CHAPTER 3 DEMAND FOR HEALTH: THE GROSSMAN MODEL

Intro

- □ Previously...
 - Demand for health care is downward sloping
 - People choose amount of health care they receive based on price
- People choose their health care, but do they choose their own health?
 - Is health something that happens to us? Or do we choose it?
 - We use the Grossman model to explore this question

The 3 Roles of Health (H)

Health plays three roles in the Grossman model:

- A consumption good
- 2. An input into production
- 3. A form of stock/capital (an investment)

Bhattacharya, Hyde and Tu – Health Economics

Health as a consumption good

Health as a direct input into utility

- Health as a consumption good enters directly into utility
- Single-period Utility at time t

$$U_t = U(H_t, Z_t)$$

- H_t = level of health
- \Box Z_t= "home good"
 - Everything non-health that contributes to utility
 - E.g. video games, time with friends, movie tickets
- **Note: health ≠ health care
 - Health care is not explicitly in the utility function
 - i.e. Getting vaccines does not provide utility but staying healthy does

Health as a consumption good Bhattacharya, Hyde and Tu – Health Economics

Time constraints in the Grossman model

In a single period, there are only 24 hours in a day to contribute to your utility:

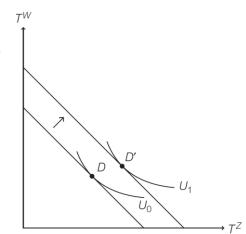
 $\Theta = 24 = T^W + T^Z + T^H + T^S$

- Divide total time Θ between:
 - Working T^W
 - Playing T^Z
 - Improving health T^H
 - Being sick T^S

Time constraint means time tradeoffs

□ Time working T^W produces income

- Buy things that contribute to utility (H, Z) but need to spend time in those activities (T^H, T^Z)
- Time sick T^S does not increase utility
 - Every hour spent sick takes away time to do other utility-increasing activities (loss time)


Table 3.1.	Activities	in the	Grossman	model.
------------	------------	--------	----------	--------

Activity	Example	Purpose
Working (T^{W})	Working at a power plant; playing professional sports; teaching health economics	Earn income to purchase items that will enhance <i>H</i> and <i>Z</i>
Playing (T^Z)	Doing a jigsaw puzzle; going to the opera; logging onto Facebook	Enhance Z
Improving health (T^H)	Jogging; undergoing surgery; beauty rest	Enhance H
Being sick (T^S)	Spending the day home in bed, doing nothing	None; T^s is always wasted time

Health as a consumption good Bhattacharya, Hyde and Tu – Health Economics

The labor-leisure tradeoff

- Given levels of T^s and T^H, individual chooses how to allocate time between work T^W and play T^Z.
- Optimal point decides on indifference curves
- When health improves, more productive time is available for use
 - Pushes time constraint outward (from U₀ to U₁)
 - Can reach higher utilities

Health as an input into production

The three roles of health (H)

Health plays three roles in the Grossman model:

- 1. A consumption good
- 2. An input into production
 - Of health (H)
 - Of productive time (T^P)
- 3. A form of stock/capital (an investment)

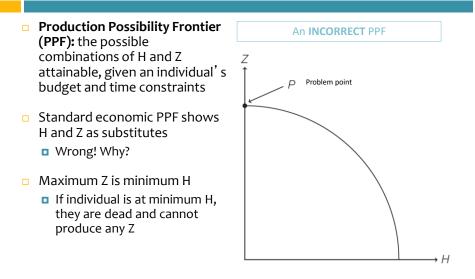
Producing H and Z

Both Health and Home good Z must be **produced** with time and market inputs

$$H_{t} = H (H_{t-1}, T_{t}^{H}, M_{t})$$

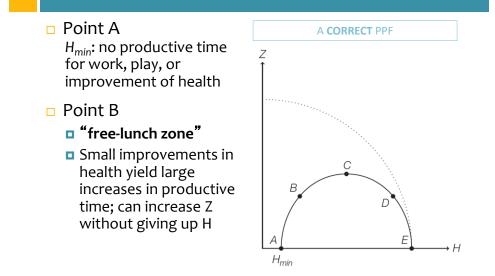
$$Z_{t} = Z (T_{t}^{Z}, J_{t})$$

- M_t= market inputs for health H
 Ex: weights, treadmill
- J_t= market inputs for home goods Z
 Ex: video games, opera tickets
- Today's health H_t also depends on yesterday's health H_{t-1}
 This is health's third role as a stock which we discuss later

