Homework 7
 Summary exercises

Which of the following compounds is bound by a covalent heteropolar bond?

- Hydrochloric acid OK
- Helium
- molecular Hydrogen
- molecular Nitrogen

Which of the following gases has an ideal behaviour at room temperature?

- Methanol
- Hexane
- PCl_{5}
- di-oxygen OK

Which of the following statements is true when referring to the properties of the osmotic pressure?

- It depends on the temperature; OK
- it does not depend on the dissociation coefficient;
- it does not depend on the the number of ions in solution;
- it depends on the hydrostatic pressure exerted on the solution.

Which of the following statements is true when referring to the equilibrium constant?

- Its numerical value depends on the temperature; OK
- its numerical value does not change with the temperature;
- its numerical value depends on the initial concentration of reagents;
- its numerical value depends on the initial concentration of products.

Which of the following compounds is able to hydrolyse water in aqueous solution?

- Sodium acetate OK
- potassium hydroxyl
- ammonium sulfate OK
- sodium chloride

Design the molecular shape (Fisher projections) of the following compounds

Methanoic acid

Glucose (open form)

Exercise 7

- An aqueous solution has been prepared by dissolving 10 g of an unknown compound in 250 g of water; the osmotic pressure of the solution is 6.5 atm at $25^{\circ} \mathrm{C}$. Calculate the formula weight of the compound.

$$
\pi=\mathrm{CRT}=\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{~T} / \mathrm{FW} \cdot \mathrm{~V}
$$

250 g of $\mathrm{H}_{2} \mathrm{O}=250 \mathrm{ml}$
$F W=\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{T} / \mathrm{V}=(10 \cdot 0.082 \cdot 298) /(6.5 \cdot 0.25)=244.36 / 1.625=150.37 \mathrm{Da}$

Exercise 8

A buffer solution has been prepared by mixing 200 ml of sodium acetate 0.1 M with 200 ml of acetic acid 0.1 M . Calculate the pH of the solution as such and after having added 2 ml of NaOH 1 M .

$$
\begin{aligned}
& C s=0.1 \mathrm{M} \\
& C a=0.1 \mathrm{M}
\end{aligned}
$$

$$
p H=p K a+\log \frac{C s}{C a}=4.74+\log \frac{0.1}{0.1}=4.74
$$

Eq. salt $=N \cdot V=0.1 \cdot 0.2=0.02$
Eq. acid $=\mathrm{N} \cdot \mathrm{V}=0.1 \cdot 0.2=0.02$
eq.base $=N \cdot V=2 \cdot 10^{-3} \cdot 1=2 \cdot 10^{-3}$

1) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
2) $\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+$

- Therefore: Cs increases and Ca decreases by the same amount of base added to the solution:
$E q_{\text {(base) }}=2 \cdot 10^{-3} \mathrm{eq}$
We can approximate the volume to remain constant since we are adding 1 ml of acid into 1 L of solution
$\mathrm{Cs}=[$ Eq.s + Eq.b] $/ \mathrm{V}=(0.02+0.002) / 0.402=0.055 \mathrm{~N}$
$\mathrm{Ca}=[$ Eq.a - Eq.b] $/ \mathrm{V}=(0.02-0.002) / 0.402=0.045 \mathrm{~N}$

$$
p H=p K a+\log \frac{C s}{C a}=4.74+\log \frac{0.055}{0.045}=4.74+\log 1.22=4.74+0.086=4.83
$$

Exercise 9

An aqueous solution containing 1 g of HNO_{2} in 200 ml has a measured $\mathrm{pH}=2.14$. Calculate the dissociation coefficient (α.

$$
\begin{array}{lll}
\mathrm{HNO}_{2} & \leftrightarrows & \mathrm{H}^{+}+\mathrm{NO}_{2}^{-} \\
\mathrm{n}(1-\alpha) & & \mathrm{n} \mathrm{\alpha} \\
\mathrm{n} \alpha & \mathrm{na}
\end{array}
$$

$\left[\mathrm{H}^{+}\right]=\left[\mathrm{NO}_{2}^{-}\right]=10^{-\mathrm{pH}}=10^{-2 \cdot 14}=7.2 \cdot 10^{-3} \mathrm{M} \rightarrow \mathrm{n}_{\text {(diss) }}=1.44 \cdot 10^{-3}$
$\left[\mathrm{HNO}_{2}\right]=\mathrm{Ca}=1 /(47 \cdot 0.2)=0.106 \mathrm{M} \quad \rightarrow \mathrm{n}_{\text {(tot) }}=0.0213$
$\alpha=n_{\text {diss }} / n_{\text {tot }}=1.44 \cdot 10^{-3} / 0.0213=0.068=6.8 \%$
Or alternatively:
$\left[\mathrm{H}^{+}\right]=\mathrm{n} \alpha / \mathrm{V}=\mathrm{Ca} \cdot \alpha \quad \rightarrow \alpha=\left[\mathrm{H}^{+}\right] / \mathrm{Ca}=7.2 \cdot 10^{-3} / 0.106=0.068$

Exercise 10

A solution has been prepared by mixing 150 ml of NaCl 0.05 M with 250 ml of NaCl 0.15 M . Calculate the molar concentration of the final solution and its pH .

$$
\begin{aligned}
& n_{1}=C 1 \cdot V 1=0.05 \cdot 0.15=7.5 \cdot 10^{-3} \\
& n_{2}=C 2 \cdot V 2=0.15 \cdot 0.25=37.5 \cdot 10^{-3} \\
& n_{\text {tot }}=n_{1}+n_{2}=0.0075+0.0375=0.045 \\
& V_{\text {tot }}=0.15+0.25=0.4 \\
& C_{\text {tot }}=n_{\text {tot }} / V_{\text {tot }}=0.045 / 0.4=0.11 \mathrm{M}
\end{aligned}
$$

$\mathrm{pH}=7.0$ this is just a mix of two solutions of a strong salt

