (1999) provides formulas to calculate power and 
sample size for hypothesis tests, but a statistician should be 
consulted for complicated experimental designs and analy-
ses. Many statistical packages (e.g., Statistical Analysis Sys-
tem; SAS Institute 2008) or specialized analysis software 
(e.g., MARK; White and Burnham 1999) provide capability 
to generate sample data for analysis to determine in ad-
vance how large the sample size should be to detect effects 
expected. 
	 Effect size (magnitude of  effect) is an important factor 
influencing sample size requirements and the power of  a 
test. However, power and sample size calculations should be 
based on a biologically meaningful effect size. Identifying a 
biologically significant effect usually involves expressing the 
conceptual model as a quantitative model plus value judg-
ments about the importance of  a biological response. Esti-
mating power of  the test and calculating sample size re-
quirements forces the investigator to evaluate the potential 
significance of  the research prior to beginning fieldwork. 

Sample size analysis may lead to substantial revision of  the 
goals and objectives of  research.

Checklist for Experimental Design
The design of  any experiment must be developed carefully 
or the conclusions reached will be subject to doubt. Four 
particularly critical elements in the design of  a manipulative 
experiment are (1) specification of  the research population, 
(2) replication with independent units, (3) proper use of  con-
trols, and (4) random assignment of  treatments to experimen-
tal units. An experimental design checklist, such as the one 
listed in this section, is useful for providing a series of  ques-
tions to assist in addressing these critical elements. Many of  
the questions will be helpful with the design of  data gathering 
for studies involving nonexperimental hypothesis testing. 
Some experimental designs may address several hypotheses  
simultaneously (e.g., factorial designs); in other designs, each 
hypothesis may require independent experimental testing.

1.  What is the hypothesis to be tested? The hypothesis de-
veloped from the conceptual model must be stated clearly 
before any experiment can be designed. For example, we 
could test the hypothesis that nest predation on forest song-
birds is higher at sharp edges, such as occur at typical forest 
clearcuts, than at feathered edges (partial timber removal), 
such as occur at the boundary of  selectively logged areas 
(Ratti and Reese 1988, Chalfoun et al. 2002, Stephens et al. 
2003).

2.  What is the response or dependent variable(s) and how 
should it be measured? The response variable should be 
clear from the hypothesis (e.g., nest predation), but selecting 
the best technique to measure it might be more difficult to 
determine. We must consider all possible methods and iden-
tify one that will simultaneously maximize precision and min-
imize cost and bias. It is often helpful to contact others who 
have used the techniques, examine the assumptions of  the 
techniques, and conduct a pilot study to test the potential 
them. In our example, we might search for naturally occur-
ring nests along forest edges and use a generalized May- 
field estimator of  mortality rate (Heisey and Fuller 1985,  
Jehle et al. 2004, King et al. 2009). This response variable is 
continuous, and we could apply any of  a variety of  designs 
termed general linear models (GLM; e.g., ANOVA, linear 
regression, or analysis of  covariance) under a hypothesis test-
ing framework though application of  information theoretic 
methods to these models. Alternately, we could measure  
the response for each nest as successful (at least one young 
fledged) or unsuccessful and use appropriate analysis meth-
ods, such as chi-squared statistics applied to contingency tables 
or log-linear models (Fienberg 1970, 1980; Hazler 2004).

3.  What is the independent or treatment variable(s) and 
what levels of the variable(s) will be tested? The indepen-
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dent variable(s) should be clear from the hypothesis (sharp 
and feathered forest edges in our example), but selecting lev-
els to test will depend on the population for which we want 
to make inferences. If  we want to test the effects of  the in-
dependent variable at any level, we must select the levels to 
test at random (random effects [Model II]; Zar 1999). If  we 
are interested in only a few of  the levels that our indepen-
dent variable could take, we use only those levels in our ex-
periment and make inferences only to the levels tested 
(fixed effects or Model I; Zar 1999). For example, if  we 
wanted to evaluate the effects of  forest edges of  any type on 
predation rates, we would select types of  forest edges at 
random from all types that occur and apply a random ef-
fects model to analyze the data. In our example we are in-
terested only in the 2 types categorized as sharp and feath-
ered, so a fixed effects model is appropriate. Additionally, 
our independent variable must be identified and classified 
clearly or measured precisely. Finally, how can we use con-
trols to expand our understanding? In our example, compar-
ing nest predation in undisturbed forests to predation at the 
2 types of  edges might be enlightening, and we would ana-
lyze the data with fixed effects models. Our final conclu-
sions would not apply to predation rates in all types of  for-
est edges, but only to the 2 types that we compared to 
undisturbed forest. 
	 An alternative approach to the design would be to treat 
the independent (treatment) variable as being continuous 
and use regression rather than a classified grouping of  treat-
ment categories. Under this design we might specify the 
treatment would consist of  some level of  overstory removal 
on one side of  the forest edge, and we would apply regres-
sion forms of  GLM under either hypothesis testing or infor-
mation theoretic model evaluations. The response could be 
measured as the difference in predation rates between the 2 
sides of  the boundary, which would be predicted from per-
centage of  overstory removed. Here it becomes critical to 
select treatment levels (e.g., percentage of  overstory re-
moved) across the full range of  forest treatments to which 
we want to apply our conclusions.

4.  For which population do we want to make inferences? 
If  the results of  the experiment are to be applied to the real 
world, our experimental units must be drawn from some 
definable portion of  that world, the research population. 
The dependent and independent variables chosen should 
define the relationship(s) examined and place constraints  
on the definition of  this population. We must also consider  
the impact of  potential extraneous factors when select-
ing the population of  interest. If  the population is defined 
so broadly that many extraneous factors affect the results, 
the variation might be so large that we cannot test the hy-
pothesis (low internal validity). If  the population is defined 
so narrowly that we have essentially a laboratory experi-

ment, application of  the results might be severely limited 
(low  generality or external validity). 
	 Reaching the proper balance between internal and exter-
nal validity takes thought and insight. For example, we might 
want to compare nest predation rates in sharp and feathered 
forest edges throughout the northern Rocky Mountains, but 
the logistics and cost would make the study difficult. Thus, 
we might restrict the study population to one national for-
est in this region. Next we need to consider the types of   
forests. We might want to test the hypothesis for the major 
forest types, but we know the species of  birds nesting in 
these forests and their nest predators differ among forest 
types. Thus, we may need to restrict our population to one 
important type of  forest to remove extraneous factors that 
could impact the results if  we sampled a large variety of   
forest types. We need to ask what types of  sharp and feath-
ered edges occur to decide which we will sample. Sharp 
edges are commonly produced by clearcuts, power line 
rights-of-way, and road rights-of-way. These 3 types differ 
dramatically in such factors as size, shape, human access, 
and disturbance after treatment. Additionally, our ability to 
design a true experiment involving random assignment of  
treatments is severely limited for all but the clearcuts. 
Therefore, we might restrict the populations to sharp edges 
created by clearcuts and feathered edges created by selective 
harvests.

5.  What is the experimental unit? What is the smallest 
unit that is independent of  other units, which will allow 
random assignment of  a treatment? This element must be 
identified correctly or the resulting experiment might not 
have true replication, but instead represent a case of  pseudo- 
replication (Hurlbert 1984). For example, we might errone-
ously decide the experimental unit for our nest predation 
study will be an individual nest. The resulting design might 
entail selecting 3 areas and randomly assigning them to be 
clearcut, control, and selectively logged. By intensive search-
ing, we find 20 nests along the edge of  each area and moni-
tor them for predation. The resulting data would suggest 20 
replicates of  each treatment, but, in fact, only a single area 
was given each treatment. Only 1 area was randomly as-
signed each treatment, and the 20 nests are subsamples. 
Thus, pseudoreplication restricts the potential inferences. In 
effect, we have sampled from populations consisting only of  
2 logged areas and 1 unlogged area, and our inferences can 
be made only for those 3 areas, not to clearcuts, selective 
cuts, or undisturbed forests in general. 
	 In some situations, pseudoreplicated designs are un-
avoidable, but interpretation of  their results is severely re-
stricted, because without replication, confounding factors 
rather than the treatment could have caused the results. For 
example, in our nest predation experiment if  one of  the ar-
eas was in the home range of  a pair of  common ravens 
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(Corvus corax) and the other areas were not, this single con-
founding factor could affect the results regardless of  treat-
ment. A more reliable experiment would require that we 
identify several areas with potential to be logged, perhaps 
15, sufficiently far apart to be independent of  one another, 
and that we randomly assign 5 each to be clearcut, selec-
tively harvested, and controls. We would locate and moni-
tor several nests in each area. The nests in a single area would 
be correctly treated as subsamples, and their overall success 
treated as the observation for that area. This approach at-
tempts to remove the effects of  confounding factors and to 
allow development of  a conclusion with general application 
to the populations sampled (i.e., edges created by clearcuts 
and selective cuts in this habitat type in this region). Includ-
ing control stands without an edge provides invaluable in-
formation for assessing the biological significance of  the dif-
ference between the 2 types of  edges.

6.  Which experimental design is best? A few of  the most 
widely used designs are described, but we advise consulting 
texts on experimental design and a statistician before mak-
ing the final selection (Scheiner and Gurevitch 2001, Quinn 
and Keough 2002, Morrison et al. 2008). The choice de-
pends primarily on the type of  independent and dependent 
variables (categorical, discrete, or continuous), number of  
levels of  each, ability to block experimental units together, 
and type of  relationship hypothesized (additive or with in-
teractions). For our study of  nest predation along 2 types of  
forest edges, a single-factor design would be appropriate, 
but Hurlbert’s (1984) argument for interspersion of  treat-
ments and controls could be incorporated by using a more 
sophisticated design. For example, 3 adjacent stands in 5 dif-
ferent areas might be randomly assigned to treatment and 
controls, with areas cast as blocks, resulting in a randomized 
complete-blocks design (Zar 1999).

7.  How large should the sample size be? Estimating sam-
ple size needed for proper analysis is essential. If  the neces-
sary sample size were too costly or difficult to obtain, it 
would be better to redesign the project or work on a differ-
ent question that can be answered. Sample size depends on 
the magnitude of  the effect to be detected, variation in the 
populations, type of  relationship that is hypothesized, and 
desired power for the test. Typically some preliminary data 
from a pilot test or from the literature are required to esti-
mate variances. These estimates are used in the appropriate 
formulas available in statistical texts (e.g., Zar 1999) and in-
corporate a prospective power analysis to ensure that we 
have a high (80–90%) chance of  detecting biologically mean-
ingful differences between the treatment and control cate-
gories. Powerful analysis programs like SAS (SAS Institute 
2008) provide tools to perform prospective power analysis 
for complicated designs.

8.  Have you consulted a statistician and received peer re-
view on the design? Obtaining review by a statistician be-
fore the data are gathered is essential. The statistician will 
not be able to help salvage an inadequate design after a 
study is completed. Peer review by other biologists having 
experience with similar studies also could prevent wasted ef-
fort if  measurements or treatments are proposed that will 
not work on a large scale in the field. Now is the time to get 
these comments!

