Homework 6

Exercise 1

Calculate the pH of a solution prepared by mixing 100 ml of methanoic acid 0.1 M with 25 ml of sodium hydroxyde 0.16 M .

$$
\left(\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M} \text { at } 25^{\circ} \mathrm{C}\right) .
$$

$$
\mathrm{HCOOH}+\mathrm{NaOH} \rightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O}
$$

When a strong base is added to a weak acid:

- at the beginning (before equivalence) there will be a mixture of the acid and its salt \rightarrow acidic buffer solution ($\mathrm{pH}<7.0$)
- at equivalence there will only be the salt \rightarrow basic hydrolysis ($\mathrm{pH}>7.0$)

$$
\left.\begin{array}{l}
\mathrm{eq}_{\text {acid }}=\mathrm{C}_{\mathrm{a}} \times \mathrm{xV}_{\mathrm{a}}=0.1 \times 0.1=0.01=10 \times 10^{-3} \\
\mathrm{eq}_{\text {base }}=\mathrm{C}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}=0.16 \times 0.025=0.004=4 \times 10^{-3}
\end{array}\right\}
$$

Excess of acid \rightarrow buffer solution!

$$
\mathrm{eq}_{\text {base }}=\mathrm{eq}_{\text {salt }}=4 \times 10^{-3}
$$

$$
\begin{aligned}
\mathrm{eq}_{\mathrm{a}-\mathrm{fin}}= & \mathrm{eq}_{\mathrm{a}}-\mathrm{eq}_{\mathrm{base}}=(10-4) \times 10^{-3}=6 \times 10^{-3} \\
& p H=p K a+\log \frac{C s}{C a}=3.74+\log \frac{\frac{4 \cdot 10^{-3}}{0.125}}{\underline{6 \cdot 10^{-3}}}=3.74-0.17=3.56
\end{aligned}
$$

Exercise 2

- Calculate the pH of a solution prepared by mixing 100 ml of methanoic acid 0.04 M with 25 ml of sodium hydroxyde 0.16 M . ($\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$)

$$
\mathrm{HCOOH}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

$\left.\left.\begin{array}{l}\text { Equivalents of acid: } \quad \mathrm{Ca} \times \mathrm{Va}=0.04 \times 0.1=4 \cdot 10^{-3} \mathrm{eq} \\ \text { Equivalents of base: } \mathrm{Cb} \times \mathrm{Vb}=0.016 \times 0.025=4.0 \cdot 10^{-3} \mathrm{eq}\end{array}\right\} \quad \begin{array}{c}\text { Same quantity } \\ \rightarrow \text { only salt }\end{array}\right\}$

$$
\begin{gathered}
\mathrm{HCOO}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCOOH}+\mathrm{OH} \quad \rightarrow \text { basic hydrolysis } \\
{\left[\mathrm{OH}^{-1}\right]=\sqrt{\frac{K w}{K a} \cdot C s}=\sqrt{\frac{10^{-14} \cdot 4 \cdot 10^{-3}}{1.5 \cdot 10^{-5} \cdot 0.125}}=\sqrt{2.13 \cdot 10^{-12}}=1.46 \cdot 10^{-6} \mathrm{M}}
\end{gathered}
$$

$$
\mathrm{pOH}=-\log [\mathrm{OH}-]=5.83
$$

$$
\mathrm{pH}=14-\mathrm{pOH}=8.17
$$

Exercise 3

- A solution has been prepared by mixing 450 ml of ammonia 0.1 M with 250 ml of HCl 0.1 M . Which is the pH ? $\quad\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

$$
\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalents of base: $\quad \mathrm{Cb} \times \mathrm{Vb}=0.1 \times 0.45=0.045 \mathrm{eq}$
Equivalents of acid: $\mathrm{Ca} \times \mathrm{Va}=0.1 \times 0.25=0.025 \mathrm{eq}$
There is an excess of weak base \rightarrow in solution there will be the newly formed salt and the remaining base \rightarrow BUFFER solution

$$
\begin{aligned}
& \mathrm{Cs}=\mathrm{Eq}(\text { acid }) / \mathrm{V}(\text { tot })=0.025 / 0.7=0.0357 \\
& \mathrm{Cb}=[\mathrm{Eq}(\text { base })-\mathrm{Eq}(\text { acid })] / \mathrm{V}(\text { tot })=[0.045-0.025] / 0.7=0.0286 \mathrm{~N} \\
& p O H=p K b+\log \frac{C s}{C b}=4.74+\log \frac{0.0357}{0.0286}=4.74+\log 1.25=4.74+0.097=4.84 \\
& \mathrm{pH}=14-\mathrm{pOH}=14-4.84=9.16
\end{aligned}
$$

