Homeworks 4

Exercise 1

- Which is the pH of a solution 0.01 M of ammonia? ($\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$)

$$
\mathrm{NH}_{3} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Ammonia is a weak base, hence we can calculate $\left[\mathrm{OH}^{-}\right]$:
$\left[\mathrm{OH}^{-}\right]=\sqrt{(\mathrm{Kb} \cdot \mathrm{Cb})}=\sqrt{\left(1.8 \cdot 10^{-5} \cdot 0.01\right)}=4.24 \cdot 10^{-4}$
$\mathrm{pOH}=-\log \left(4.24 \cdot 10^{-4}\right)=3.37$
$\mathrm{pH}=14-3.37=10.63$

Exercise 2

Calculate the Ka of a weak monoprotic acid whose 0.1 M solution has $\mathrm{pH}=3.0$.

$$
\begin{aligned}
& \mathrm{AH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-3} \mathrm{M}} \\
& \mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} / \mathrm{Ca}=10^{-6} / 10^{-1}=10^{-5}
\end{aligned}
$$

Exercise 3

Calculate the molar concentration of a solution of ammonia $\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ and the concentration of hydroxyls, given that $\alpha=1.3 \cdot 10^{-2}$.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

$$
\begin{aligned}
& \mathrm{Kb}=\mathrm{Cb} \cdot \alpha^{2} /(1-\alpha) \\
& \overrightarrow{\mathrm{M}} \mathrm{Cb}=\mathrm{Kb} \cdot(1-\alpha) / \alpha^{2}=1.8 \cdot 10-5 \cdot 0.987 / 1.69 \cdot 10-4=0.105
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{Cb} \cdot \alpha=0.105 \cdot 1.3 \cdot 10-2=1.36 \cdot 10^{-3} \mathrm{M}
$$

Exercise 4

Calculate the pH of a solution made by mixing 25 ml of KOH 0.01 N with 75 ml of $\mathrm{HNO}_{3} 0.01 \mathrm{~N}$.

$$
\mathrm{KOH}+\mathrm{HNO}_{3} \leftrightarrows \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

$n_{\text {eq }}$ base $=N \cdot V=10^{-2} \cdot 25 \cdot 10^{-3}=2.5 \cdot 10^{-4} \mathrm{eq}$
$\mathrm{n}_{\text {eq }} \operatorname{acid}=\mathrm{N} \cdot \mathrm{V}=10^{-2} \cdot 75 \cdot 10^{-3}=7.5 \cdot 10^{-4} \mathrm{eq}$
There is an excess of acid, therefore the pH will be <7

$$
\begin{aligned}
& \mathrm{n}_{\text {eq }} \text { acid }=\mathrm{n}_{\text {eq }} \text { acid }-\mathrm{n}_{\text {eq }} \text { base }=7.5 \cdot 10^{-4}-2.5 \cdot 10^{-4}=5 \cdot 10^{-4} \mathrm{eq} \\
& \mathrm{pH}=-\log \left(5 \cdot 10^{-4}\right)=3.3
\end{aligned}
$$

Exercise 5

Calculate the dissociation coefficient of a methanoic acid solution $5 \cdot 10^{-3} \mathrm{M}\left(\mathrm{Ka}=2 \cdot 10^{-4} \mathrm{M}\right)$.
$\mathrm{HCOOH} \leftrightarrows \mathrm{HCOO}^{-}+\mathrm{H}^{+}$

$$
\begin{aligned}
& \mathrm{Ka}=\mathrm{Ca} \cdot \alpha^{2} /(1-\alpha) \rightarrow \mathrm{Ca} \cdot \alpha^{2}-\mathrm{Ka}(1-\alpha)=0 \\
& 5 \cdot 10^{-3} \mathrm{a}^{2}+2 \cdot 10^{-4} \mathrm{a}-2 \cdot 10^{-4}=0 \\
& 5 \mathrm{a}^{2}+0.2 \mathrm{a}-0.2=0
\end{aligned}
$$

$$
\alpha=\frac{-0.2 \pm \sqrt{(0.04+4)}}{10}=0.18
$$

Exercise $6=3$

Kb of ammonia is $1.8 \cdot 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Calculate the molar concentration of ammonia and of hydroxide anions in a solution in which ammonia is 1.3% dissociated.