MODELING

“All models are wrong, but some are useful” (Box 1979:2). 
Rigorously evaluating ideas concerning wildlife habitats and 
populations by using experimental manipulations may be 
difficult, because we cannot randomly assign treatments 
and the high cost of  treatments precludes adequate replica-
tion in many cases. However, modeling methods provide an 
alternative route to finding solutions to pressing problems 
(Starfield and Bleloch 1991, Shenk and Franklin 2001), se-
lecting the best of  alternative choices (Holling 1978, Walters 
1986, Clemen and Reilly 2001, Conroy and Peterson 2009), 
determining the relative magnitude of  effects from multiple 
causes acting simultaneously (Wisdom and Mills 1997, Salt-
elli et al. 2001), and evaluating population viability (Mills 
2007:254). A biologist’s goal should be to build the simplest 
model that describes the relationships between causative 
factors and the effects they produce. It is most likely that a 
wildlife scientist will select a modeling strategy at the sim-
ple, empirical ends of  the continua in terms of  model com-
plexity (Table 1.2) or in Levins’s (1966) terms, sacrifice gen-
erality for realism and precision. Long-term monitoring 
data and extensive measurements of  demographic rates and 
habitat relationships provide the basis for more complex 
models. 
	 In most cases the goal is to model the responses of  wild-
life populations or habitats with the smallest number of  pre-
dictors necessary to make good predictions. Note, this use 
of  the term model corresponds to what Williams et al. 
(2002a:23) refer to as a scientific model rather than a statis-
tical model. Statistical models are the foundation for all 
statistical estimation, hypothesis testing, and statistical com-
parison among competing models through an inductive 
process based on limited observations (see later sections un-
der Parameter Estimation and Confronting Theories with 
Data). Scientific models, described in this section, are used 
deductively to project system dynamics based on a set of  
ideas expressed as characteristics and relationships estimated 
inductively from statistical models. We use these 2 types of  
models cooperatively to help answer important questions 
about wildlife. Scientific models are commonly referred to 
as simulation models, because they simulate the dynamics 
of  a system described in terms of  the assumptions, charac-
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teristics, relationships, and variability observed. When vari-
ability is a key component, they are referred to as Monte 
Carlo scientific models. Kitching (1991) suggested a varia-
tion of  the following 8 steps to build an ecological model. 
These steps are directly applicable to building scientific 
wildlife models. 

Steps to Build a Model
Problem Definition
The problem of  interest must have been identified earlier as 
one of  the first steps in the scientific method, and the rele-
vant theory, previous observations, conceptual model (Fig. 
1.4), predictions, and hypotheses must be stated clearly. 
Someone proposing to build a model to answer the ques-
tion must now explain why a numerical or mathematical 
model is an appropriate way of  tackling the problem (Kitch-
ing 1991:31). A good example of  an appropriate question is: 
which of  the available management options are more likely 
to recover an endangered species and prevent its extinction? 
It is important to embrace the modeling approach to this 
problem as a pragmatic one. “There is no point at all in 
building an ecological model that is more complex, more 
complete or more time-consuming than is justified by the 
terms of  reference of  the problem to which the model is a 
response” (Kitching 1991:31). The better the problem(s) is 
identified, the more useful the model will be.

System Identification
After identifying the problem(s) it is critical to define the 
system boundary and the level of resolution to model in 
the hierarchy of  ecological levels (ranging from individual 
animals with associated spatial extent to population or 
metapopulation; Fig. 1.2). The biologist must then select a 

set of  components to model (see the examples in Fig. 1.4). 
One strategy is to pursue a parsimonious approach, making 
the model as simple as possible, by selecting only critical 
components essential to describe the system. This approach 
is used for developing general theoretical models (Table 
1.2) taking the form of  analytical mathematical models. The 
other extreme is to include all components likely to be in-
volved in the processes of  interest. Such models take the 
form of  complex simulation models. The typical route fol-
lowed in wildlife models is to take the simple empirical ap-
proach, and Starfield and Bleloch (1991) recommend tend-
ing toward the parsimonious end while including enough 
complexity to produce realistic predictions. Once the initial 
set of  components is defined to meet the objectives, the na-
ture of  their interactions must be defined based on creative 
thinking and literature as follows: positive, negative, feed-
back loops, and complex combinations. Creating a simple 
system diagram is useful for clarifying these relations (e.g., 
Fig. 1.4) and guiding literature searches.

Model Type Selection
The great variety of  model types available (Table 1.2) may 
seem daunting at first, but the problem definition process 
described above should guide selection of  the appropriate 
type of  model along the continuum from simple to com-
plex, with preference always for the simplest model neces-
sary to meet the needs. Building complex models requires 
estimating more characteristics with more complex rela-
tionships. Fortunately most wildlife problems can be han-
dled with simple, linear models incorporating deterministic 
effects of  a few independent factors at a single or small 
number of  sites. Even forecasts for population viability re-
quiring stochastic models with time lags are easily modeled 

Table 1.2. Modeling strategies along gradients of simple to complex for scientific and statistical models

	 Gradient

	 Simple	 Complex

Scientific models
  Quantification	 Conceptual (verbal)		  Quantitative
  Theoretical	 General		  Complex simulation
  Relationships	 Linear		  Nonlinear
  Variability	 Deterministic		  Stochastic
  Time scale	 Time-specific		  Dynamic
  Mathematical formulation	 Difference equations		  Differential equations
  Number of  factors	 Single		  Multifactor
  Number of  sites	 Single site		  Multisite
  Number of  species	 Single species		  Multispecies
Statistical models
  Sampling	 Simple random		  Stratified, clustered or multistage
  Hypothesis testing	 Fixed or random effects		  Mixed fixed and random effects	
  Independence of  observations	 Complete independence		  Dependence among observations	 in space, time, or both
  Errors	 Single term		  Separate process and observation errors
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with simulations based on estimates obtainable with stan-
dard linear regression methods (e.g., Garton et al. 2010).

Mathematical Formulation
Almost all wildlife models are formulated as difference equa-
tions because of  strong seasonal and annual patterns, which 
make estimating parameters for continuous time models 
formulated as differential equations difficult. Differential 
equation formulations have been more successful for devel-
oping general theoretical models that form the basis for 
many ecological theories underlying principles of  wildlife 
population ecology (Ginzburg 1986, Turchin 2001, Berryman 
2003, Colyvan and Ginzburg 2003), but translating these 
general models into stochastic difference equation models 
has proven very successful for modeling time series of  pop-
ulations with complex dynamics (e.g., population viability 
analysis for San Joaquin kit fox [Vulpes macrotis mutica] incor-
porating density dependence and a 2-year lag in rainfall ef-
fects on plant productivity; Dennis and Otten 2000). 

Computational Method and Program Selection
Simple wildlife models formulated in commonly used gen-
eral purpose spreadsheet programs can provide remarkable 
insight into wildlife population dynamics (Starfield and 
Bleloch 1991). Some specialized software designed for spe-
cific purposes, such as population viability analysis, have 
wide application to projecting persistence of  endangered 
and rare species—for example, RAMAS (Akçakaya 2000b) 
and VORTEX (Lacy 1993). Programs designed for statistical 
analysis—for example, SAS (SAS Institute 2008) and R (R 
Development Core Team 2006)—are equally adaptable to 
simulating both deterministic and stochastic models as they 
are to estimating the parameters for these models (Bolker 
2008, Garton et al. 2010).

Parameter Estimation
Sampling methods, least squares for GLM, and maximum 
likelihood methods are all useful for estimating parameters 
for alternative models. Information-theoretic approaches to 
evaluating competing models (see further details later under 
the section Confronting Theories with Data) provide excel-
lent tools to evaluate relative precision of  alternative models 
in predicting responses (Burnham and Anderson 2002). 
Burnham and Anderson (2002) contend that information 
theoretic methods, such as using AIC to assess the informa-
tion content of  a model, should be applied where we can-
not experimentally manipulate causes or predictors. Model 
averaged parameter estimates are readily calculated within 
this framework using Akaike weights (Burnham and Ander-
son 2002:133ff.).

Model Validation
Validation of  a model should take at least 2 forms. Com-
paring the predictions of  the model to data that were ana-

lyzed to build the model provides a preliminary validation 
or verification (Oreskes et al. 1994) that is always per-
formed as part of  constructing the model. Clearly this step 
is essential to verify the model is performing as the investi-
gator expects. A real test of  the validity of  the model re-
quires comparing output from the model to independent 
data not used in its construction (Gardner and Urban 2003). 
The comparison is usually made with standard statistical 
tools, such as correlation and regression, which may be 
evaluated from a frequentist perspective by using either hy-
pothesis tests or likelihood measures. Because models using 
all data possible maximize precision in parameter estima-
tion, approaches, such as jack-knifing, in which each individ-
ual observation is predicted from models fit to all the rest of  
the data are applied (Efron and Tibshirani 1993).

Model Experimentation
Once the previous seven steps are completed, the model is 
ready to be used to address the original questions that initi-
ated the modeling process. Experiments are performed by 
manipulating key input parameters to assess the response of  
model output characteristics to anticipated alternative man-
agement actions and/or potential environmental trends, 
changes, or variation. A useful model is an invaluable aid to 
both research and management, but the veracity of  any 
predictions rests firmly on assumptions built into the model 
structure, the relationships modeled, and the validity of  any 
parameters estimated from field observations. Scheller et al. 
(2010) provide further details on the approach outlined here, 
which applies modern software engineering techniques as 
part of  a process to increase the reliability of  ecological 
models. A useful model should be used interactively with 
ongoing research and management activities, so that model-
ing exercises help identify critical relationships and parame-
ters that are then investigated in the field by gathering new 
observations or performing experiments. In the manage-
ment context this process is adaptive management: model 
predictions guide management actions and continued moni-
toring provides feedback to validate and improve model as-
sumptions expressed as model parameters and relationships.

SAMPLING

Most information gathered by wildlife biologists is used to 
meet descriptive rather than experimental objectives, but 
obtaining precise estimates is equally important for both ex-
periments and descriptive research. Examples include esti-
mates of  population size, recruitment, herd composition, 
annual production of  forage species, hunter harvest, and 
public attitudes. In these efforts biologists attempt to obtain 
estimates of  characteristics that are important for manage-
ment decisions. We want to obtain the best estimates possi-
ble within the constraints of  our time and money resources. 
A large body of  statistical literature exists to help; these 
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types of  studies are referred to as surveys, and the topic is 
known as survey sampling (Cochran 1963, 1983; Scheaffer 
et al. 2005) or finite population sampling. 
	 The research population is typically synonymous with 
the statistical population, but a powerful approach is to re-
define the statistical population geographically in terms of  
units of  space or habitat. Defining the statistical popula-
tion as drainages, forest stands, individual ponds, or square-
kilometer blocks often facilitates estimating total numbers 
of  animals and the composition of  a population. Sampling 
smaller units of  habitat is more likely to be logistically feasi-
ble. Likewise this redefinition of  the research (statistical) 
population makes it feasible to apply the powerful tools for 
sampling from finite populations. 
	 Sampling also is a critical part of  experimental research 
and the test of  formal statistical hypotheses. All field studies 
and most field experiments require creative sampling de-
signs to reduce variation among observations in the treat-
ment or comparison categories. For example, stratification 
and clustering can sharpen comparisons, but data collected 
using these methods require analysis by more complicated 
designs (e.g., block or split-plot designs; Zar 1999). Choice 
of  specific sampling methods is dependent on the objectives 
or hypotheses being addressed, the nature of  the popula-
tion being sampled, and many other factors (e.g., species, 
weather conditions, topography, equipment, personnel, time 
constraints, and desired sample sizes). A variety of  sampling 
designs is available for biologists to use in wildlife surveys 
and experimental research (Thompson et al. 1998, Scheaffer 
et al. 2005, Morrison et al. 2008).

A  Unbiased and precise
= accurate

B  Unbiased but not precise
= not accurate

C  Biased and precise
= not accurate

D  Biased and not precise
= not accurate

A  Unbiased and precise
= accurate

B  Unbiased but not precise
= not accurate

C  Biased and precise
= not accurate

D  Biased and not precise
= not accurate

Fig. 1.6. Concepts of bias, precision, and accuracy 
illustrated with targets and a shot pattern. Modified 
from Overton and Davis (1969), White et al. (1982).

