CHAPTER 7 DEMAND FOR INSURANCE

Why buy insurance?

- Demand for insurance driven by the fear of the unknown
 - Hedge against risk -- the possibility of bad outcomes
- Purchasing insurance means forfeiting income in good times to get money in bad times
 - If bad times avoided, then money lost
 - Ex: The individual who buys health insurance but never visits the hospital might have been better off spending that income elsewhere.

Risk aversion

- Hence, risk aversion drives demand for insurance
 - The individual is risk averse if s/he prefers the certainty equivalent to a "lottery" with the same expected value
- We can model risk aversion through utility from income U(I)
 - Utility increases with income: U'(I) > 0
 - Marginal utility for income is declining: U"(I) < 0</p>
 - A measure of (absolute) risk aversion: –

Tu – Health Economics

Income and utility

Bhattacharya, Hyde and Tu - Health Economics

- U(I)

Adding uncertainty to the model

- An individual does not know whether she will become sick, but she knows the probability of sickness is p between 0 and 1
 - Probability of sickness is p
 - Probability of staying healthy is 1 p
- If she gets sick, medical bills and missed work will reduce her income
 - I_s = income if she does get sick
 - \Box I_H > I_S = income if she remains healthy

Bhattacharya, Hyde and Tu – Health Economics

Expected value

- The expected value of a random variable X, E[X], is the sum of all the possible outcomes of X weighted by each outcome's probability
 - If the outcomes are x₁, x₂, ..., x_n, and the probabilities for each outcome are p1, p₂, ..., p_n respectively, then:

$$E[X] = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$$

 In our individual's case, the formula for expected value of income E[I]:

$$E[I] = p I_{S} + (1 - p) I_{H}$$

Example: expected value

- Suppose we offer a starving graduate student a choice between two possible options, a lottery and a certain payout:
 - A: a lottery that awards \$500 with probability 0.5 and \$0 with probability 0.5.
 - B: a check for \$250 with probability 1.
- The expected value of both the lottery and the certain payout is \$250:

$$\begin{split} & \mathsf{E}[\mathsf{I}] = \mathsf{p} \; \mathsf{I}_{\mathsf{S}} + (\mathsf{1}\text{-}\;\mathsf{p}) \; \mathsf{I}_{\mathsf{H}} \\ & \mathsf{E}[\mathsf{A}] = .5(500) + .5(0) = \$250 \\ & \mathsf{E}[\mathsf{B}] = 1(250) = \$250 \end{split}$$

Bhattacharya, Hyde and Tu – Health Economics

People prefer certain outcomes

- Studies find that most people prefer certain payouts over uncertain scenarios
- If a student says he prefers certain option, what does that imply about his utility function?
- To answer this question, we need to define expected **utility** for a lottery or uncertain outcome.

Expected Utility

- The expected utility from a random payout X E[U(X)] is the sum of the utility from each of the possible outcomes, weighted by each outcome's probability.
- If the outcomes are x₁, x₂, ..., x_n, and the probabilities for each outcome are p₁, p₂, ..., p_n respectively, then:
 - **E**[U(X)] = $p_1 U(x_1) + p_2 U(x_2) + \dots + p_n U(x_n)$

Bhattacharya, Hyde and Tu – Health Economics

Example

The student's preference for option B over option A implies that his expected utility from B, is greater than his expected utility from A:

$$\begin{split} & \mathsf{E}[\mathsf{U}(\mathsf{B})] \geq \mathsf{E}[\mathsf{U}(\mathsf{A})] \\ & \mathsf{U}(\$250) \geq 0.5 \ \mathsf{U}(\$500) + 0.5 \ \mathsf{U}(\$0) \end{split}$$

In this case, even though the expected values of both options are equal, the student prefers the certain payout over the less certain one.

This student is acting in a risk-averse manner over the choices available.

Expected utility without insurance

- Lottery scenario similar to case of insurance customer
 - She gains a high income I_H if healthy, and low income I_S if sick.
- Uncertainty about which outcome will happen, though she knows the probability of becoming sick is p

• Expected utility E[U(I)] is: $E[U(I)] = p U(I_s) + (1-p) U(I_H)$

Bhattacharya, Hyde and Tu – Health Economics

E[U(I)] and probability of sickness

- Consider a case where the person is sick with certainty (p = 1):
 - $E[U] = U(I_S)$ equals the utility from certain income I_S (Point S)
- □ Consider case where person has no chance of becoming sick (p = o):
 - **E**[U] = U(I_H) equals utility from certain income I_H (Point H)

What if *p* lies between 0 and 1?

For p between 0 and 1, expected utility falls on a line segment between S and H

Ex: p = 0.25

□ For p = 0.25, person's expected **income** is:

 $E[I] = 0.25 \cdot I_{S} + (1 - .25) \cdot I_{H}$

Utility at that expected income is E[U(I)] (Point A)

Expected utility and expected income

Risk-averse individuals

Synonymous definitions of risk-aversion:

- Prefer certain outcomes to uncertain ones with the same expected income.
- Prefers the utility from expected income to the expected utility from uncertain income
 U(E[I]) > E[U(I)]
- Concave utility function
 - □ U'(I) > 0
 - □ U"(I) < 0

A basic health insurance contract

- Customer pays an upfront fee
 Payment *r* is known as the insurance premium
- □ If ill, customer receives q -- the insurance payout
- If healthy, customer receives nothing
- Either way, customer loses the upfront fee
- Customer's final income is:

