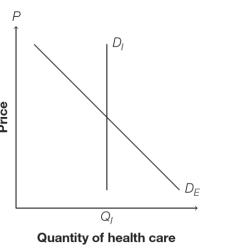


Standard economic demand curves are downward sloping

 As price (P) decreases, quantity (Q) demanded increases

Example:


- P=\$3, Q=4 lollipops
- P=\$1, Q=8 lollipops
- P=\$0.50, Q=9 lollipops

Bhattacharya, Hyde and Tu – Health Economics

Elasticity measures the degree of downward-sloping

 Elastic demand D_E
 price sensitive: changes in price greatly affect the quantity demanded
 Inelastic demand D_I
 Price insensitive: changes in price do not significantly change the quantity demanded

Bhattacharya, Hyde and Tu – Health Economics

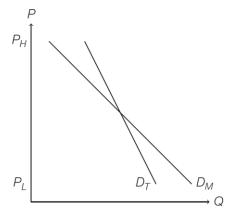
Does the demand curve for health care slope downward?

Are people sensitive to the price of health care?

Is demand for vaccines such that...

- P = \$100, Q=1,000
- P = \$1, Q=1,000
- i.e. demand is inelastic?
- Is demand for band-aids such that...
 - P = \$100, Q = 1
 - P = \$1, Q = 30
 - i.e. demand is elastic?
- If people always obey their doctors, then demand should be *inelastic*!

Need randomized experiments


Randomized experiments:

- <u>Definition</u>: a study that assigns treatments randomly to different groups of study participants
- Includes:
 - A control group (no treatment)
 - Placebo group
- Helps generate experimental groups that are statistically similar to each other

Bhattacharya, Hyde and Tu – Health Economics

Non-randomized experiments can be biased

- Measured demand curve
 D_M is biased compared to
 true demand *D_T*
- People generally choose the amount of insurance they receive
- Sicker people will choose more insurance because they know they will need more care

Evidence from Randomized Experiments

Two Randomized Experiments

RAND Health Insurance Experiment (HIE)

Oregon Medicaid Experiment

RAND HIE

- Randomly assigned 2,000 families from six US cities to different insurance coverage plans
 - Copayments groups:
 - Free, 25%, 50%, and 95%
- Tracked utilization of health care (Q) in each copayment plan (P)
 - Copayment acts as the marginal cost that each family faces when buying care

Bhattacharya, Hyde and Tu – Health Economics

Oregon Medicaid Experiment

- Compared two groups of low-income adults
 Medicaid lottery winners vs. lottery losers
- Lottery winners got to apply for public health insurance through Medicaid
 - So they faced lower out-of-pocket prices for care
- Lottery losers could not get Medicaid (but might have purchased outside insurance)

Results?

 Health care demand curves are downward sloping (economic theory prevails!)

Price changes affected demand for health care

Bhattacharya, Hyde and Tu – Health Economics

Different measures of care

Outpatient Care

- <u>Def</u>: any medical care that does not involve an overnight hospital stay
 - E.g. runny noses, twisted ankles, minor broken bones

Inpatient Care

- Def: medical care requiring overnight stays
 - E.g. More serious surgeries or conditions that require overnight recovery or monitoring

ER Care

- Def: care involving the emergency room
 - E.g. heart attacks, strokes

Outpatient care

RAND HIE

- As patient cost-sharing (P) increases, number of episodes (Q) of outpatient care decreases
- Holds for both acute and chronic conditions

(a)	Data from K	Data from Keeler et al. (1988)			
	Avg # o	Avg # of annual episodes by condition			
Plan	Total	Total Acute Chronic			
Free	2.99	2.29	0.70		
25%	2.32	1.78	0.54		
50%	2.11	1.60	0.51		
95%	1.90	1.44	0.46		

Bhattacharya, Hyde and Tu – Health Economics

Outpatient care

- Oregon Medicaid Study
 - Lottery winners have more outpatient visits than lottery losers

Both the RAND HIE and the Oregon Medicaid Study find downward-sloping demand for outpatient care!

Inpatient care

RAND HIE

(a) (Data from Keeler, 1988)			
Avg # of			
Plan	Annual Visits		
Free	0.133		
25% 0.109			
50% 0.099			
95% 0.098			

Oregon Medicaid Study

No significant difference in usage rates between lottery winners and lottery losers

* Indicates significantly different from the free plan at the p=5% level. ** Indicates significantly different from the free plan at the p=1% level.

Demand is still downward-sloping but *less* elastic than demand for outpatient care

ER care

RAND HIE

(a) (Data from Newhouse, 1993)				
	Probability			
Plan	of ER use			
Free	22%			
25%	19%*			
50%	20%			
95%	15%**			

* Indicates significantly different from the free plan at the p = 5% level. ** Indicates significantly different from the free plan at the p = 1% level.

Oregon Medicaid Study

No significant difference in ER care for lottery winners vs. lottery losers

Even for emergency room care – likely the most urgent kind – those on the highest copayment plan in the RAND HIE were *less* likely to buy care!

Pediatric care

Pediatric care

 <u>Def</u>: care for infants or children usually paid for by a parent or guardian

Data from RAND HIE:

Table 2.5. Percentage with preventative pediatric care over three years, by age and care type.

	0–6 years		7–16 years	
	Immunization	Any preventative	Immunization	Any preventative
Free	58.9	82.5	21.2	64.8
Copayment	48.7*	73.7*	21.7	59.6

* Statistically significant discrepancy from free plan.

Source: Newhouse (1993). With permission from RAND.