Precision, Bias, and Accuracy
One measure of  quality of  estimates is their precision. Pre-
cision refers to the proximity of  repeated measurements of  
the same quantity (Cochran 1963, Krebs 1999, Zar 1999). 
Precision of  an estimate depends on variation in the popula-
tion and the size of  the sample. Indicators of  the precision 
of  an estimator are standard error and confidence inter-
vals. Larger variation in the population leads to lower preci-
sion, whereas a larger sample size produces higher precision 
in the estimator. Another measure of  the quality of  an esti-
mator is bias. Bias describes how far the average value of  
the estimator is from the true population value. An unbi-
ased estimator centers on the true value for the population. 
If  an estimate is both unbiased and precise, we say that it is 
accurate (defined as an estimator with small mean-squared 
error; Cochran 1963). Accuracy is the ultimate measure of  
the quality of  an estimate (Fig. 1.6) and refers to the small 
size of  deviations of  the estimator from the true population 
value (Cochran 1963). 
	 Let us illustrate these concepts with a typical population 
survey. Suppose we were interested in estimating the den-
sity of  elk on a large winter range. One approach might be 
to divide the area into a large number of  count units of  
equal size and draw a sample of  units to survey from a heli-
copter. This approach would define the research population 
in terms of  a geographic area rather than in terms of  ani-
mals. The elements of  the target population are count units, 
and we select a sample of  these units using an objective 
sampling design (a probability sample). Using the helicop-
ter, we search each sampled unit, attempting to count all elk 



r e s e a r c h a n d e x p e r i m e n ta l  d e s i g n     25

present in it. We divide the number of  elk counted in a unit 
by the size of  that unit to obtain a density estimate for each 
unit (Fig. 1.7A). The histogram suggests little variation in 
density on this winter range, as most spatial units (80%) 
have densities between 1.5 and 2.3 elk/km2. We need a sin-
gle value that is representative of  the entire winter range, 
and we choose the mean from the sample as the best esti-
mate. The variation from one unit to the next is small; 
thus, the mean from our sample is a fairly precise estimate. 
But, suppose we had obtained different results (Fig. 1.7B). 
Now the variation from one unit to the next is great, and 
the sample mean is less precise and not as reliable as the pre-
vious estimate. Thus, for a given sample size, the former  
estimate is more precise because of  less variation in the 
population.
	 Would the mean from the sample in Area A (Fig. 1.7A) 
be an accurate estimate of  the mean density of  elk on this 
winter range? To answer this question, we must evaluate 
the bias in the estimate. If  the winter range was partially 
forested or had tall brush capable of  hiding elk from view, 
aerial counts in each unit would underestimate the true 
number of  elk present (Samuel et al. 1987). In this example 
the mean density from the sample would be a biased esti-
mate of  elk density on the winter range and, therefore, not 
highly accurate. If  the winter range were a mixture of  open 
brush fields and grasslands, where all animals would be visi-
ble, mean density from the sample could be an accurate es-
timate of  elk density on the entire winter range. We strive 
for accuracy in our estimates by selecting the approach with 
the least bias and most precision, applying a valid sampling 
or experimental design, and obtaining a sufficiently large 
sample size to provide precise estimates.
	 Evaluating bias in an estimate is difficult and, in the past, 
has been based on the researcher’s biological knowledge 

and intuition. If  the bias is constant, the estimate can be 
used to make relative comparisons and detect changes 
(Caughley 1977). Usually it is not constant (Anderson 2001), 
but its magnitude often can be measured so that a proce-
dure to correct estimates can be developed (Rosenstock et 
al. 2002, Thompson 2002b). For example, Samuel et al. (1987) 
measured visibility bias in aerial surveys of  elk from heli-
copters, and Steinhorst and Samuel (1989) developed a pro-
cedure to correct aerial surveys for this bias.

Sampling Designs
Simple Random
A simple random sample requires that every sample unit in 
the population has an equal chance of  being drawn in the 
sample and the procedure for selecting units is truly ran-
dom. This can be accomplished by assigning each member 
of  the population a number and then picking numbers, to 
identify members to sample, from a table of  random num-
bers or a random number generator on a computer or cal-
culator. For example, suppose that for a special hunt in 
which a limited number of  permits was issued, we wanted 
to estimate the number of  successful hunters. We might de-
cide to contact a sample of  permit buyers by telephone after 
the season to measure their hunting success. A survey de-
sign checklist (Box 1.4) helps design such a survey properly. 
The population that we want to make statements about is 
all persons who obtained a permit. The list of  the members 
of  the population is usually called the sampling frame 
(Scheaffer et al. 2005). It is used to draw a random sample 
from the population. The sampling frame must be devel-
oped carefully, or the resulting estimates may be biased. For 
example, if  a portion of  the permit buyers did not have tele-
phones and we decided to drop them from the list, the re-
sults could be biased if  such hunters had different hunting 
success than did permit buyers with telephones. To draw a 
random sample for the survey, we could assign a number to 
each person who purchased a permit and select the num-
bers to be contacted by using a table of  random numbers or 
a random number generator. 
	 In other types of  surveys, obtaining a truly random sam-
ple of  the population might be difficult. In such instances 
another method, such as systematic sampling, should be 
used. When the research population consists of  animals that 
would be difficult to sample randomly, one approach is to 
change the design. We do this by making small geographic 
units, such as plots or stands, the sample units (or experi-
mental units, if  we are developing a sampling design for 
an experimental treatment) and making the measurement 
on each plot a number or density of  animals. Thus, we can 
take a random sample of  spatial units and use it to infer 
abundance across the entire study area sampled. A valid ran-
dom sampling procedure must be independent of  investiga-
tor decisions. For example, an excellent procedure for ran-
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Fig. 1.7. Hypothetical example of elk counts and density estimates 
in (A) Area 1 and (B) Area 2.
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domly locating plots in a study area would be to use a 
Landsat image of  the study area stored in a Geographic In-
formation System (GIS) program, which allows us to select 
random locations within the boundary of  our study area us-
ing Universal Transverse Mercator (UTM) coordinates (Fig. 
1.8A). The UTM coordinates of  these selected plot locations 
can be entered into a hand-held Global Positioning System 
(GPS) unit that will guide us to the exact location. Random-
like methods, referred to as haphazard or representative, 
have been used in place of  truly random designs, but should 
be avoided, because they are subject to investigator bias. An 
example of  these methods is the technique of  facing in a 
random direction and throwing a pin over the shoulder to 
determine the center for a vegetation plot. Although this 
procedure seems random, the odds of  a field crew ran-
domly facing away from a dense stand of  thorny shrubs, 
such as multiflora rose (Rosa multiflora), and throwing the 
pin into the middle of  such a patch is practically zero. Truly 
random samples occasionally produce poor estimates by 
chance due to poor spatial coverage of  the area or popula-
tion of  interest (e.g., in an area with a small number of  im-

portant habitat patches, all patches may be missed by a truly 
random approach; Hurlbert 1984, Johnson 2002). 

Systematic
A systematic sample is taken by selecting elements (sam-
pling units) at regular intervals as they are encountered. 
This method is easier to perform and less subject to investi-
gator errors than simple random sampling. For example, if  
we wanted to sample birdwatchers leaving a wildlife man-
agement area, it would be difficult to draw a truly random 
sample. However, it would be easy to draw a systematic 
sample of  10% of  the population by sampling every tenth 
person leaving the area. Systematic sampling also is used ex-
tensively in vegetation measurements because of  its ease of  
use in the field. It is almost exclusively used in geographic 
sampling, because it makes possible evaluation of  the spatial 
pattern of  variability (e.g., spatial autocorrelation), which is 
used for most modern spatial modeling. A valid application 
requires random placement of  the first plot, followed by 
systematic placement of  subsequent plots, usually along a 
transect or in a grid pattern (Fig. 1.8B). This approach often 

Box 1.4. Survey design checklist

Question	 Example

1.  What is the survey objective?	 Estimate the percentage of successful hunters

2.  What is the best technique	 Telephone survey of permit holders or method?

3.  To which population do we make inferences?	 Everyone who has a permit for this hunting period

4.  What will be the sample unit?	 Individual permit holders

5.  What is the size of the population to be sampled (N)?	 N = 350 (for special permit hunt)

6.  Which sample design is best?	 Simple random sample (Scheaffer et al. 2005).

7.  How large should the sample be?	 Np(1 – p)
	 n = — — —— —— — ——
	 (N – 1)B2/4 + p(1 – p)

	 Np(1 – p)
	 n = — — —— —— — —— ,
	 (N – 1)(B2/4) + p(1 – p)

	 where:

	 N = population size (350)

	 p = �proportion of permit holders who harvested deer (from 
pilot survey = 0.24)

	 B = �bound on the estimate = 0.05 (we want an estimate with 
p ± 0.05 confidence)

	 Therefore

	 350(0.24)(1 – 0.24)
	 n = — — —— —— — — — — — — — —— ,
	 (350 – 1)(0.05)2/4) + 0.24(1 – 0.24)

	 n = �159 (i.e., we should contact approximately 160 permit holders

8.  Have you contacted a statistician to review design?	 Yes!
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provides greater information per unit cost than simple ran-
dom sampling, because the sample is distributed uniformly 
over the entire population or study area. For random popu-
lations (i.e., no serial correlation, cyclic pattern, or long- 
period trend), systematic samples give estimates with the 
same variance as simple random samples.
	 The major danger with systematic samples is they may 
give biased estimates with periodic populations (i.e., with 
regular or repeating cycles). For example, if  we were inter-
ested in estimating the number of  people using a wildlife 
management area, we might establish a check station and 
take a systematic sample of  days during the season. This 
procedure could yield extremely biased results if  we chose 
to take a sample of  one-seventh of  the days. If  the day sam-
pled fell during the workweek, we could obtain different re-
sults than if  it were during the weekend. Additionally, the 

estimate of  variance would likely be too small, leading us to 
conclude the estimate was much more precise than it is in 
reality. In this situation the population sampled obviously is 
periodic; in other situations the periodicity might be quite 
subtle. Thus, systematic sampling must be used with cau-
tion. The formal procedure is conducted by randomly se-
lecting one of  the first k elements to sample and every kth 
element thereafter. For example, if  we wanted to sample 
10% of  our population, k would equal 10, and we would 
draw a random number between 1 and 10. Suppose we se-
lected 3; we would then sample the 3rd element and every 
10th element thereafter (i.e., 13th, 23rd, 33rd, . . . element). 
At a check station we might use this strategy to sample 10% 
of  the deer hunters or birdwatchers who came through the 
station. When locating plots along a transect, we would ran-
domly locate the starting point of  the transect and then 
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Fig. 1.8. Examples of sampling designs: (A) simple random sample, (B) systematic sample, (C) stratified random sample, (D) cluster 
sample, (E) adaptive cluster sample. Examples of sampling methods: (F) point sampling, (G) plots along transects, (H) line transect,  
(I) road sampling.
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place plot centers at fixed intervals along the transect, such 
as every 100  m. Advantages and disadvantages of  random 
and systematic sampling have been reviewed by Thompson 
et al. (1998), Krebs (1999), and Morrison et al. (2008).

Stratified Random
In many situations, obvious subpopulations exist in the total 
population. For example, tourists, birdwatchers, and hunt-
ers are readily divided into residents and nonresidents. A 
study area can be divided into habitats. A population of  ani-
mals can be divided into age or gender groups. If  members 
of  these subpopulations are similar in terms of  the charac-
teristics we are estimating and the subpopulations them-
selves differ from one another in the characteristic of  inter-
est, a powerful design to use is stratified random sampling. 
Subpopulations are referred to as strata, and we draw a sim-
ple random sample of  members from each stratum. Strati-
fied random sampling also is useful if  we are particularly in-
terested in the estimates for the subpopulations themselves. 
The strata are chosen so they contain units of  identifiably 
different sample characteristics, usually with lower variance 
within each stratum. 
	 For example, if  the objective of  a study of  moose (Alces 
alces) is to estimate moose density, we might define strata 
on the basis of  habitats (e.g., bogs and riparian willow [Salix 
spp.] patches, unburned forests, and burned forest). We then 
draw a simple random sample from each stratum (Fig. 1.8C). 
If  moose density is different among strata, variation in each 
stratum will be less than the overall variation. Thus, we will 
obtain a better estimate of  moose density for the same or 
less cost. If  strata are not different, stratified estimators may 
not be as precise as simple random estimators. In some in-
stances the cost of  sampling is less for stratified random 
sampling than for simple random sampling. A final advan-
tage of  stratified random sampling is that separate estimates 
for each stratum (e.g., moose density in willows or in for-
ests) are obtained at no extra cost. The formal procedure 
for stratified random sampling consists of  3 steps: (1) clearly 
specify the strata (they must be mutually exclusive and ex-
haustive), (2) classify all sampling units into their stratum, 
and (3) draw a simple random sample from each stratum. 
Formulas are available to calculate the sample size and opti-
mal allocation of  effort to strata (Krebs 1999, Scheaffer et al. 
2005). A pilot survey can be analyzed using ANOVA to learn 
whether stratification is indicated. If  cover types define strata, 
most GIS software will automatically select random coordi-
nates within cover types, making stratified random samples 
easy to select.

