Biomeccanica 12/06/2021

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA BIOMEDICA

BIOMECCANICA

9 CFU

Docente: Eduardo PALERMO

Date	12/06/2021		
Nome			
Cognome			
	Scritto	_	
	Orale		
	Finale		

1.	Cinematica	Punti	Punti max
1a	Con riferimento alla Figura 1, individuare il sistema di riferimento della testa (CS_{head}) nel sistema di laboratorio CS_{0} , tale che:		
	 Ohd coincide con il baricentro dei marker RFHD, LFHD, RBHD e LBHD x diretto posteriormente sulla congiungente tra il punto medio di RFHD e LFHD e il punto medio di RBHD e LBHD piano xy formato dai tre marcatori (RFHD, RBHD e LFHD) con z uscente dal foglio 		4
	Si scriva in forma simbolica la matrice di posa del segmento in esame.		
1b	Considerando quanto ricavato nel punto 1a e la Figura 2, si definisca il JCS di collo sapendo che l'ordine delle rotazioni è il seguente:		
	 Flessione antero/posteriore Flessione destra/sinistra Rotazione destra/sinistra 		3
	Motivare la risposta e dire quale è la sequenza di Eulero/Cardano relativa. Indicare le rotazioni positive per ogni piano.		
1c	Calcolare la matrice di trasformazione $\mathbf{H}(\alpha)$ tale per cui $^{hd}\boldsymbol{\omega}_{tk}^{hd}=\mathbf{H}(\alpha)\dot{\alpha}$, corrispondente alla sequenza di Eulero/Cardano scelta in precedenza.		2
1d	Un accelerometro triassiale fornisce in uscita i seguenti valori V_x =1,9 V, V_y =0,58 V e V_z =1,66 V.		5
	Calcolare il vettore 'g , noti:		

Biomeccanica 12/06/2021

	$\mathbf{S} = \begin{bmatrix} -0,62 & 0,01 & 0,01 \\ -0,03 & -0,64 & -0,05 \\ -0,06 & 0,01 & -0,67 \end{bmatrix} \begin{bmatrix} \frac{V}{g} \end{bmatrix}; \mathbf{S}^{-1} = \begin{bmatrix} -1,61 & 0,02 & -0,02 \\ 0,06 & -1,56 & 0,12 \\ 0,14 & -0,02 & -1,49 \end{bmatrix} \begin{bmatrix} \frac{g}{V} \end{bmatrix};$ $\mathbf{O} = \begin{bmatrix} 1,56 \\ 1,03 \\ 1,17 \end{bmatrix} \begin{bmatrix} V \end{bmatrix}; \qquad {}^{I}\mathbf{a} = \begin{bmatrix} 1,6 \\ -1,02 \\ 0,75 \end{bmatrix} \begin{bmatrix} \frac{m}{s^{2}} \end{bmatrix}$		
Totale			14
2.	Teoria	Punti	Punti max
2a	a Disegnare e descrivere il principio di funzionamento di una cella di carico a colonna con quattro estensimetri e ricavarne la sensibilità.		6
2b	b Descrivere i vari metodi di calibrazione di un sistema optoelettronico.		4
Tota	le		10
3. Programmazione in ambiente Matlab:			Punti max
3a	Dato il seguente codice, indicare il valore di C: A=[1,2,3;1,2,3;1,2,3]; A=A'; B=A(1:1:end,:); C=B(1,:); A. [1,1,1] B. [1,2,3] C. [1;1;1] D. [1;2;3]		2
3b	Dato il seguente codice, qual è il valore di B? A=rand(3,3); B=length(A); A. [3] B. [3;3] C. [3,3] D. Nessuna delle precedenti		2
3c	<pre>Dato il seguente codice, qual è la dimensione di C al termine?</pre>		2

Biomeccanica 12/06/2021

-	C. [2x2x2]	D. [2x2x1]	
Total	e		6
Totale generale		30	

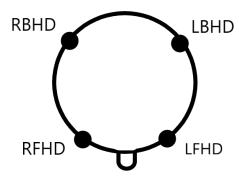


Figura 1: vista dall'alto

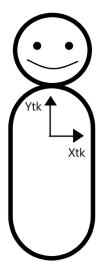


Figura 2