Exercise 4

- Calculate the pH of a solution obtained by diluting 1 ml of the commercial solution of ammonia $(30 \% \mathrm{w}, \mathrm{d}=0.91 \mathrm{~g} / \mathrm{ml})$ up to 1 L with pure water. Calculate the pH after having added 1 mg of $\mathrm{HCl} . \quad\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $25^{\circ} \mathrm{C}$)

We need to convert from \%w into Molar concentration, then we shall proceed to dilute the weak base:
$30 \% \mathrm{w}=30 \mathrm{~g}$ of ammonia in 100 g of solution
100 g of solution can be converted into a Volume of solution through the density (g / V) $\rightarrow V=g / d=100 / 0.91=109.9 \mathrm{ml}=0.1099 \mathrm{~L}$
$\mathrm{Cb}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{V})=30 /(17 \cdot 0.1099)=16.06 \mathrm{M}$
When we dilute the number of moles remains constant:

$$
\mathrm{n} 1=\mathrm{n} 2 \quad \rightarrow \quad \mathrm{C} 1 \cdot \mathrm{~V} 1=\mathrm{C} 2 \cdot \mathrm{~V} 2 \quad \rightarrow \quad 16.06 \cdot 10^{-3}=\mathrm{C} 2 \cdot 1 \quad \rightarrow \mathrm{C} 2=0.016 \mathrm{M}
$$

$$
\left[O H^{-1}\right]=\sqrt{\mathrm{Kb} \cdot \mathrm{Cb}}=\sqrt{1.8 \cdot 10^{-5} \cdot 0.016}=\sqrt{2.88 \cdot 10^{-7}}=5.29 \cdot 10^{-4}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=3.28$

$$
\mathrm{pH}=14-\mathrm{pOH}=10.72
$$

If we add 1 mg of HCl , then the base will react with it to form the salt $\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{Eq}_{\text {base }}=\mathrm{Cb} \cdot \mathrm{Vb}=0.016 \cdot 1=0.016$
$\mathrm{Eq}_{\text {acid }}=\mathrm{g} / \mathrm{FW}=10^{-3} / 36.5=2.7 \cdot 10^{-5}$
Basic buffer in solution:
$\mathrm{pOH}=\mathrm{pKb}+\log (\mathrm{Cs} / \mathrm{Cb})=4.74+\log (2.7 \cdot 10-5 / 0.016)=4.74-2.77=$ 1.97
$\mathrm{pH}=14-1.97=12.03$

Exercise 5

- Calculate the formula weight and the dissociation coefficient of a weak monoprotic acid, whose solution made by dissolving 1 g in 1 L of pure water has $\mathrm{pH}=4.0$.

$$
\begin{array}{lr}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{n}(1-\mathrm{a}) & \text { na } \quad \text { na }
\end{array}
$$

$K a=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]^{2}}{\mathrm{Ca}}$

$$
C a=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]^{2}}{K a}=\frac{\left(10^{-4}\right)^{2}}{3} \cdot 10^{-6}=3.3 \cdot 10^{-3} \mathrm{M}
$$

$C a=\frac{g}{F W \cdot V}$

$$
F W=\frac{g}{C a \cdot V}=\frac{1}{3.3 \cdot 10^{-3} \cdot 1}=303.03 \mathrm{Da}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=n \cdot \alpha / \mathrm{V}=\mathrm{Ca} \cdot \alpha$

$$
\rightarrow \alpha=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \mathrm{Ca}=10^{-4} / 3.3 \cdot 10^{-3}=0.03
$$