Cluster Sampling
A cluster sample is a simple random sample in which each 
sample unit is a cluster or collection of  observations (Fig. 
1.8D). This approach has wide application in wildlife biol-
ogy, because many birds and mammals occur in groups dur-

ing all or part of  the year. When we draw samples from 
such populations, we draw clusters of  observations (i.e., 
groups of  animals). Likewise, many wildlife user groups 
(e.g., waterfowl hunters and park visitors) occur in clusters 
(e.g., boats in wetlands and vehicles along highways). Clus-
ter sampling also is useful where cost or time to travel from 
one sample unit to the next is prohibitive. This situation is 
common in surveys of  animals and habitat. The formal pro-
cedure for cluster sampling consists of  3 steps: (1) specify 
the appropriate clusters and make a list of  all clusters, (2) 
draw a simple random sample of  clusters, and (3) measure 
all elements of  interest in each cluster selected.
	 Making a formal list of  clusters is rarely possible or es-
sential. Instead, we emphasize obtaining a random sample 
of  clusters. If  the sample units are animals, which naturally 
occur in groups, the size of  the clusters will vary from 
group to group, depending on the social behavior of  the 
species. Cluster sampling of  habitat is performed by choos-
ing a random sample of  locations and then locating multi-
ple plots in a cluster at each location. In this case, the re-
searcher sets the cluster size. The optimal number of  plots 
(cluster size) depends on the pattern of  variability in habi-
tat. If  plots in a cluster tend to be similar (i.e., little variabil-
ity in a cluster), cluster size should be small. If  plots in a 
cluster tend to be heterogeneous (high variability within a 
cluster), it should be large. For other types of  cluster sam-
ples, such as groups of  animals or people in vehicles, cluster 
size is not under control, but is a characteristic of  the popu-
lation. For example, aerial surveys of  elk and deer on winter 
ranges result in samples of  animals in clusters. Estimates of  
herd composition (e.g., fawn:doe or bull:cow ratios) are read-
ily obtained by treating these data as cluster samples (Bowden 
et al. 1984).

Adaptive Sampling
Adaptive sampling differs from the methods discussed ear-
lier because the sample size is not set at the start of  the sam-
pling effort, but rather depends on the results obtained dur-
ing sampling. Thompson and Ramsey (1983) pioneered 
adaptive cluster sampling for gathering information on rare 
animals and plants, which are often clustered in occurrence. 
In adaptive cluster sampling an initial sample of  units is 
drawn by a random or other standard design, and neighbor-
ing units also are sampled for any unit that satisfies a crite-
rion, such as having more than x individuals present (Thomp-
son and Seber 1996, Williams et al. 2002a, Brown 2003, 
Thompson 2003). The initial sampling unit and neighbors 
(where sampled) form neighborhoods analogous to clusters 
and are treated as in cluster sampling. The size of  clusters does 
not need to be constant, nor is it known in advance. For spa-
tially clustered animals or plants, the neighborhood consists 
of  adjacent spatial sample units (Fig. 1.8E). Smith et al. 
(1995a) showed that adaptive cluster sampling would be rel-
atively more efficient than simple random sampling for esti-
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mating densities of  some species of  wintering waterfowl if  
the right sample unit size and criterion for further sampling 
in the neighborhood were chosen. The species for which it 
would be superior show more highly clustered distributions. 
For other species, conventional sampling designs with fixed 
sample sizes are superior. Numerous examples of  applica-
tions of  adaptive sampling under conventional sampling de-
signs and estimation methods, as well as applications based 
on maximum likelihood methods and Bayesian approaches 
can be found in Thomas et al. (1992), Thompson and Seber 
(1996), Smith et al. (2003b, 2004), and Noon et al. (2006). 
Thompson et al. (1998), Williams et al. (2002a), and Morri-
son et al. (2008) also review the basic concept and provide 
simple examples. 

Sequential Sampling
Sequential sampling differs from the classical statistical ap-
proach in that sample size is not fixed in advance (Wald 
2004). Instead samples are drawn one at a time, and after 
each sample is taken the researcher decides whether a con-
clusion can be reached. Sampling is continued until either 
the null hypothesis is rejected or the estimate has adequate 
precision. This type of  sampling is applicable to wildlife 
studies where sampling is performed serially (i.e., the result 
of  including each sample is known before the next sample is 
drawn; Krebs 1999). The major advantage of  this approach 
is that it usually minimizes sample size, thus saving time 
and money. After an initial sample of  moderately small size 
is obtained, successive samples are added until the desired 
precision is met, the null hypothesis can be rejected, or a 
maximum sample size under a stopping rule has been 
reached. This approach typically requires 33% the sample 
size required in a standard design (Krebs 1999:304). For ex-
ample, if  we wanted to survey deer on a winter range to en-
sure that harvest had not reduced buck abundance below a 
management guideline of  5% bucks, we would develop a 
graph (Fig. 1.9) and plot the results of  successive samples as 
shown (Krebs 1999:312). We must choose a level of  signifi-
cance for our test (e.g., α = 0.10) and a power for the test 
(1 – β = 0.90) and specify an upper rejection region (>10% 
bucks), above which we assume the population has not 
been adversely impacted by buck-only harvests. Once an ini-
tial sample of  50 deer has been obtained, sequential groups 
of  deer encountered are added and totals plotted on the 
graph until the line crosses one of  the upper or lower lines 
or the stopping rule is reached. For example, the lower re-
jection line is reached at a sample size of  140 (Fig. 1.9). At 
this point the null hypothesis that bucks constitute >5% of  
the herd would be rejected, and the conclusion would be 
there are 5% bucks remaining. An important constraint is 
the sample must be distributed throughout the entire popu-
lation, so that a simple random sample of  deer groups is ob-
tained. Achieving this sample would be most feasible using 
aerial surveys from helicopter or fixed-wing aircraft.

Other Sampling Designs
Many other sampling designs are available. For example, 
2-stage cluster sampling involves surveying only a portion 
of  the members of  each cluster drawn in the sample. This 
approach is efficient when clusters are large. Cluster sam-
pling is one version of  the more general method referred to 
as ratio estimation (Cochran 1963, Williams et al. 2002a). 
Related methods are regression estimation and double 
sampling (Scheaffer et al. 2005) that have great potential for 
wide application to wildlife research. The interested reader 
should consult a standard reference on sampling techniques 
(Scheaffer et al. 2005) and work with a statistician experienced 
in survey sampling. Stevens and Olsen (2004) proposed a new, 
efficient approach that combines the advantages of  spatially 
systematic designs with the proven unbiased nature of  ran-
dom sampling. They described this approach as a general-
ized random tessellation stratified (GRTS) design. GRTS 
uses a recursive approach that converts a 2-dimensional map 
into a 1-dimensional one while maintaining spatial closeness 
in original locations. This conversion allows a valid system-
atic sample to be drawn that meets the requirements of  ran-
dom sampling while distributing the sample across the entire 
spatial area. Theobald et al. (2007) have provided free tools 
(STARMAP Spatial Sampling tools; http://www.stat.colostate 
.edu/~nsu/starmap/), which make it feasible to apply GRTS 
to generating spatially balanced probability-based survey 
designs.

Sampling Methodology
Plots
Plots are widely used to sample habitat characteristics and 
count animal numbers and sign. Plots represent small geo-
graphic areas (circular, square, or rectangular) that are the 
elements of  the geographically defined population. The re-
search population size is the number of  these geographic 
areas (plots) that would cover the entire study area. Suffi-
cient time, money, and personnel to study an entire area are 
usually not available, and a subset of  plots is used with the 
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assumption that it is representative of  the area. Any of  the 
survey designs (simple random, systematic, stratified ran-
dom, cluster, etc.; Fig. 1.8) or more complicated designs, 
such as 2-stage designs, may be applied (Cochran 1963, Wil-
liams et al. 2002a). Selecting the best design requires in-
sight into the characteristics and patterns of  distribution of  
species across the landscape. One advantage of  using plots 
is that size of  the population is known and totals can be esti-
mated (Seber 1982). Selection of  plot size and shape, also  
an important consideration, has been reviewed by Krebs 
(1999).

Point Sampling
In point sampling a set of  points is established throughout 
the population, and measurements are taken from each 
sample point (Fig. 1.8F). A common measurement is distance 
from the point to a member of  the population (e.g., plant or 
calling bird). Examples include point quarter and nearest 
neighbor methods used widely to estimate the density of  
trees and shrubs (Mueller-Dombois and Ellenberg 1974), 
and the variable circular plot or point transect method of  
estimating songbird density (Reynolds et al. 1980). If  observ-
ers doing point counts for birds record the distance to each 
bird detected, as in the variable circular plot approach, 
transforming distances to areas makes it easy to apply the 
extensive methods and algorithms developed for line tran-
sects referred to as distance sampling methods (Buckland 
et al. 1993, 2001, 2004; Laake et al. 1994). Selection of  sam-
ple points usually follows a systematic design, but other 
sample designs can be used, as long as points are spaced suf-
ficiently far apart that few members of  the population are 
sampled more than once. Necessary sample size can be esti-
mated from formulas even if  population size is assumed to 
be large or unknown (Zar 1999).

Transects
A transect is a straight line or series of  straight line seg-
ments placed in the area to be sampled. Transects are used 
to organize or simplify establishment of  a series of  sample 
points or plots and as a sample unit themselves. Transects 
are widely used to obtain systematic samples of  spatially 
distributed populations (e.g., plants). In these situations, 
plots along transects are actual sample units (Fig. 1.8G) and 
should be treated as described for systematic sampling. 
Plots also can be placed along transects at random intervals. 
When transects are used as sample units, they are com-
monly referred to as line transects (Burnham et al. 1980, 
Williams et al. 2002a). Measurements of  perpendicular dis-
tance, or sighting distance and angle, to the sampled ele-
ments (e.g., flushing animals, groups of  animals, carcasses, 
and snags) are recorded (Fig. 1.8H). These distances are 
used to estimate the effective width of  the area sampled by 
the transect (Seber 1982; Buckland et al. 1993, 2001, 2004). 
Each transect is treated as an independent observation, and 

transects should be nonoverlapping according to established 
sampling designs (e.g., simple random, systematic, and 
stratified random). Transects are often easier to establish in 
rough terrain than are plots, but they must be established 
carefully with a compass or transit and measuring tape or 
with a GPS unit. Use of  transects is becoming more wide-
spread in aerial survey work because of  development of  
precise navigational systems (Patric et al. 1988, Anthony and 
Stehn 1994, Marques et al. 2006). The critical assumptions 
for transect methods for sampling such mobile objects as 
animals (i.e.,100% detection for objects directly on the line 
and no movement toward or away from the observer before 
detection) must be examined carefully before this sampling 
method is selected (Burnham et al. 1980, Williams et al. 
2002a). In certain cases, more sophisticated methods may be 
used to adjust counts for less-than-perfect detection on the 
line (Buckland et al. 1993, 2001, 2004; Manly et al. 1996; 
Quang and Becker 1996; Williams et al. 2002a) or near the 
points (Kissling and Garton 2006). A strip transect appears 
similar, but it is really a long, thin plot, because the method 
assumes all animals or objects in the strip are counted 
(Krebs 1999).

