Biomeccanica 07/06/2023

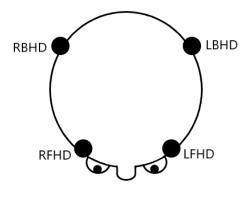
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA BIOMEDICA

BIOMECCANICA

9 CFU

Docente: Eduardo PALERMO

Date	07/06/2023	
Nome		
Cognome		
	Scritto	
	Orale	
	Finale	


1.	Cinematica	Punti	Punti max
1a	Con riferimento alla figura 1, individuare il sistema di riferimento della testa (\mathbf{CS}_{hd}) nel sistema di laboratorio \mathbf{CS}_{0} , tale che:		
	 Ohd coincidente con il baricentro dei marker RFHD, LFHD, RBHD e LBHD; Asse z diretto da Ohd al punto medio tra RBHD e RFHD; piano zy definito dai tre marker RBHD, RFHD e LBHD; x uscente dal foglio. 		4
	Si disegni il sistema di riferimento ottenuto e se ne scriva in forma vettoriale la matrice di posa.		
1b	Considerando quanto ricavato nel punto 1a, con riferimento alla figura 2 si definisca il JCS di collo sapendo che l'ordine delle rotazioni è il seguente: 1. Flessione anteriore/posteriore 2. Rotazione destra/sinistra 3. Flessione destra/sinistra Motivare la risposta e dire quale è la sequenza di Eulero/Cardano relativa. Indicare le rotazioni positive per ogni piano.		3
1c	Calcolare la matrice di trasformazione $\mathbf{H}(\alpha)$ tale per cui ${}^{tk}\omega_{hd}^{tk}=\mathbf{H}(\alpha)\dot{\alpha}$, corrispondente alla sequenza di Eulero/Cardano scelta in precedenza.		3
1d	Con riferimento alla figura 3, si calcolino gli output in tensione degli accelerometri su piede e gamba (IMU_1 e IMU_2). Si consideri una prova statica: Le matrici di rotazione sono: $ {}^{0}R_{IMU_{-1}} = \begin{pmatrix} -0.87 & 0 & 0.5 \\ 0.35 & -0.71 & 0.61 \\ 0.35 & 0.71 & 0.61 \end{pmatrix} $ $ {}^{0}R_{IMU_{-2}} = \begin{pmatrix} 0.5 & 0 & 0.87 \\ 0 & 1 & 0 \\ -0.87 & 0 & 0.5 \end{pmatrix} $		4

Biomeccanica 07/06/2023

	Le matrici di sensibilità e offset per entrambe le IMU sono:		
	$S = \begin{pmatrix} 0.37 & 0.21 & -1 \\ 1.32 & 0.04 & 0.02 \\ -1.23 & 0.43 & 0.61 \end{pmatrix} \frac{V}{g}$		
	$S^{-1} = \begin{pmatrix} -0.02 & 0.71 & -0.06 \\ 1.06 & 1.28 & 1.69 \\ -0.79 & 0.53 & 0.33 \end{pmatrix} \frac{g}{V}$		
	$O = \begin{pmatrix} 0.93 \\ 1.42 \\ -0.12 \end{pmatrix} V$		
Tota	ale		14
2.	Teoria	Punti	Punti max
2a	Disegnare e descrivere il principio di funzionamento di una cella di carico a flessione con 4 estensimetri collegati a un ponte di Wheatstone e ricavarne la sensibilità.		6
2b	Definire (anche con le formule matematiche) cosa sono il Centro di Massa (CoM), il Centro di Gravità (CoG) e il Centro di Pressione (CoP).		4
	(Com), il Centro di Gravita (Cod) e il Centro di Fressione (Cor).		
Tota			10
		Punti	10 Punti max
	ale	Punti	Punti
	ale 3. Programmazione in ambiente Matlab:	Punti	Punti
	3. Programmazione in ambiente Matlab: Dato il seguente Workspace e facendo riferimento alla figura 4:	Punti	Punti
	3. Programmazione in ambiente Matlab: Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double 3x437 double 3x437 double	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double O_P0 3x437 double O_tk0 3x437 double	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double 3x437 double 3x437 double	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double O_P0 3x437 double O_tk0 3x437 double	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double O_PO 3x437 double O_tk0 3x437 double T1_0 4x4 double	Punti	Punti
	Dato il seguente Workspace e facendo riferimento alla figura 4: Workspace Name Value F_0 3x437 double O_P0 3x437 double O_tk0 3x437 double T1_0 4x4 double Dove: • "F_0" contiene le tre componenti della forza esercitata sul punto P di un soggetto, espresse nel sistema di riferimento di laboratorio (CS0), • "0_tk0" contiene le tre componenti dell'origine del sistema di riferimento di tronco del soggetto, espresse in CS0, • "0_P0" contiene la distanza tra l'origine e il punto di applicazione della forza, espressa in CS0. • "T1_0" è la matrice di roto-traslazione per andare dal sistema di	Punti	Punti

Biomeccanica 07/06/2023

2.	Calcolare il modulo del braccio,	
3.	Ricavare e graficare le tre componenti della forza in CS1,	
4.	Ricavare e graficare il momento in CS1 rispetto all'origine O_tk,	
Totale		6
Totale generale		30

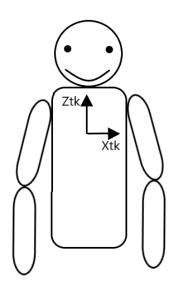


FIGURA 1

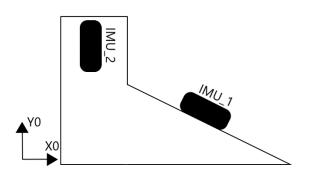


FIGURA 2

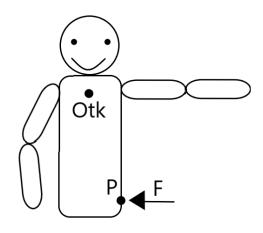


FIGURA 3

FIGURA 4