Sick: $I_{s} + q - r$ Healthy: $I_{H} + o - r$

Bhattacharya, Hyde and Tu – Health Economics

Income with insurance

- Let I_H ' and I_S ' be income with insurance ■ Sick: I_S ' = I_S + q - r ■ Healthy: I_H ' = I_H + o - r
- Remember that risk-averse consumers want to avoid uncertainty
- □ For them, optimally

Full insurance

□ Full insurance means no income uncertainty $I_{H}' = I_{S}'$

□ Final income is state-independent

- Regardless of healthy or sick, final income is the same
- Risk-averse individuals prefer full insurance to partial insurance (given the same price)

Bhattacharya, Hyde and Tu – Health Economics

Full insurance payout

State independence implies

I_H' = I_S'

🗆 So

$$I_H + o - r = I_S + q - r$$

 $I_H = I_S + q$
 $q = I_H - I_S$

The payout from a full insurance contract is difference between incomes without insurance

Actuarially fair insurance

- Actuarially fair means that insurance is a fair bet **i.e.** the premium equals the expected payout r = p q
- Insurer makes zero profit/loss from actuarially fair insurance in expectation

Bhattacharya, Hyde and Tu - Health Economics

Actuarially fair, full insurance

■ Healthy State	■ Sick State
$I'_H = I_H - r$	$I_S' = I_S - r + q$
$= I_H - pq$	$= I_S - pq + q$
$= I_H - p(I_H - I_S)$	$= I_S - p(I_H - I_S) + (I_H - I_S)$
$= pI_S + (1-p)I_H$	$= pI_S + (1-p)I_H$
$I'_H = \mathbb{E}[I]_p$	$I'_S = \mathbb{E}[I]_p$
Notice consumers with insurance achieve their	actuarially fair, full

ŀ certainty!

Insurance and risk aversion

- As we have seen, simply by reducing uncertainty, insurance can make this risk-averse individual better off.
- Relative to the state of no insurance, with insurance she loses income in the healthy state (I_H > I'_H) and gains income in the sick state (I_S < I'_S).
 - In other words, the risk-averse individual willingly sacrifices some good times in the healthy state to ease the bad times in the sick state.

Bhattacharya, Hyde and Tu – Health Economics

Insurer profits

- Now consider the same insurance contract from the point of view of the insurer
 - Premium r
 - Payout q
 - Probability of sickness p
 - E[Π] = Expected profits

$$E[\Pi(p,q,r)] = (1-p)r + p(r-q)$$
$$= r - pq$$

Fair and unfair insurance

 In a perfectly competitive insurance market, profits will equal zero

 $\mathbf{E}[\Pi(p,q,r)] = 0 \qquad \Longrightarrow \qquad r = pq$

- Same definition as actuarially fair!
- An insurance contract which yields positive profits is called unfair insurance:

 $\mathbf{E}[\Pi(p,q,r)] > 0 \qquad \Longrightarrow \qquad r > pq$

 An insurer would never offer a contract with negative profits

Bhattacharya, Hyde and Tu – Health Economics

Full vs. partial insurance

 Partial insurance does not achieve stateindependence

■ Full insurance

Partial insurance

$$\begin{split} I'_{S} &= I'_{H} & I'_{S} < I'_{H} \\ I_{S} - r + q &= I_{H} - r & I_{S} - r + q < I_{H} - r \\ I_{S} + q &= I_{H} & I_{S} + q < I_{H} \\ q &= I_{H} - I_{S} & q < I_{H} - I_{S} \end{split}$$

Size of the payout q determines the fullness of the contract

\Box Closer q is to $I_H - I_S$, the fuller the contract

Comparing insurance contracts

- A^F -- Actuarially fair & full
- A^P -- Actuarially fair & partial

 $\Box U(A^{F}) > U(A^{P}) > U(A)$

Bhattacharya, Hyde and Tu – Health Economics

The ideal insurance contract

- For anyone risk-averse, actuarially fair & full insurance contract offers the most utility
 Hence, it is called the ideal insurance contract
- Ideal and non-ideal insurance contracts:

	Fair	Unfair
Full	r = pq	r > pq
	$q = I_H - I_S$	$q = I_H - I_S$
Partial	r = pq	r > pq
	$q < I_H - I_S$	$q < I_H - I_S$

Comparing non-ideal contracts

- A^F Full but actuarially unfair contract
- □ A^P Partial but actuarially fair contract

Comparing non-ideal contracts

- □ In this case, $U(A^{F}) > U(A^{P})$
 - Even though A^F is actuarially unfair, its relative fullness (i.e. higher payout) makes it more desirable
- But notice if contract A^F became more unfair, then expected income E[I] falls
 - If too unfair, A^F may generate less utility than A^P
- Similarly, A^P may become more full by increasing its payout
 - Uncertainty falls, so point A^P moves
 - At some point, this consumer will be indifferent between the two contracts

Conclusion

- Demand for insurance driven by risk aversion
 - Desire to reduce uncertainty
 - Diminishing marginal utility from income
 - U(I) is concave, so U"(I) < 0</p>
 - □ U(E[I]) > E[U(I)]
- Risk aversion can explain not only demand for insurance but can also help explain
 - Large family sizes
 - Portfolio diversification
 - Farmers scattering their crops and land holdings