Biomeccanica 12/07/2022

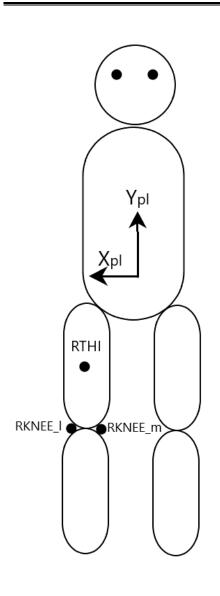
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA BIOMEDICA

BIOMECCANICA

9 CFU

Docente: Eduardo PALERMO

Date	12/07/2022	
Nome		
Cognome		
	Scritto	
	Orale	
	Finale	


1.	Cinematica	Punti	Punti max
1a	Con riferimento alla Figura 1, individuare il sistema di riferimento della coscia (CS_{thi}) nel sistema di laboratorio CS_{0} , tale che:		
	 O_{thi} coincide con il punto medio tra i marcatori RKNEE_m e RKNEE_l z diretto verso l'alto sulla congiungente tra il marcatore RTHI e il punto medio tra i marcatori RKNEE_m e RKNEE_l piano zy formato dai tre marcatori (LTHI, LKNEE_m e LKNEE_l) con x diretto frontalmente (uscente dal foglio) 		4
	Si scriva in forma simbolica la matrice di posa del segmento in esame.		
1b	Considerando quanto ricavato nel punto 1a e la Figura 1, si definisca il JCS di anca sapendo che l'ordine delle rotazioni è il seguente:		
	 Abduzione/adduzione Flessione anteriore/posteriore Rotazione interna/esterna 		3
	Motivare la risposta e dire quale è la sequenza di Eulero/Cardano relativa.		
	Indicare le rotazioni positive per ogni piano.		
1c	Calcolare la matrice di trasformazione $\mathbf{H}(\alpha)$ tale per cui ${}^{pl}\omega^{pl}_{thi}=\mathbf{H}(\alpha)\dot{\alpha}$, corrispondente alla sequenza di Eulero/Cardano scelta in precedenza.		2
1d	Facendo riferimento alla Figura 2, calcolare il momento totale (Nm) rispetto al CS 0 su NECK dato dalle forze F1 (applicata sulla punta del naso) e dalla forza peso della testa applicata sul suo baricentro (M), sapendo che:		
	 F1hd = (-60, 0, 0) N; Mhd = 8 Kg L1 = 100 mm; L2 = 95 mm; L3 = 110 mm. G0= (-9,8, 0, 0) m/s^2 		5

Biomeccanica 12/07/2022

Tota	ale		14
2.	Teoria		Punti max
2a	Definire la localizzazione ottima riportandone i passaggi principali.		6
2b	Descrivere il fenomeno del cross-talk nella misura con gli elettrogoniometri		4
Tota	ale		10
	3. Programmazione in ambiente Matlab:	Punti	Punti max
3a	Quale è il valore della matrice B a valle del codice? A= [1 2 3; 4 5 6; 7 8 9]; B= mean (A', 1)		2
	A. [2; 5; 8] [2 5 8] B. [4; 5; 6] [4, 5, 6]		2
3b	Date le seguenti matrici, come posso ottenere la matrice E? $A = [1 \ 1 \ 1; \ 1 \ 1 \ 1; \ 1 \ 1];$ $B = [2, \ 2, \ 2];$ $C = [3; \ 3; \ 3];$ $D = [4];$ $E = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 3 & 3 & 3 & 4 \end{bmatrix};$		2
	A. [A, B; C, D]; B. [A, C; B, D];		
	C. [A, B'; C', D]; D. [A, C'; B', D];		
3c	Dato il seguente codice, quale stringa di codice consente di ottenere un matrice C di dimensione [4x3]? A=rand(3,3); B=rand(3,1); C=?; A. cat(1,A,B); B. cat(1,A,B'); C. cat(2,A,B); D. cat(2,A,B');	n	2

Biomeccanica 12/07/2022

Totale	6
Totale generale	30

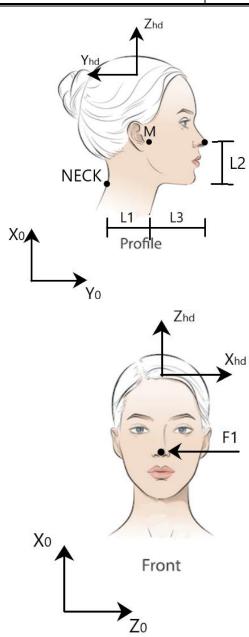


FIGURA 2