Road Sampling
Sampling from roads is a widely used method for obtaining 
observations of  species sparsely distributed over large areas 
or for distributing observations of  abundant species over a 
large geographic area. This sampling method is usually the 
basis for spotlight surveys of  nocturnal species, such as 
white-tailed deer (Boyd et al. 1986, Collier et al. 2007), black-
tailed jackrabbit (Lepus californicus; Chapman and Willner 
1986), grassland owls (Condon et al. 2005), brood and call 
counts of  upland game birds (Kozicky et al. 1952, Kasprzy- 
kowski and Golawski 2009), scent-station surveys (Notting-
ham et al. 1989, Preuss and Gehring 2007, Mortelliti and 
Boitani 2008), and the Breeding Bird Survey (Robbins et al. 
1986, Sauer et al. 2008). This approach involves drawing a 
sample from a population defined as that population occu-
pying an area within a distance x of  a road (Fig. 1.8I). The 
distance x is generally unknown and varies with any factor 
that would affect detection of  an animal, such as conspicu-
ousness, density, type of  vegetation cover, or background 
noise for surveys based on aural cues. 
	 Roads rarely provide unbiased estimates for a region, be-
cause they are generally placed along ridges or valleys and 
avoid steep or wet areas. Furthermore, roads modify habitat 
for many species and may attract some wildlife. For exam-
ple, during snow periods some bird species will come to 
roads for grit and spilled grain. Thus, sampling along roads 
rarely provides a representative sample of  habitat (e.g., Ha-
nowski and Niemi 1995) or wildlife populations (Pedrana et 
al. 2009). Although this bias is well known, it is often ig-
nored in exchange for a method that is cost efficient and 
easy. As with all indices, every effort should be made to 
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standardize counting conditions along fixed, permanently 
located routes (Caughley 1977, Sauer et al. 2008); however, 
this alone does not guarantee reliable counts (Anderson 
2001, Thompson 2002b). Sampling along roads can be an ef-
ficient approach if  it is designed as a random sample from a 
stratum adjacent to roads that is one element of  a stratified 
random sample of  the entire area, including other strata dis-
tant from roads (Bate et al. 1999, Langen et al. 2009).

Dependent (Paired) and Independent Observations
If  we wish to make population comparisons, pairing obser-
vations is a powerful tool for detecting differences. If  there 
is a correlation between members of  a pair, treating them as 
dependent or paired observations can improve the power of  
tests for differences. For example, to compare diets of  adult 
female mountain sheep (Ovis canadensis) and lambs, we 
might treat a ewe with a lamb as a pair and measure the diet 
of  each animal by counting the number of  bites of  each 
plant they eat while foraging together. Treating these obser-
vations as pairs would sharpen comparisons between age 
classes, because it would compare animals foraging together 
and experiencing the same availability of  plants. Pairing is a 
powerful technique in other contexts for which there is de-
pendency between the observations. Pairing should be used 
only if  an association really exists, otherwise the power of  
comparison will be decreased.
	 Pairing also can be used to help answer a different ques-
tion. For example, studies of  habitat selection are often 
made by locating areas used by a species (i.e., nest sites or 
radio locations) and measuring habitat characteristics at 
these use sites with sample plots. Available vegetation types 
are measured from random sample plots throughout the 
study area (Fig. 1.10A). A comparison of  use and random 
plots can identify characteristics of  areas selected by the  
species. An alternative approach involves pairing use and 
random plots by selecting a random plot within a certain 
distance of  the use plot (Fig. 1.10B). For analysis, use and 
random plots are paired (i.e., random plot locations are de-
pendent on use sites). This comparison could produce dif-

ferent results from the unpaired comparison, because it tests 
for habitat differences in areas used by the species (micro-
habitat selection). In contrast the unpaired comparison (e.g., 
independent plots) tests for habitat differences between ar-
eas used by the species and typical vegetation types available 
in the general study area (macrohabitat selection). Choosing 
a paired or unpaired design will depend on the objectives of  
the study, but both may be useful when applying a hierar-
chical approach to studying habitat selection (Wiens 1973, 
Johnson 1980, Cruz-Angón et al. 2008, Schaefer et al. 2008).

CONFRONTING THEORIES WITH DATA

Confronting theories with data involves evaluation and in-
terpretation, which is a creative phase, similar to hypothesis 
formulation. The quality of  conclusions drawn is dependent 
on the biologist’s past educational and professional experi-
ence as well as a willingness to consider standard and less 
traditional interpretations. One great danger in wildlife sci-
ence (and other fields) is that researchers often have a con-
scious or unconscious expectation of  results. This bias might 
begin with the development of  the overall research objec-
tive and carry through to the interpretation phase. This dan-
ger is so great that in some fields, such as medicine, experi-
ments are performed with a double-blind approach: neither 
researcher nor subjects know membership of  treatment and 
nontreatment groups. A scientist must not design research 
or interpret data in a way that is more likely to support pre-
conceived explanations of  biological systems. Biologists 
who are consciously aware of  their own biases and strive to 
keep an open mind to new ideas are most likely to make 
revolutionary discoveries.
	 The objective is to organize, clearly and concisely, the re-
sults of  data collection, exploratory data analysis, and spe-
cific statistical analyses. These results must be transformed 
from a collection of  specific information into a synthesis 
explaining the biological system. Do statistical evaluations 
support one or more of  the theories and hypotheses and 
clearly reject others? Do the results provide a reasonable ex-

Fig. 1.10. Illustrative examples of (A) use () and random plots (), and (B) use plots paired with random plots.
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planation of  the biological system? Are there alternative  
explanations of  the data and statistical tests? Are there spe-
cific problems with the data that should be identified, such 
as inadequate sample sizes or unusual variation in specific 
variables measured? What could have introduced bias into 
the estimates? Are additional data required? These questions 
must be considered carefully, and if  concerns are identified, 
they must be noted in reports and publications.
	 During this phase, the biologist usually reaches some 
conclusions based on the data and results of  statistical evalu-
ations. If  the data support the hypothesis, we cannot con-
clude the theory (model) is true, but only that it has not 
been rejected ( James and McCulloch 1985). The central is-
sue is that we do not prove a research hypothesis or theory 
to be correct—indeed some would argue that all hypotheses 
are to some degree incorrect. Instead, the credibility of  the 
hypothesis increases as more of  its predictions are sup-
ported and alternative hypotheses are rejected. We can as-
sist other biologists by carefully considering how broadly 
our conclusions can be generalized to other areas or popula-
tions and not allowing our conclusions to go beyond the 
data. Interpretation of  research data must clearly separate 
conclusions and inferences based on data from speculation. 
For example, if  we demonstrate that droppings from spruce 
grouse are most abundant under lodgepole pine (Pinus con-
torta) and Engelmann spruce (Picea engelmannii), we can 
conclude that grouse use both tree species for some behav-
iors, but the type of  behavior (e.g., roosting or feeding) is 
mere speculation without additional data (e.g., observations 
of  feeding activity and crop or fecal analyses). Likewise, 
replication of  studies across space and time “provides us 
greater confidence that certain relationships are general and 
not specific to the circumstances that prevailed during a sin-
gle study” ( Johnson 2002:930).

Data Collection
Most novice research biologists are anxious to initiate data 
collection because of  the attractiveness of  working out-
doors and the pleasure derived from observing wildlife- 
related phenomena. However, the design phase should not 
be rushed to initiate fieldwork more quickly. Successful re-
search biologists often spend about 40% of  their time in de-
sign and planning phases, 20% in actual fieldwork, and 40% 
in data analysis and writing publications. Data collection can 
be physically difficult and highly repetitious.
	 All data should be recorded on preprinted data sheets or 
entered directly into a handheld data logger, computer, or 
personal digital assistant. This practice ensures that each 
field person collects exactly the same data, as consistent 
collection of  data simplifies analysis. Data sheets should be 
duplicated after each field day (e.g., computer entry, photo-
copies, or transcribed) and stored in a separate location 
from the original data set. Data entered electronically in the 
field should be downloaded daily and backed up for storage 

at another location. Transcription of  data (including com-
puter data entry) must be followed by careful proofreading, 
which is greatly facilitated by checking for valid entries by 
using database queries and spreadsheet scripts. All field per-
sonnel should receive careful instructions regarding data 
collection, and the principal researcher must check periodi-
cally to see that each person has similar skills and uses the 
same methods for observation, measurement, and record-
ing (Kepler and Scott 1981). The principal researcher is re-
sponsible for quality control, and the validity of  research  
results depends on the quality of  research design and data 
collection.

Pilot Study
A pilot study is a preliminary short-term trial through all 
phases of  a research project. Pilot studies are an important, 
but often neglected step in the research process. Informa-
tion can be obtained that will help the researcher avoid po-
tentially disastrous problems during or after the formal re-
search phase. Pilot studies often will disclose hidden costs or 
identify costs that were over- or underestimated. Optimal 
sample allocation (Scheaffer et al. 2005) incorporates cost 
estimates to maximize the benefits obtained from limited 
research budgets. Use of  a pilot study should reveal basic lo-
gistical problems, such as travel time among study plots be-
ing underestimated or expectations for overall sample sizes 
being infeasible without additional personnel and funding. 
Statistical procedures for estimating needed sample sizes re-
quire variance estimates of  variables that will be measured, 
and these variance estimates are often available only from 
data gathered in a pilot study. These preliminary data might 
disclose the variance of  the population is so large that ob-
taining adequate sample sizes will be difficult. It is far better 
to discover these problems before time, energy, personnel, 
and critical research dollars are committed to a research 
project doomed to fail. If  the research is part of  an ongoing 
project, or if  much research on the topic has been pub-
lished, costs, methodology, and variance estimates may al-
ready be firmly established.

Power Analysis
In descriptive studies, power analysis provides sample size 
requirements for obtaining an estimate of  desired precision 
and can be calculated after an estimate of  population vari-
ance is obtained from previous studies or a pilot study. For-
mulas for sample size are available for standard survey de-
signs (Thompson et al. 1998, Scheaffer et al. 2005) and for 
typical hypothesis tests (Zar 1999). In studies involving ex-
periments or other types of  comparisons, sample size is in-
creased to improve the power of a hypothesis test (defined 
as the probability of  detecting a real difference) and to pre-
vent erroneous conclusions. Power analysis for hypothesis 
tests depends on several factors, including sample size, level 
of  significance (α), variance in the populations, effect size 
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(the true change that occurred), and efficiency of  the test or 
design (Steidl et al. 1997). In contrast to this essential pro-
spective power analysis during the design phase, performing 
a retrospective power analysis after the data are collected, 
during the analysis phase, is controversial or contraindicated 
(Thomas 1996, Steidl et al. 1997). Retrospective power anal-
ysis is uninformative unless effect sizes are set indepen-
dently of  the observed effect (Steidl et al. 1997).
	 To illustrate power of  a test, consider the following ex-
ample. Suppose we were using fawn:doe ratio as an indica-
tor of  production for a mule deer (Odocoileus hemionus) herd 
(i.e., the biological population is our research population). 
We want to know whether the fawn:doe ratio has declined. 
There are 4 possible outcomes from sampling the herd  
and testing for a decline in the fawn:doe ratio (i.e., the null 
hypothesis is there is no change; Table 1.3). We evaluate 
whether the fawn:doe ratio has declined by comparing the 
test statistic calculated from our data to a value for this sta-
tistic at the chosen level of  significance (α). The level of 
significance represents the chance of  concluding the ratio 
changed when in fact it did not. An α = 0.05 indicates that 
we would make this error only 5 times if  the population re-
ally did not decline and we tested it by drawing a sample 
100 times. This error is referred to as a Type I error. But, 
we could make another error. We could conclude the ratio 
had not changed when in fact it had declined. For the situa-
tion where we count 500 deer, we would fail to detect the 
decline in the fawn:doe ratio 50% of  the time (Table 1.3). 
This type of  error is referred to as Type II error, and its 
likelihood is measured by α. When we perform a test, we 
typically set α low to minimize Type I errors. But, Type II 
errors might be as important (Alldredge and Ratti 1986, 
1992) or even more important than Type I errors. Obvi-
ously, we want to detect a change when it occurs; the proba-
bility of  detecting a change is called the power of the test. 
The power of  the test is calculated as the probability of  not 
making a Type II error (1 – α).
	 We cannot control natural variation in the population or 
the actual change that occurred, but we can control the 

other 3 factors (i.e., sample size, efficiency, and significance 
level). Parametric tests (based on a normal distribution, 
e.g., t-tests, F-tests, and Z-tests) have the highest efficiency 
for normally distributed populations and for large samples. 
Nonparametric tests (based on distributions other than the 
normal distribution, e.g., Mann-Whitney, Wilcoxon signed-
ranks tests) are superior when sample sizes are small (30) 
and populations are not normally distributed ( Johnson 1995, 
Cherry 1998). The power of  a test declines as the level of  
significance is made more stringent (decreasing α). In the 
example (Table 1.3), this problem is critical, because the Type 
II error (failing to detect declining production) is the more 
serious error than detecting a declining production when it 
is actually increasing. It would be preferable to increase α so 
that power of  the test could be increased. In other situations 
the Type I error will be more serious, and α must be kept 
low. Increasing sample size increases power of  the test. Cal-
culating sample size necessary for a desired level of  power is 
essential to designing a high quality study (Toft and Shea 
1983, Forbes 1990, Peterman 1990). However, such calcula-
tions should be based on meaningful effect sizes (i.e., one 
that constitutes a biologically significant result; Reed and 
Blaustein 1997, Cherry 1998, Johnson 1999).
	 The importance of  sample size cannot be overempha-
sized. Sample size and experimental design are the major 
factors under the control of  the biologist that strongly influ-
ence power of  the test (i.e., the likelihood of  detecting a sig-
nificant difference when one really occurs). Inadequate sam-
ple size usually results from: (1) inadequate consideration of  
population variance; (2) inability to collect data (e.g., observe 
a rare species); or (3) insufficient funding, time, or person-
nel. Often a sample size problem is overlooked initially be-
cause of  failure to consider sample size reduction through-
out the study (i.e., we focus mostly on the initial sample size 
and not on the final sample size that represents the most im-
portant data for consideration of  a hypothesis). For exam-
ple, in a study of  mallard (Anas platyrhynchos) brood move-
ments almost 10 times as many nests were required to be 
found as the sample size of  broods indicated because of  an 

Table 1.3. Possible outcomes of a statistical test for declining production in a deer herd. Counts of 500 antlerless deer (adult 
does and fawns) were obtained each year, and tests of the null hypothesis of no change in the fawn:doe ratio were performed at 
the 5% level of significance (α = 0.05).