$$
\mathrm{NH}_{3} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

$$
\begin{aligned}
& \mathrm{Kb}=\mathrm{Cb} \cdot \alpha^{2} /(1-\alpha) \\
& \rightarrow \mathrm{Cb}=\mathrm{Kb} \cdot(1-\alpha) / \alpha^{2}=1.8 \cdot 10-5 \cdot 0.987 / 1.69 \cdot 10-4=0.105 \mathrm{M} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{Cb} \cdot \alpha=0.105 \cdot 1.3 \cdot 10-2=1.36 \cdot 10^{-3} \mathrm{M}}
\end{aligned}
$$

Exercise 7

Calculate the concentration of a solution of a weak acid knowing that it is 0.1% dissociated and its pH is 5.0.

$$
\begin{aligned}
& \mathrm{AH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{Ca} \cdot \alpha \rightarrow \mathrm{Ca}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \alpha=10^{-5} / 10^{-3}=10^{-2} \mathrm{M}}
\end{aligned}
$$

Exercise 8

Ka of HCN is $4 \cdot 10^{-10} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Calculate the molar concentration of the undissociated acid and the pH of the solution in which 0.01% of HCN is dissociated.

$\mathrm{HCN} \leftrightarrows \mathrm{CN}^{-}+\mathrm{H}^{+}$

$$
\begin{aligned}
& \mathrm{Ka}=\mathrm{Ca} \cdot \alpha^{2} /(1-\alpha) \\
& \rightarrow \mathrm{Ca}=\mathrm{Ka} \cdot(1-\alpha) / \alpha^{2}=4 \cdot 10^{-4} \cdot\left(1-10^{-4}\right) / 10^{-8}=0.0399=0.04 \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{Ca} \cdot \alpha=4 \cdot 10^{-6} \quad \rightarrow \mathrm{pH}=5.39}
\end{aligned}
$$

Exercise 9

A solution of ammonium chloride has $\mathrm{pH}=5.3$. Calculate the concentration of the salt in solution. $\quad\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

$$
K_{i}=\frac{K_{w}}{K_{b}}=\frac{\left[\mathrm{H}_{3} O^{+1}\right]^{2}}{C s}
$$

$$
C s=\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]^{2} \cdot \frac{K b}{K w}=\frac{\left(5 \cdot 10^{-6}\right)^{2} \cdot 1.8 \cdot 10^{-5}}{10^{-14}}=0.045 \mathrm{M}
$$

Exercise 10

A solution of Lithium hydrogen carbonate, made by dissolving 7.6 mg of salt in 1 L of water, has $\mathrm{pH}=8.2$. Calculate the values of Ki and Ka .

$$
\begin{aligned}
& \mathrm{LiHCO}_{3} \rightarrow \mathrm{Li}^{+}+\mathrm{HCO}_{3}^{-} \\
& \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}
\end{aligned}
$$

$\mathrm{Cs}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{V})=7.6 \cdot 10-3 / 6.9 \cdot 1=1.1 \mathrm{mM}$
$\mathrm{pOH}=14-\mathrm{pH}=14-8.2=5.8 \quad \rightarrow\left[\mathrm{OH}^{-}\right]=10^{-5.8}=1.58 \cdot 10^{-6} \mathrm{M}$
$\mathrm{Ki}=\mathrm{Kw} / \mathrm{Ka}=\left[\mathrm{OH}^{-}\right]^{2} / \mathrm{Cs}=\left(1.58 \cdot 10^{-6}\right)^{2} / 1.1 \cdot 10^{-3}=1.44 \cdot 10^{-9}$
$\mathrm{Ka}=\mathrm{Kw} / \mathrm{Ki}=10^{-14} / 1.44 \cdot 10^{-9}=6.94 \cdot 10^{-6}$

Exercise 11

Calculate the pH of a solution of ammonium chloride made by $10^{-4} \mathrm{~mol}$ of $\mathrm{NH}_{4}{ }^{+}$in 100 ml of solution.

$$
\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M} \text { at } 25^{\circ} \mathrm{C}\right)
$$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\sqrt{\mathrm{Ki} \cdot \mathrm{Cs}}=\sqrt{\frac{\mathrm{Kw} \cdot \mathrm{Cs}}{\mathrm{~Kb}}}=\sqrt{\frac{10^{-14} \cdot 10^{-3}}{1.8 \cdot 10^{-5}}}=\sqrt{5.5 \cdot 10^{-13}}=7.4 \cdot 10^{-7}
$$

$$
\mathrm{pH}=-\log 7.4 \cdot 10-7=6.13
$$

