Homeworks: Acids, bases, hydrolysis

Exercise 2

Calculate the Ka of a weak monoprotic acid whose 0.1 M solution has pH= 3.0.

$$AH + H_2O \leftrightarrows A^- + H_3O^+$$

$$[H_3O^+] = 10^{-pH} = 10^{-3} M$$

$$Ka = [H_3O^+]^2/Ca = 10^{-6}/10^{-1} = 10^{-5}$$

Exercise 1

◆ Which is the pH of a solution 0.01M of ammonia? (Kb=1.8·10⁻⁵ M at 25°C)

Ammonia is a weak base, hence we can calculate [OH]:

[OH] =
$$\sqrt{(Kb \cdot Cb)} = \sqrt{(1.8 \cdot 10^{-5} \cdot 0.01)} = 4.24 \cdot 10^{-4}$$

Exercise 3

Calculate the molar concentration of a solution of ammonia (Kb=1.8·10⁻⁵M at 25°C) and the concentration of hydroxyls, given that α =1.3·10⁻².

Kb= Cb·
$$\alpha^2$$
 / (1- α)
 \rightarrow Cb = Kb·(1- α) / α^2 = 1.8·10⁻⁵·0.987 / 1.69·10⁻⁴ = 0.105 M

$$[OH'] = Cb \cdot \alpha = 0.105 \cdot 1.3 \cdot 10^{-2} = 1.36 \cdot 10^{-3} M$$

Exercise 4

Calculate the pH of a solution made by mixing 25ml of KOH 0.01 N with 75ml of HNO₃ 0.01 N.

$$n_{eq}$$
 base = N·V = $10^{-2} \cdot 25 \cdot 10^{-3} = 2.5 \cdot 10^{-4}$ eq

$$n_{eq}$$
 acid = N·V = $10^{-2} \cdot 75 \cdot 10^{-3} = 7.5 \cdot 10^{-4}$ eq

There is an excess of acid, therefore the pH will be <7

n acid = n acid - n base =
$$7.5 \cdot 10^{4}$$
- $2.5 \cdot 10^{4}$ = $5 \cdot 10^{4}$ eq pH = -log $(5 \cdot 10^{4})$ = 3.3

Exercise 6 = S

monia is 1.3% dissociated tion of ammonia and of hydroxide anions in a solution in which am-Kb of ammonia is 1.8·10⁻⁵ M at 25°C. Calculate the molar concentra-

Kb= Cb·
$$\alpha^2$$
 / (1- α)

Kb= Cb·
$$\alpha^2$$
 / (1- α)
 \rightarrow Cb = Kb·(1- α) / α^2 = 1.8·10⁻⁵·0.987 / 1.69·10⁻⁴ = 0.105 M

$$[OH] = Cb \cdot \alpha = 0.105 \cdot 1.3 \cdot 10^{-2} = 1.36 \cdot 10^{-3} M$$

Exercise 5

solution $5 \cdot 10^{-3}$ M (Ka= $2 \cdot 10^{-4}$ M). Calculate the dissociation coefficient of a methanoic acid

$$Ka = Ca \cdot \alpha^2 / (1-\alpha) \rightarrow Ca \cdot \alpha^2 - Ka(1-\alpha) = 0$$

$$5 \cdot 10^{-3} \alpha^2 + 2 \cdot 10^4 \alpha - 2 \cdot 10^4 = 0$$

$$5 \alpha^2 + 0.2 \alpha - 0.2 = 0$$

$$\alpha = \frac{-0.2 \pm \sqrt{(0.04 + 4)}}{10} = 0.18$$

Exercise 7

0.1% dissociated and its pH is 5.0. Calculate the concentration of a solution of a weak acid knowing that it is

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

$$[H_3O^+] = Ca \cdot \alpha \longrightarrow Ca = [H_3O^+]/\alpha = 10^{-5}/10^{-3} = 10^{-2} M$$

Exercise 8

Ka of HCN is $4\cdot10^{-10}$ M at 25°C. Calculate the molar concentration of the undissociated acid and the pH of the solution in which 0.01% of HCN is dissociated.

Ka= Ca·
$$\alpha^2$$
 / (1- α)
 \rightarrow Ca = Ka·(1- α) / α^2 = 4·10⁻⁴·(1-10⁻⁴) / 10⁻⁸ = 0.0399 = 0.04 M

[H3O⁺] = Ca·
$$\alpha$$
 = 4·10⁻⁶ \rightarrow pH = 5.39

Exercise 10

A solution of Lithium hydrogen carbonate, made by dissolving 7.6 mg of salt in 1 L of water, has pH=8.2. Calculate the values of Ki and Ka.

$$\begin{aligned} & \text{LiHCO}_3 \rightarrow \text{Li}^* + \text{HCO}_3^* \\ & \text{HCO}_3^* + \text{H}_2\text{O} \implies \text{H}_2\text{CO}_3^* + \text{OH}_3^* \end{aligned}$$

$$Cs = g / (FW \cdot V) = 7.6 \cdot 10 - 3 / 6.9 \cdot 1 = 1.1 \text{ mM}$$

pOH = 14 − pH = 14-8.2 = 5.8
$$\rightarrow$$
 [OH] = 10^{-5.8} = 1.58·10⁻⁶ M

$$Ki = Kw / Ka = [OH^{-1}]^2 / Cs = (1.58 \cdot 10^{-6})^2 / 1.1 \cdot 10^{-3} = 1.44 \cdot 10^{-9}$$

$$Ka = Kw / Ki = 10^{-14} / 1.44 \cdot 10^{-9} = 6.94 \cdot 10^{-6}$$

Exercise 9

A solution of ammonium chloride has pH=5.3. Calculate the concentration of the salt in solution. (Kb= $1.8 \cdot 10^{-5}$ M at 25° C)

$$NH_{\downarrow}^{\uparrow}CI \rightarrow CI + NH_{\downarrow}^{\uparrow}$$

$$NH_{\downarrow}^{\uparrow} + H_{\downarrow}^{2}O \Rightarrow NH_{\downarrow} + H_{\downarrow}^{3}O$$

$$K_i = \frac{K_w}{K_b} = \frac{[H_3 O^{+1}]^2}{Cs}$$

$$C_S = [H_3 O^{+1}]^2 \cdot \frac{Kb}{Kw} = \frac{(5 \cdot 10^{-6})^2 \cdot 1.8 \cdot 10^{-5}}{10^{-14}} = 0.045M$$

Exercise 11

Calculate the pH of a solution of ammonium chloride made by 10^4 mol of NH₄⁺ in 100 ml of solution. (Kb=1.8·10⁻⁵ M at 25°C)

$$NH_{4}^{C}CI \rightarrow CI + NH_{4}^{+}$$

 $NH_{4}^{+} + H_{2}^{2}O \Rightarrow NH_{3}^{-} + H_{3}^{3}O^{+}$

$$[H_3O^{+1}] = \sqrt{Ki \cdot Cs} = \sqrt{\frac{Kw \cdot Cs}{Kb}} = \sqrt{\frac{10^{-14} \cdot 10^{-3}}{1.8 \cdot 10^{-5}}} = \sqrt{5.5 \cdot 10^{-13}} = 7.4 \cdot 10^{-7}$$

$$pH = -log 7.4 \cdot 10 - 7 = 6.13$$