Bhattacharya, Hyde and Tu - Health Economics

Mental health & dental Care (RAND HIE)

Table 2.6. Fer-capita mental neutin expenditures, by plan type			
Plan	Mean expense (\$)	Percentage of free plan	
Free	42.2	-	
25%	28.4	67%	
50%	13.1	33%	
95%	18.1	43%	

Table 2.6. Per-capita mental health expenditures, by plan type

Source: Newhouse (1993). With permission from RAND.

Table 2.7.	Dental	care utilization	by income level.
------------	--------	------------------	------------------

	Low-income group ⁺		High-income group⁺	
	Percentage with any use	Average expenditures (\$)	Percentage with any use	Average expenditures (\$)
Free	57.8	317	74.7	339
95%	39.8*	216*	61.3*	234*

* Statistically significant discrepancy from free plan.

† The low-income group comprises the third of households with the lowest incomes. The high-income group comprises the third of households with the highest incomes.

Source: Newhouse (1993). With permission from RAND.

Prescription drugs

Data from RAND HIE

Table 2.8.	Antibiotic	use in	the	RAND HIE.
------------	------------	--------	-----	-----------

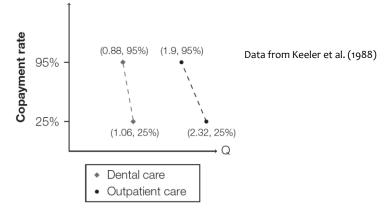
	No. of antibiotics per person		
Plan	Bacterial conditions	Viral conditions	
Free	0.47	0.17	
Copay	0.24**	0.08**	

** Statistically significant discrepancy from the free plan. *Source:* Keeler et al. (1988). With permission from RAND.

Bhattacharya, Hyde and Tu – Health Economics

Non-randomized experiment evidence

- U.S. Medicare
 - Citizens are eligible for health insurance through Medicare when they turn 65 but not before
 - If demand for health care is downward-sloping, we expect a jump in health care usage at age 65
 - This is known as a discontinuity study
 - There is a discontinuity in health insurance at age 65


Card et al. (2009)

- Card et al. have two main findings:
 - Unplanned emergency department admissions follow a linear trend around the age of 65
 - Other hospital admissions jump up at the age of 65
- There is a discontinuity in medical usage at the same point of discontinuity in Medicare coverage!
- This is further evidence that demand for health care is sensitive to price

Bhattacharya, Hyde and Tu – Health Economics

Comparing demand curves

How can we determine which type of demand is more price sensitive?

Arc Elasticity

- Need a measure to compare the relative price sensitivity of *different* goods
 - So the measure needs to be unitless (how else would we compare ER visits to sticks of gum?)
- Arc Elasticity:

$$\epsilon_{arc} = \frac{\Delta Q/(Q_1 + Q_2)}{\Delta P/(P_1 + P_2)}$$

where $\Delta Q = Q_2 - Q_1$ and $\Delta P = P_2 - P_1$

Bhattacharya, Hyde and Tu – Health Economics

Health care has inelastic demand

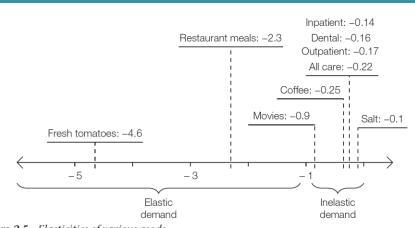


Figure 2.5. Elasticities of various goods.

Source: Developed from Newhouse (1993) and Gwartney et al. (2008).

Does price for care affect health?

Mortality rates

- **RAND HIE:** no difference between treatment groups
 - ** 10% difference of mortality rate between high-risk participants on free and cost-sharing plans (people on free plan less likely to die)
- Oregon Medicaid: no difference between lottery winners and losers

Bhattacharya, Hyde and Tu – Health Economics

Does the price of care affect health?

Does price for care affect health?

RAND HIE:

 Generally, no health differences between people on free plan vs. cost-sharing!
 **Only statistically significant difference between plans were in blood pressure, myopia, & presbyopia

Table 2.10. <i>H</i>	Health indicators by	insurance plan	in the RAND HIE.
----------------------	----------------------	----------------	------------------

Condition	Free plan	Copay plan
FEV_1^a	95.0	94.8
Diastolic blood pressure (mm Hg)	78.0	78.8*
Cholesterol (mg/dl)	203	202
Glucose (mg/dl)	94.7	94.2
Abnormal thyroid level (% of sample)	2.4	1.7
Hemoglobin (g/100 ml)	14.5	14.5
Functional far vision (Snellen lines)	2.4	2.5^{*}
Functional near vision (Snellen lines)	2.35	2.44^{*}
Chronic joint symptoms (% of sample)	30.0	31.6

^a FEV is forced expiratory volume in 1 second.

* Indicates significantly different from the free plan at the $p\,{=}\,5\%$ level.

Source: Newhouse (1993). With permission from RAND.

Bhattacharya, Hyde and Tu – Health Economics

Does price for care affect health?

Oregon Medicaid Experiment

- Lottery winners self-reported better overall health, more healthy days, and lower rates of depression
- Discrepancy with RAND HIE may be because Oregon Medicaid Study worked with the very low-income, while RAND HIE studied a broader cross-section of the U.S.

Conclusion

- Demand curves for health care are downward sloping
 - Quantity of care demanded is sensitive to price (though not as sensitive as other demands, e.g. for movies)
- BUT generally, price of health care does not seem to affect one's health
 - Exception is that price seems to affect the most vulnerable segments of the population (low-income, high blood pressure, etc.)
- Policy and health insurance implications?