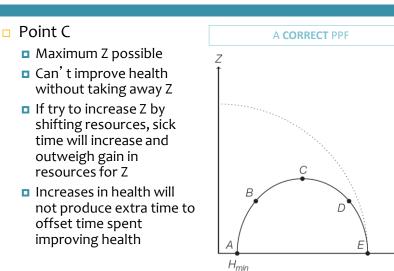

Health as an input into production Bhattacharya, Hyde and Tu - Health Economics

Health affects production by lowering T^s

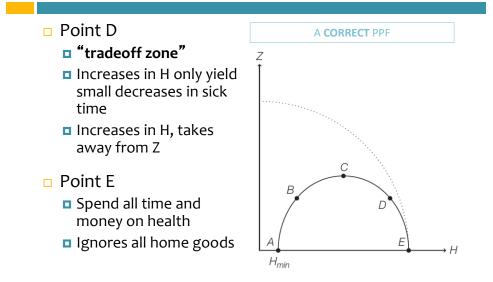
 $T^{P}=\Theta - T^{S} = T^{W} + T^{Z} + T^{H}$


- □ Healthier you are, the less time you spend sick
- □ T^P is productive time spent on useful activities
 - Increased productive time can be reinvested into health (T^H) or other useful endeavors (T^W, T^Z)
- Only way to reduce sick time (T^s) is to improve health

Production Possibility Frontier

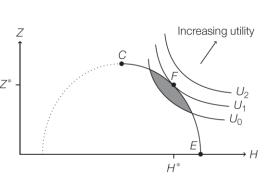

Health as an input into production Bhattacharya, Hyde and Tu – Health Economics

PPF in the Grossman model

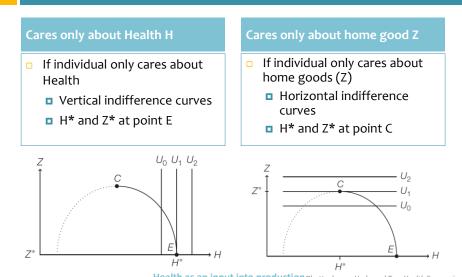

Health as an input into production Bhattacharya, Hyde and Tu - Health Economics

PPF in the Grossman model

Health as an input into production Bhattacharya, Hyde and Tu – Health Economics


PPF in the Grossman model

Health as an input into production Bhattacharya, Hyde and Tu - Health Economics


Choosing optimal H^{*} and Z^{*}

- Someone who values both H and Z chooses a point between C and E in order to maximize their utility
- Chooses point F
 - U₂ is unattainable given PPF constraints Z^{*}
 - At U_o, an individual can attain more utility
 - At F: U₁ and PPF are tangent
 - H* and Z* are optimal levels of health and home goods

Health as an input into production Bhattacharya, Hyde and Tu – Health Economics

Exotic preferences and indifference curves

Health as an investment

The three roles of health (H)

Health plays three roles in the Grossman Model:

- 1. A consumption good
- 2. An input into production
- 3. A form of stock/capital (an investment)

Lifetime of utility

• On any day, an individual considers not only today 's utility $U(H_o, Z_o)$ but all future utility as well!

$$U = U(H_0, Z_0) + \delta U(H_1, Z_1) + \delta^2 U(H_2, Z_2) + \dots + \delta^{\Omega} U(H_{\Omega}, Z_{\Omega})$$
$$= \sum_{t=0}^{\Omega} \delta^t U(H_t, Z_t)$$