	 Fawns per 100 does

	 Actual herd value	 Count value
						      Conclusion		  Likelihood of  
Case	 188	 1989	 Change	 1988	 1989	 from test	 Result of  test	 this result (%)

1	 60	 60	 None	 61	 59	 No change	 No error	 95 (1 – α)
2	 60	 60	 None	 65	 50	 Declined	 Type I error	   5 (α)
3	 65	 50	 Declined	 65	 50	 Declined	 No error	 50 (1 – α)
4	 65	 50	 Declined	 62	 57	 No change	 Type II error	 50 (α)�
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89% sample size reduction from nests located to actual 
brood data (Rotella and Ratti 1992a, b).
	 Another common problem is fairly large overall data sets 
that are not sufficiently similar across years (or seasons) to 
combine, resulting in annual sample sizes that are too small 
for analysis. At the beginning of  a research project we often 
set our desired sample size based on combining data col-
lected over several continuous years. However, if  the char-
acteristic of  interest were different across study years, com-
bining the data would not be valid. For example, in a study 
of  habitat selection by red fox (Vulpes vulpes), habitat use 
might differ between mild and severe winters with heavy 
snow cover. In this example, combining the data would not 
be valid, yet the sample size in each year may be too small 
to detect selection (Alldredge and Ratti 1986, 1992).

Approaches to Data Analysis
At this point, researchers have developed well-planned and 
biologically meaningful hypotheses; decisions have been 
made regarding study, experimental, and sampling designs; 
and empirical data have been collected to shed light on the 
validity of  the hypotheses. Now researchers must decide on 
a statistical approach. Unfortunately, this decision has be-
come less clear over the past decade (Butcher et al. 2007). 
General approaches for data analysis include Bayesian ver-
sus frequentist paradigms with distinct differences in how 
probability should be interpreted (Cox 2006). Within the 
frequentist paradigm, one could choose null hypothesis sig-
nificance testing (NHST), point and interval estimation of  
effect sizes, likelihood-based and information theoretic meth-
ods, or some combination of  these (Läärä 2009). Unfortu-
nately, the statistical approach that is most familiar and 
widely used (i.e., NHST) in wildlife science has continued to 
be criticized (e.g., Yates 1951, Cherry 1998, Johnson 1999, 
Wade 2000, Fidler et al. 2006, Läärä 2009), causing confu-
sion and frustration for researchers (Butcher et al. 2007). We 
introduce these various approaches and point out some of  
the key differences while purposefully not recommending 
one over another. We think it is more important to expose 
researchers to the relevant discussions, so they can make an 
informed selection of  the best approach.
	 Ellison (2004) summarized the main differences between 
Bayesian and frequentist approaches to statistical inference 
(also see Ellison 1996, Dennis 1996, Taper and Lele 2004, 
Hobbs and Hilborn 2006). The first is a difference in what is 
considered a random outcome. Frequentist inference con-
siders the model and the true parameter values to be fixed 
quantities, whereas the observed data are random outcomes 
from this process. Thus, frequentists refer to the probability 
of  the data (Y ) given a particular hypothesis (H), as defined 
by the model and parameters: Prob(Y|H ). In contrast, 
Bayesian inference treats both the data and model as ran-
dom, allowing quantification of  the probability of  a hypoth-
esis being true given the observed data: Prob(H|Y ). 

	 This distinction brings up the second major difference 
between these approaches—the definition of  probability. Fre-
quentist inference defines probability as the relative frequency 
of  a particular outcome if  the process was repeated an infi-
nite number of  times. For example, the probability of  ob-
taining a heads with a flip of  a coin is the number of  times a 
head turns up divided by the number of  flips, where the 
number of  flips is repeated to infinity. Bayesian approaches 
define probability quite differently: it is the degree of  belief  
in the likelihood of  an event occurring. 
	 Finally, the 2 approaches differ in the way prior knowl-
edge is incorporated. For Bayesian inference, it is required 
that prior knowledge is translated into a probability distribu-
tion, which is then combined with the sample data to make 
an inference. Frequentist inference generally uses only the 
observed data, although prior knowledge can be incorpo-
rated by combining likelihoods from previous studies with 
the likelihood of  the observed data (see Hobbs and Hilborn 
2006:10). Although the decision of  whether to use Bayesian 
versus frequentist approaches is often made on practical 
grounds (Lele et al. 2007), we end with a quote from Ellison 
(2004:517) that we believe is particularly relevant: 

Deciding whether to use Bayesian or frequentist infer-
ence demands an understanding of  their differing epis-
temological assumptions. Strong statistical inference de-
mands that ecologists not only confront models with 
data, but also confront their own assumptions about how 
the world is structured.

Hypothesis Testing
Significance testing as a statistical approach for confronting 
hypotheses with empirical data has been the subject of  fer-
vent debate in many disciplines (Fidler et al. 2004), including 
wildlife and ecological science (e.g., Anderson et al. 2000, 
Eberhardt 2003, Guthery et al. 2005, Lukacs et al. 2007, 
Steidl 2007, Stephens et al. 2007, Läärä 2009). Nonetheless, 
it remains a viable option for practicing wildlife researchers 
(Robinson and Wainer 2002, Butcher et al. 2007). Hypothe-
sis testing is rooted in the philosophical idea of  falsification, 
in which an attempt is made to disprove a hypothesis, leav-
ing the alternative to be tentatively accepted (Underwood 
1997). Johnson (1999) described the 4 basic steps of  statisti-
cal hypothesis testing that mirror the approach suggested by 
Underwood (1997). The researcher develops a hypothesis 
that reflects his or her ideas about a particular ecological 
process or the effects of  some treatment. The logical oppo-
site of  this hypothesis is usually taken as the null hypothe-
sis, and data are collected to assess the validity of  the null 
hypothesis. A statistical test of  it involves calculating a P-value, 
which is then used to decide the fate of  the null hypothesis. 
Strictly speaking, a P-value is the probability that if  the null 
hypothesis were true and the test were hypothetically re-
done, one would observe data at least as extreme as those 
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which were observed. Thus, a study that results in a P-value 
of  0.05 means that if  the null hypothesis were true and the 
study were repeated 20 times, you would expect only 1 of  
these 20 studies to produce results at least as different from 
the null hypothesis as your study. Obviously, the definition is 
quite cumbersome and likely has led to much confusion, 
misuse, and misinterpretation of  a statistical hypothesis test 
( Johnson 1999).
	 To more fully understand the role of  hypothesis testing 
in wildlife science, it is helpful to have some historical per-
spective. Robinson and Wainer (2002) provide a concise de-
scription of  hypothesis testing as it was originally intended 
by the famous statistician R. A. Fisher, who used it to assess 
potential innovations in agriculture. A few key points from 
this description are:

1. � It is often legitimate to assume a particular innovation 
would produce no effect, and thus testing a null hy-
pothesis of  no effect is not considered trivial.

2. � No single test should be the end of  the discussion, be-
cause there is a chance (depending on the significance 
level for a particular test) that an effect can be sug-
gested even when there is none, an effect should only 
be accepted if  repeated studies continue to provide 
significant results.

3. � Hypothesis testing only makes sense if  continued re-
search seeks to identify the size and direction of  the 
effect.

	 Given these original intentions, it is not hard to see why so 
many have been critical of  hypothesis testing in wildlife sci-
ence. Several have argued that it is exceedingly rare to legiti-
mately propose a zero effect or alternatively that some set of  
parameters are exactly equal (Cherry 1998; Johnson 1999; An-
derson et al. 2000, 2001a; Läärä 2009). These point null hy-
potheses are often deemed silly nulls, because they are almost 
certain to be false a prori. Additionally, although replication 
was a cornerstone of  Fisher’s approach, true replication in 
wildlife science is not the normal procedure, which instead 
relies on “single-shot studies” designed to reach conclusions 
based on a one-time interpretation of  a P-value (Robinson 
and Wainer 2002:265). Although replication is an important 
component of  the scientific method regardless of  the statisti-
cal approach used, because of  the definition of  a P-value, it 
is particularly relevant to hypothesis testing. These issues are 
especially problematic when hypothesis testing is applied  
to field studies without random assignment of  treatments. 
Many statisticians strongly object to performing hypothesis 
tests on observational data or recommend alternative ap-
proaches for evaluating the data, such as confidence intervals 
for estimates, information measures for models, or Bayesian 
confidence measures (Cherry 1998, Johnson 1999, Anderson 
et al. 2000, Hobbs and Hilborn 2006, Läärä 2009).
	 Despite these criticisms, most statisticians agree that hy-
pothesis testing can play a valuable, but limited role in data 

analysis (Cherry 1998, Johnson 1999, Stephens et al. 2007), 
especially if  accompanied by estimates of  effect sizes and a 
measurement of  the precision of  these estimates (Robinson 
and Wainer 2002). One improvement might be for research-
ers to adopt a trinary decision approach that is likely a more 
productive route than interpreting results of  a hypothesis 
test ( Jones and Tukey 2000). Using this approach, the con-
clusions of  a hypothesis test are either µ1 > µ2, µ2 > µ1, or 
the direction of  the difference is undetermined. Using this 
language avoids the temptation to accept a null hypothesis 
that is likely untrue while stressing the need for continued 
research to determine the direction and magnitude of  the 
effect (Robinson and Wainer 2002).