Exercise 6

- Calculate which volume of NaOH 1 M needs to be added to a buffer solution containing acetic acid 0.01 M and sodium acetate 0.01 M in order to adjust the pH to $5.0\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $25^{\circ} \mathrm{C}$, approximate the volume to remain constant).
$\mathrm{pH}_{1}=\mathrm{pKa}+\log (\mathrm{Cs} / \mathrm{Ca})=4.74+\log (0.01 / 0.01)=4.74$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \longrightarrow+\mathrm{OH}^{-}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

$$
\mathrm{pH}_{2}=\mathrm{pKa}+\log (\mathrm{Cs}+\mathrm{x} / \mathrm{Ca}-\mathrm{x}) \rightarrow \quad\left[H^{+}\right]=K_{a} \frac{\left(e q_{a}-x\right) / V}{\left(e q_{s}+x\right) / V}
$$

$$
\begin{aligned}
& \mathrm{Eq}_{\mathrm{a}}=\mathrm{Ca} \cdot \mathrm{Va}=0.01 \cdot 1=0.01 \\
& \mathrm{Eq}_{\mathrm{s}}=\mathrm{Cs} \cdot \mathrm{Vs}=0.01 \cdot 1=0.01
\end{aligned}
$$

$$
\left[H^{+}\right]=K_{a} \frac{\left(e q_{a}-x\right) / V}{\left(e q_{s}+x\right) / V}
$$

$$
10^{-5}=1.8 \cdot 10^{-5} \frac{\frac{0.01-x}{1}}{\frac{0.01+x}{1}}
$$

$$
10^{-5}=1.8 \cdot 10^{-5} \frac{\frac{0.01-x}{1}}{\frac{0.01+x}{1}}
$$

$$
\begin{aligned}
& 10^{-5}(0.01+x)=1.8 \cdot 10^{-5}(0.01-x) \\
& 10^{-7}+10^{-5} x=1.8 \cdot 10^{-7}-1.8 \cdot 10^{-5} \mathrm{x} \\
& 2.8 \cdot 10^{-5} \mathrm{x}=0.8 \cdot 10^{-7} \\
& x=0.8 \cdot 10^{-7} / 2.8 \cdot 10^{-5}=2.86 \cdot 10^{-3} \mathrm{eq}
\end{aligned}
$$

$$
V=\mathrm{eq} / \mathrm{N}=2.86 \cdot 10^{-3} / 1 \mathrm{~N}=2.86 \cdot 10^{-3} \mathrm{~L}=2.86 \mathrm{ml}
$$

Exercise 7

- A solution of HNO_{2} is made by dissolving 3.53 g in 500 ml of pure water at $25^{\circ} \mathrm{C}$. Calculate its dissociation coefficient, knowing that this solution has an osmotic pressure of 3.87 atm .

$$
\mathrm{HNO}_{2} \rightleftarrows \mathrm{NO}_{2}^{-}+\mathrm{H}^{+}
$$

$$
\begin{aligned}
& \Pi=C R T[1+\alpha(v-1)] \\
& C=g / P M \cdot V=3.53 / 47 \cdot 0.5=0.15 \mathrm{M} \\
& \pi=\mathrm{CRT}[1+\alpha(v-1)] \\
& 3.87=0.15 \cdot 0.082 \cdot 298[1+\alpha(2-1)] \\
& 3.87=3.66[1+\alpha] \\
& 3.87=3.66+3.66 \alpha \\
& 3.66 \alpha=3.87-3.66 \\
& \quad \alpha=0.21 / 3.66=0.057
\end{aligned}
$$

Exercise 8

Calculate the osmotic pressure of a solution of potassium acetate at $25^{\circ} \mathrm{C}$, knowing that its pH is 9.02 .

$$
\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right)
$$

$\mathrm{HCOOK} \rightarrow \mathrm{HCOO}^{-}+\mathrm{K}^{+}$ $\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HCOOH}+\mathrm{OH}^{-}$

$$
\frac{K w}{K a}=K i=\frac{[H C O O H]\left[\mathrm{OH}^{-1}\right]}{\left[H C O O^{-1}\right]}=\frac{\left[\mathrm{OH}^{-1}\right]^{2}}{C s}
$$

$\left[\mathrm{OH}^{-}\right]=10^{-(14-\mathrm{pH})}=10^{-4.98}=1.047 \cdot 10^{-5}$
$C s=\frac{\left[O H^{-1}\right]^{2} K a}{K w}=\frac{\left(1.047 \cdot 10^{-5}\right)^{2} \cdot 1.8 \cdot 10^{-5}}{10^{-14}}=\frac{1.096 \cdot 10^{-10} \cdot 1.8}{10^{-9}}=0.197 \mathrm{M}$
$\pi=\operatorname{CRT}[1+\alpha(v-1)]=0.197 \cdot 0.082 \cdot 298 \cdot[1+1(2-1)]=9.63 \mathrm{~atm}$