□ Health is a **stock**; some of it carries over each new period

- □ Home good Z is a **flow** (it lasts for only 1 period)
- $\Box \delta$ = individual' s discount rate
 - A person values utility now more than in the future
- \square Ω = individual's lifespan (total number of periods)

```
Health as an investment Bhattacharya, Hyde and Tu – Health Economics
```

Health depreciates over time

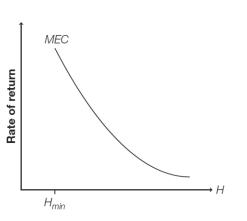
Some of yesterday's health lasts to today but not all of it

$$H_{t} = H((1 - \gamma)H_{t-1}, T_{t}^{H}, M_{t})$$

 \Box γ = rate of depreciation

Recall:

- **\square** H_t = health at time period t
- **\square** H_{t-1} = health from previous period
- **T** $_{t}^{H}$ = time spent on health in period t
- M_t = market inputs for health (like checkups and prescription pills)

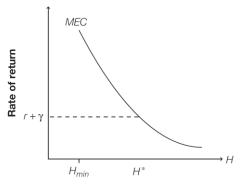

Health as an investment

MEC curve and investments in health

Marginal Efficiency of Capital (MEC) curve:

indicates how efficient each unit of health capital is in increasing lifetime utility

 When level of H is low, small investments have high returns to productive time


Health as an investment

Bhattacharya, Hyde and Tu - Health Economics

Costs to investing in health

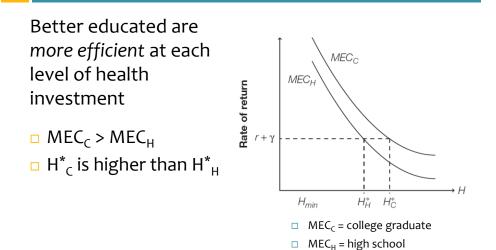
Opportunity cost

- Forgoes putting money into other investments
- r = interest rate of alternative market investment
- **Depreciation** due to aging (γ)
 - Health must pay a return of at least r + γ
 - If return is less than
 r + γ, then market return
 - beats health investment return
- H* = optimal amount of health
 - Marginal cost balances with marginal benefit of health investment

Health as an investment Bhattacharya, Hyde and Tu – Health Economics

Predictions of the Grossman model

The Grossman model helps explain why we observe:


- 1. Better health among the educated
- 2. Declining health among the aging

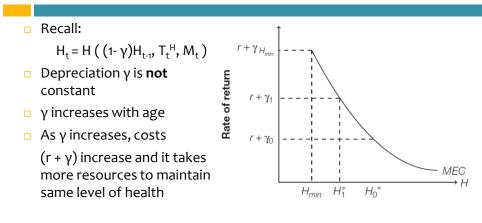
Bhattacharya, Hyde and Tu – Health Economics

Health and education

- Well-educated individuals are more efficient producers of health
 - College grads benefits more than a high school dropout.
 - Explanations?

MEC and efficiency of health investment

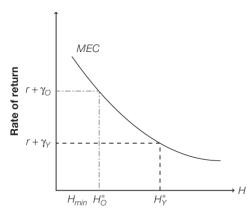
dropout


Bhattacharya, Hyde and Tu - Health Economics

Predictions of the Grossman model

The Grossman model helps explain why we observe:

- 1. Better health among the educated
- 2. Declining health among the aging


Depreciation of health

As a result of increasing depreciation γ over time, optimal health H* also declines over time!

Bhattacharya, Hyde and Tu - Health Economics

Optimal death in the Grossman model

- Because of rising depreciation, there are better investments in the market than the individual's health
- □ H* eventually reaches H_{min}
- Why would anyone choose H_{min}?
 - How is H_{min} utilitymaximizing?

Conclusion

- Is health something that happens to us or is chosen?
 - Grossman model says it is chosen
 - In fact, we even <u>choose</u> when we die
 - While that may seem far-fetched, Grossman model a useful tool for understanding the roles and tradeoffs of health
- Next we use the Grossman model to understand empirical findings about the relationship between socioeconomic status and health