Information-Theoretic Model Selection
Information-theoretic model selection offers a distinct al-
ternative to hypothesis testing, and the approach has seen 
widespread growth in wildlife and ecological sciences (Hil-
born and Mangel 1997, Burnham and Anderson 2002, John-
son and Omland 2004, Richards 2005). In contrast to hypoth-
esis testing, model selection seeks to identify the hypotheses 
that are closest to the truth out of  a set of competing ideas 
while fully acknowledging that all are wrong or incomplete 
characterizations of  the process. The philosophical basis for 
this approach is more in line with that of  Lakatos (1978:24): 
“All theories . . . are born refuted and die refuted. But, are 
they equally good?” He considered it nonsensical to retain 
only unfalsified hypotheses because of  the philosophy that 
hypotheses may never be truly falsified and, more impor-
tantly, science will keep a hypothesis that is known to be 
wrong if  there is not a better one available to take its place. 
Thus, a hypothesis is falsified only if  a better one with 
greater empirical support is available to replace it. The in-
formation-theoretic model selection approach also closely 
follows Chamberlin’s (1890, 1965) view of  science by advo-
cating the construction of  multiple working hypotheses that 
are subject to repeated confrontation with empirical data. 
Those supported by the data tend to be retained, whereas 
those with little support tend to be dropped from consider-
ation (Burnham and Anderson 2001).
	 Using the information-theoretic model selection approach, 
several competing models are suggested to reflect different 
hypotheses about how a process works or the effects of  a 
particular treatment. An appropriate study is designed to 
collect empirical data that will be used as the arbiter in a 
contest among rival hypotheses. The metric for decid-
ing among hypotheses is how close each model is to the 
truth. Due to an explicit link with information theory (hence 
“information-theoretic”), Kullback-Leibler distance has been 
promoted as an appropriate measure of  the distance each 
competing model is from the true data-generating model 
(see Burnham and Anderson 2002:50–54). Several criteria 
may be used to estimate the relative expected Kullback-Leibler 
distance (Shibata 1989, Burnham and Anderson 2002), in-
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cluding Takeuchi’s information criteria; likelihood cross- 
validation criteria (Stone 1977); and Akaike’s information 
criteria (AIC; Akaike 1973), which are the most common in 
the wildlife and ecological literature. By focusing on the 
best explanation for an observed phenomenon, informa-
tion-theoretic model selection does not rely on a binary de-
cision process characteristic of  hypothesis testing, instead al-
lowing models to be differentiated according to the amount 
of  support they receive from the data. Several practical 
guidelines for using information-theoretic model selection 
approaches have been published (Anderson et al. 2001a, An-
derson and Burnham 2002, Richards 2005). In addition to 
the comprehensive treatment in Burnham and Anderson 
(2002), see Guthery et al. (2005) for a more critical review.

Effect Size and Interval Estimation
Most researchers agree that hypothesis testing and model 
selection are only one component of  statistical inference 
and that estimation of  effect sizes and measures of  their 
precision are at least as important ( Johnson 1999, Robinson 
and Wainer 2002, Stephens et al. 2007). Quinn and Dunham 
(1983:613) suggested: “The objective of  biological research 
typically is to assess the relative contributions of  a number 
of  potential causal agents operating simultaneously.” If  this 
is the case, then estimation of  effect sizes is of  primary im-
portance to wildlife science and these results should be em-
phasized in data analysis. Others have echoed this senti-
ment: “The very basic tools for statistical reasoning on the 
strength of  associations and the sizes of  differences and ef-
fects are provided by point estimates, their standard errors 
and associated confidence intervals” (Läärä (2009:152). Re-
porting effect sizes is not only important for practical inter-
pretation of  the focal study, but they also are the critical 
components for any subsequent meta-analysis (Gurevitch  
et al. 2001, Hobbs and Hilborn 2006). Läärä (2009) contains 
several practical recommendations for presenting and inter-
preting effect sizes that should be especially useful to prac-
ticing wildlife professionals.

Regression and General Linear Models
One of  the most flexible approaches to identifying predic-
tive and potentially causal relationships between wildlife and 
environmental or management characteristics involves use 
of  ordinary least squares to estimate parameters of  regres-
sion models or GLM (Fig. 1.11). Experimental manipula-
tions that produce different levels of  predictor variables are 
more readily analyzed by ANOVA, regression, or analysis of  
covariance versions of  GLM under a Fisherian philosophy 
(Fig. 1.11), named after R. A. Fisher, who pioneered a “spirit 
of  reasonable compromise, cautious, but not overly con-
cerned with pathological situations” (Efron 1998:99) in the 
analysis of  experiments. Designing a study to gather data on 
a variety of  potential causal variables rather than manipulat-
ing those variables through a designed experiment is an ap-

pealing alternative, but yields inferences of  much lower cer-
tainty (Fig. 1.5). Performing hypothesis tests on such data 
(e.g., testing point null hypotheses) is easily performed with 
modern regression programs. However, it may not be justi-
fied as an inferential approach and may readily lead into a 
“fishing expedition” doomed to failure due to high Type I 
errors. Many statisticians refuse to analyze such data by us-
ing hypothesis tests and instead encourage biologists to ap-
ply maximum likelihood and information-theoretic model 
approaches under a modeling perspective, that is, identify-
ing the most parsimonious model with good predictive abil-
ity (Milliken and Johnson 1984, Anderson et al. 2000, Burn-
ham and Anderson 2002).
	 It is essential in designing manipulative or observational 
studies, if  one plans to estimate linear models, to strive to 
obtain observations throughout the full range of  the predic-
tive variables. It is especially important to obtain observa-
tions at both low and high values of  the predictive variable, 
because they set limits for the range of  values that can be 
used later for prediction. The values at the ends of  this 
range have the most leverage on slope estimates. If  too nar-
row a range is measured, a significant relationship may not 
be detected among the variability. However, a relationship 
may be linear only through a portion of  its range, such that 
beyond a certain level an increasing effect may turn into a 
negative effect at progressively higher levels. Such situations 
should be apparent from exploratory data analyses (Ander-
son 2001, Johnson 2002).

Bayesian Approaches
Bayesian data analyses are described as “practical methods 
for making inferences from data using probability models 
for quantities we observe and for quantities about which we 
wish to learn” (Gelman et al. 2003:3). One of  the primary 
appeals of  Bayesian statistics is that after sampling a popula-
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Fig. 1.11. Selecting analysis methods from 3 dominant statistical 
philosophies. GLM = general linear model, BIC = Bayesian 
information criteria, AIC = Akaike’s information criteria. Modified 
from Efron (1998).
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tion and calculating statistics, such as the mean, variance, 
and confidence interval for the mean, Bayesian analysis al-
lows us to state that we are 95% certain the true mean for 
the population is within this 95% confidence interval. John-
son (1999) provided an easily understood description of  the 
conceptual differences between the frequentist and Bayesian 
approaches (Fig. 1.11). A Bayesian analysis requires per-
forming 3 basic steps (Gelman et al. 2003).

1.  Specify a probability distribution for all quantities (i.e., 
use prior studies and creative thinking to specify a particular 
prior probability for the parameter[s]). We begin by stating 
the range of  all possible values for the characteristics we are 
attempting to measure and make our best guess of  a proba-
bility distribution for a parameter (based on earlier studies 
and clear thinking) if  any values are more likely than others. 
This step is controversial, because it introduces subjective 
decisions into the process and has potential for misuse if  
one’s goal is to cook the books to produce a particular result 
(Dennis 1996). However, well-designed research should 
gather historical data, so that knowledge is available on the 
probability distribution of  the parameter(s) (Box 1.1) or fail-
ing that, it should specify minimum and maximum values 
with equal chances of  intermediate values (i.e., a flat prior). 

2.  Use the observed data to calculate a posterior distri-
bution for the parameter of interest as a conditional 
probability distribution. This second step in Bayesian anal-
ysis follows data collection. We improve our prior guess of  
the value of  the characteristic by combining it with the new 
data gathered to state conclusively our best posterior guess 
of  the value of  the characteristic. This step is performed us-
ing Bayes’s rule, and this Bayesian estimate might be con-
sidered as a weighted average estimate based on the sample 
data and the assumed prior value, where weights are pro-
portional to the precision of  the observed and prior values 
(Gelman et al. 2003:43). As sample size increases, the Bayes-
ian value approaches the maximum likelihood estimate and 
any influence of  the prior probability vanishes. Markov chain 
Monte Carlo methods are used widely for these calcula-
tions (Fig. 1.11). 

3.  Evaluate the fit of the model and the implications of 
the resulting posterior distribution. This step in Bayesian 
analysis (Gelman et al. 2003:3) consists of  “evaluating the fit 
of  the model and the implications of  the resulting posterior 
distribution: does the model fit the data, are the substantive 
conclusions reasonable, and how sensitive are the results to 
the modeling assumptions?”

Validating Parametric and Simulation Models
The validation and experimental phases of  the modeling 
process described earlier really constitute an effort to con-
front theories with data. The models express our theoreti-

cal understanding of  the system, its characteristics, and its 
processes. Validation and experimentation confront this the-
ory with data, especially when we conduct these activities in 
an adaptive management framework, where management 
actions are accompanied by monitoring to simultaneously 
validate the predictions of  the models (our theory or under-
standing of  the system) and probe the behavior of  the sys-
tem (Walters 1986:250). Comparing model predictions to 
data potentially completes the feedback loop that can be 
used to improve our understanding, but the natural ten-
dency of  managers and biologists is to break the loop by ig-
noring any inconsistencies detected. This tendency is natu-
ral because of  the considerable effort expended in developing 
the models and trade-offs in selecting management actions. 
Ignoring inconsistencies leads to passive adaptation rather 
than a probing through experimental management actions. 
“Conservative, risk-averse decision making creates a partic-
ularly difficult situation for learning” (Walters 1986:251), es-
pecially when the effects of  management are compounded 
with environmental changes and there are lags inherent in 
the responses. Where the desired outcome is a harvestable 
surplus of  a game species, the manager and biologist face 
substantial social, economic, and political pressure to find 
the “right” answer (see the section Adaptive Management: 
Connecting Research and Management below). Models are 
invaluable in efforts to ensure that management and ecolog-
ical understanding are based on valid estimates and relation-
ships rather than on wishful thinking, but their results are 
often attacked by the interested public, whose values and 
“gut instincts” are opposed to model predictions.

SPECULATION AND NEW HYPOTHESES

Rarely does a single research project provide the last word 
on any problem ( Johnson 2002). More commonly, research 
will generate as many questions as answers. Speculation, 
based on inconclusive or incomplete evidence, is one of  the 
most important aspects of  science. Speculation must be 
identified and should not be confused with conclusions 
based on data. But, speculation is the fuel for future research. 
Many facts of  nature have been discovered by accident—an 
unexpected result from some associated research effort. 
However, most research is directional (i.e., it attempts to 
support or falsify a theory reached by speculating from 
facts). New hypotheses can be considered a form of  specu-
lation, which is verbalized in a more formal fashion than 
speculation and has a specific testable format. For example, 
considering spruce grouse, we can formulate a basically un-
testable hypothesis that spruce grouse have evolved a prefer-
ence for use of  lodgepole pine and Engelmann spruce 
trees. This statement is too vague and requires historical 
data that cannot be collected. However, we can hypothesize 
that spruce grouse use lodgepole pine and Engelmann 
spruce trees for: (1) feeding or (2) roosting. Testing these  
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hypotheses, we might learn that 80% of  the spruce grouse 
diet is lodgepole pine, even though Engelmann spruce is 
more abundant. We may then speculate (i.e., hypothesize) 
that needles from lodgepole pine provide higher nutritional 
quality than needles from Engelmann spruce.

PUBLICATION

The final step of  the scientific method is publication of  re-
search. Unfortunately, many research dollars are wasted, be-
cause knowledge gained was not published and the informa-
tion is buried in file cabinets or boxes of  data sheets. The 
publication process is the most difficult phase for many bi-
ologists. Clear concise scientific writing is difficult, because 
most biologists have little formal training in or inclination 
for this activity. Peer review may damage the ego, because 
we must subject our work to anonymous critiques used by 
editors to judge whether the manuscript is acceptable for 
publication.
	 Agency administrators often do not encourage or reward 
employees for publishing their work and discourage publi-
cation in some instances. Administrators are pressured with 
calls for immediate answers to management problems; thus, 
they devalue the long-term benefits of  the publication pro-
cess. Effective administrators recognize that peer review 
and publication will: (1) correct errors and possibly lead 
to a better analysis, (2) help authors reach the most sound 
conclusions from their data, (3) make it easier to defend 
controversial policies, (4) help their personnel grow as sci-
entists by responding to critical comments and careful con-
sideration of  past errors (which may have been overlooked 
without peer review), and (5) make a permanent contri-
bution to wildlife management by placing results in a litera-
ture format available to other agencies, researchers, and 
students.
	 Publication is essential to science. Peer reviews normally 
improve the quality of  a manuscript, but some research may 
not be suitable for publication. This observation emphasizes 
the importance of  careful planning, design, data collection, 
etc. Rarely would any research effort that is properly planned, 
designed, and executed (including a well-written manuscript) 
be unpublishable. However, the revision process (i.e., re-
sponding to criticisms from the editor and referees) may be 
painful and frustrating to authors. Overall, the system is 
necessary to ensure quality publications, and authors should 
not be discouraged by the necessity to defend their work 
and revise manuscripts. Research is not complete and does 
not make a contribution to knowledge and sound manage-
ment of  wildlife resources until results are published in a 
way that effectively communicates to the scientific commu-
nity and user groups (e.g., wildlife managers). In addition to 
publication in peer-reviewed journals, research findings will 
improve wildlife management immediately if  they are com-
municated in other forums, such as professional meetings, 

workshops, seminars, general technical reports, informa-
tional reports, and articles in the popular press.

COMMON PROBLEMS TO AVOID

Procedural Inconsistency
Procedural inconsistency is another common problem that 
can be prevented with proper research design. Problems of  
this type occur from seemingly minor variations or altera-
tions in methodology. For example, if  a project is dependent 
on field personnel to accurately identify songs of  forest pas-
serine birds, the data set may be biased by identification er-
rors (Cyr 1981). In this situation, the magnitude of  the bias 
will depend on the rate of  errors by individuals, differences 
in the rate of  errors among individuals, and relative propor-
tion of  data collected by each individual. Research method-
ology should be defined with great detail, and all individuals 
collecting data should have similar skills and knowledge of  
the methods used (Kepler and Scott 1981). If  inconsistencies 
cannot be eliminated through selection and training of  field 
workers, the design must incorporate double sampling or 
similar procedures to remove inherent biases (Farnsworth  
et al. 2002). One unfortunate aspect of  biases of  this type is 
they are often overlooked (or ignored) as potential problems 
and are seldom reported in research publications. 

Nonuniform Treatments
A common bias stems from nonuniform treatments. This 
problem is illustrated by considering 2 previous research ex-
amples. In the discussion of  crossover experiments, we de-
scribed a 2-year study on pheasant nest success, in which 
mowing on treatment areas was delayed until after 4 July. 
Assume that in the first year of  this study, all treatment ar-
eas were mowed between 4 and 7 July, as planned. But, dur-
ing year 2 of  the study, a 3-day rainstorm began on 4 July, 
and the treatment areas were not cut until 9–12 July. Al-
though this 5-day difference in mowing the treatment areas 
may seem insignificant, the impact on the results and inter-
pretation of  our experiment is really unknown—and may 
be serious. Thus, the second year of  the experiment should 
be repeated. Because dates of  pheasant nesting and plant 
growth varies from year to year in response to tempera-
ture and rainfall patterns, a better way to set the date for 
the mowing treatment might be based on the cumulated  
degree-days widely published in farm journals.
	 In the second example, we want to evaluate effects of  
sharp and feathered edges on nest success of  forest birds. If  
we had used both clearcuts and road ways as sharp edges, 
we might have hopelessly confused the treatment results be-
cause of  differences in the attractiveness of  sharp edges 
near roads, where carrion is an abundant attractant to such 
generalist predators as ravens. High variability between rep-
licates in nonuniform treatments substantially reduces our 
power to detect biologically significant effects.
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Pseudoreplication
Pseudoreplication occurs when sample or experimental 
units are not independent (i.e., they are really subsamples 
rather than replicates, but are treated as though they were 
independent samples or experimental units). This problem 
is widespread in field ecology (Hurlbert 1984) and should be 
avoided when possible. Experimental units are independent 
in manipulative experiments only if  we can randomly as-
sign treatments to each unit. In field studies, a simple test 
for pseudoreplication is to ask whether the values for 2 suc-
cessive observations are more similar than values for 2 ob-
servations drawn completely at random from the research 
population (e.g., Durbin and Watson 1971). If  so, the suc-
cessive observations are probably not true replicates and the 
research should be redesigned, or this lack of  independence 
must be treated correctly in the analysis. This treatment can 
be done by using cluster sampling, adjusting the degrees of  
freedom for tests (Porteus 1987, Cressie 1991), or applying 
Monte Carlo approaches to evaluate test statistics (as is widely 
done for spatially correlated data; Dale and Fortin 2002).
	 There must be a direct tie between the sample or experi-
mental unit and the research population. If  the research 
population consists of  1 meadow in Yellowstone National 
Park, then 2 or more samples drawn from that meadow 
would be replicates. In this example, our inferences or con-
clusions would apply only to that single meadow. If  our re-
search population consisted of  all meadows in Yellowstone 
National Park, then 2 plots in the same meadow would not 
constitute true replicate samples. Also, repeated sampling 
of  the same radiomarked animal often constitutes a form of  
pseudoreplication (e.g., if  our research population consisted 
of  moose in one ecoregion, repeated observations of  habi-
tat use by a single animal would not be true replicates; a 
similar problem would arise if  2 radiomarked animals were 
traveling together, so their habitat selection would not be 
truly independent). The data would have to be summarized 
into a single value, such as the proportion of  observations 
in a certain habitat, for statistical analysis. This compression 
would reduce the sample size to the number of  radiomarked 
moose. Treating repeated observations as replicates is strictly 
justified only when the individual animal is the research 
population. In this situation, tests for serial correlation 
(Swihart and Slade 1985) should be conducted to ensure 
that observations are not repeated so frequently they are 
still pseudoreplicates. 

ADAPTIVE MANAGEMENT: CONNECTING 
RESEARCH AND MANAGEMENT

Wildlife management programs should be developed from 
the application of  scientific knowledge based on research 
(i.e., we should apply scientific facts and principles resulting 
from research on specific topics, e.g., population ecology, 
habitat selection, or behavior). Initially, this practice is a 

sound one for the development of  a new management pro-
gram. The logic behind formulation of  a management  
program is similar to the formulation of  a research hypoth-
esis: both provide opportunity for predictive statements. 
Our management prediction is that our plan of  action will 
achieve a desired result. However, a major problem with 
nearly all wildlife management programs throughout the 
world is the lack of  research on the effectiveness of  pro-
grams (Macnab 1983, Gill 1985). Seldom is the question “does 
our management lead to the desired result?” addressed in 
formal, well-designed, long-term research projects. For ex-
ample, research indicates that spinning-wing decoys make 
mallard breeding populations more vulnerable to harvest 
(Szymanski and Afton 2005). A potential long-term manage-
ment response would be to create more restrictive hunting 
regulations as the use of  spinning-wing decoys increases. 
The assumption is that if  using spinning-wing decoys in-
creases mallard harvest rates, then hunting regulations are 
needed to ensure mallard populations over the long term do 
not shrink with increased vulnerability. However, we should 
consider several important questions. Does increased vul-
nerability translate to increased harvest? What segments of  
the mallard populations are most vulnerable to the use of  
spinning-wing decoys? Will mallards become accustomed to 
spinning-wing decoys over time and thereby decrease their 
vulnerability to harvest? These questions and more should 
be addressed, because imposing more restrictive hunting 
regulations could backfire if  the answers to these questions 
do not support it.
	 A second common example is prescribed burning as a 
management practice to increase deer and elk populations. 
The effectiveness of  this management has not been ad-
dressed directly, and most evaluations have only noted in-
creases in browse forage species and changes in animal dis-
tributions (Stewart et al. 2002, Van Dyke and Darragh 2007, 
Long et al. 2008a, b). Increased population levels in response 
to prescribed burning have not been adequately documented 
or thoroughly studied (Peek 1989).
	 A third example is the use of  population indices to moni-
tor changes in population levels (e.g., ring-necked pheasant 
crowing counts, lek counts, track counts, catch-per-unit- 
effort, and aerial surveys). The primary assumption for use 
of  a population index is the index is directly related to den-
sity. Although nearly every wildlife management agency 
uses trend data from population indices for management de-
cisions, only a few examples of  index validation exist (e.g., 
Rotella and Ratti 1986, Crête and Messier 1987, Marchan-
deau et al. 2006, Forsyth et al. 2007). Some studies have dis-
closed that index values are not related to density (Smith et al. 
1984, Rotella and Ratti 1986, Nottingham et al. 1989, Rice 
2003).
	 Walters (1986) proposed a systematic solution to these 
problems, which he called adaptive management. It in-
volves a more formal specification of  management goals 
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and responses to management actions through the use of  
predictive models (Table 1.2) based on multiple working 
hypotheses, which can be compared to actual system re-
sponses through detailed monitoring (Thompson et al. 1998, 
Sauer and Knutson 2008, Conroy and Peterson 2009). Man-
agement actions are treated as experiments, which must be 
monitored carefully to ascertain whether goals were met 
and to identify errors in understanding the dynamics of  the 
natural systems being managed. Actual responses to man-
agement actions are compared to predictions from our 
models based on current knowledge and assumptions (e.g., 
adaptive harvest management; Williams and Johnson 1995, 
Williams et al. 1996, Johnson and Williams 1999, Johnson  
et al. 2002). Adaptive resource management is an interac-
tive process in which learning over time improves manage-
ment as long as a monitoring program provides feedback to 
both our understanding of  the system and the effects of  
management (Conroy and Peterson 2009).
	 Adaptive resources management is a specific case of  
structured decision-making, a process that addresses com-
plexity, uncertainty, multiple objectives, and different per-
spectives to achieve management objectives (Clemen 1996, 
Clemen and Reilly 2001). Structured decision-making has 
multiple steps: problem definition, objectives, alternatives, 
consequences, trade-offs, uncertainty, risk tolerance, and linked 
decisions (Conroy et al. 2008). The basic strength of  this de-
cision-making approach is that it allows wildlife scientists to 
make effective decisions more consistently and to provide 
guidance for working on hard decisions (Clemen 1996, 
Clemen and Reilly 2001). Wildlife scientists are faced with 
difficult decisions regarding both the management and con-
servation of  wildlife. For example, how can bison be restored 
to their former range, which would benefit other threat-
ened prairie species, while also considering the economic 
and social impacts to cattle ranchers if  brucellosis spread 
from bison to cattle? Both structured decision-making and 
adaptive resource management are being used increasingly 
often by wildlife scientists (Conroy et al. 2002, Johnson et al. 
2002, Dorazio and Johnson 2003, Regan et al. 2005, Moore 
and Conroy 2006, McCarthy and Possingham 2007, Martin 
et al. 2009). Both these approaches differ from scenario 
planning (Kahn 1965, Chermack et al. 2001), practiced in 
business and other organizations to make flexible long-term 

plans based on considering multiple assumptions about the 
future. Such future assumptions are developed from a com-
bination of  established facts and multiple plausible forecasts 
of  future changes, especially social changes. Scenario plan-
ning by the U.S. National Park and Fish and Wildlife Ser-
vices in crisis situations, such as British Petroleum’s Deep-
water Horizon spill of  4.9 million barrels of  oil into the 
Gulf  of  Mexico in 2010, should provide a foundation for a 
more measured adaptive management process to restore 
the damaged wetlands and marine ecosystems.
	 If  wildlife agencies have the responsibility for manage-
ment of  wildlife populations and their habitats, they also 
have the responsibility to conduct research on the effective-
ness of  management programs. Wildlife agency administra-
tors should strive to develop well-designed, long-term man-
agement-research programs as a basic component of  annual 
agency operations.

SUMMARY

Carefully designed wildlife research improves the reliabil-
ity of  knowledge that is the basis of  wildlife management. 
Research biologists must rigorously apply the scientific 
method and make use of  powerful techniques in survey 
sampling, experimental design, and information theory. 
Modeling is an effective tool for predicting the consequences 
of  management choices, especially when it is based on 
carefully designed field studies, long-term monitoring,  
and management experiments designed to increase under-
standing. More effort should be dedicated to the design 
phase of  research, including obtaining critiques from other 
biologists and statisticians and avoiding common prob-
lems, such as insufficient sample sizes, procedural incon-
sistencies, nonuniform treatments, and pseudoreplication. 
When possible, we must move from observational to ex-
perimental studies that provide a more reliable basis for in-
terpretation and conclusions; these studies need to be rep-
licated across space and time. Wildlife biologists have a 
tremendous responsibility associated with management of  
animal species experiencing increasing environmental deg-
radation, loss of  habitat, and declining populations. We 
must face these problems armed with knowledge from 
quality scientific investigations.




