Homework 5

Exercise 1

A solution of a weak acid HA with $\mathrm{Ka}=10^{-4} \mathrm{M}$ is titrated with NaOH . After having added 0.05 equivalents of base, the measured pH is 4.0 . Calculate the concentration of HA at the beginning.

$$
\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

When a strong base is added to a weak acid:

- at the beginning (before equivalence) there will be a mixture of the acid and its salt \rightarrow acidic buffer solution ($\mathrm{pH}<7.0$)
- at equivalence there will only be the salt \rightarrow basic hydrolysis ($\mathrm{pH}>7.0$)

Here $\mathrm{pH}=4.0 \rightarrow$ first condition \rightarrow we can use the Henderson-Hasselback equation for calculating the amount of Ca

$$
p H=p K a+\log \frac{C s}{C a} \quad 4=4+\log \frac{0.05}{C a}
$$

$\rightarrow \mathrm{Ca}_{(t)}=0.05$ eq when the $\mathrm{pH}=4.0$
At the beginning: $\mathrm{Ca}_{(0)}=\mathrm{Ca}_{(t)}+\mathrm{OH}^{-}=0.05+0.05=0.1 \mathrm{~N}$

Exercise 2

Calculate the pH of the solution obtained by mixing 75 ml of $\mathrm{CH}_{3} \mathrm{COOH}$ 0.01 N with $50 \mathrm{ml} \mathrm{NaOH} 0.01 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalents of acid: $\quad \mathrm{Ca} \times \mathrm{Va}=0.01 \times 0.075=7.5 \cdot 10^{-4} \mathrm{eq}$
Equivalents of base: $\mathrm{Cb} \times \mathrm{Vb}=0.01 \times 0.05=5.0 \cdot 10^{-4} \mathrm{eq}$
There is an excess of weak acid \rightarrow in solution there will be the newly formed salt and the remaining acid \rightarrow BUFFER solution
$\mathrm{Cs}=\mathrm{Eq}($ base $) / \mathrm{V}($ tot $)=5 \cdot 10^{-4} /(0.075+0.05)=4 \cdot 10^{-3} \mathrm{~N}$
$\mathrm{Ca}=[\mathrm{Eq}($ acid $)-\mathrm{Eq}($ base $)] / \mathrm{V}($ tot $)=\left[(7.5-5.0) \cdot 10^{-4}\right] / 0.125=2 \cdot 10^{-3} \mathrm{~N}$

$$
p H=p K a+\log \frac{C s}{C a}=4.74+\log \frac{4 \cdot 10^{-3}}{2 \cdot 10^{-3}}=4.74+\log 2=4.74+0.301=5.04
$$

Exercise 3

- 250 ml of ethanoic acid 0.5 N are mixed with 250 ml of NaOH 0.2 N . Calculate the pH of the final solution ($\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$).

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalents of acid: $\mathrm{Ca} \times \mathrm{Va}=0.5 \times 0.25=0.125 \mathrm{eq}$
Equivalents of base: $\mathrm{Cb} \times \mathrm{Vb}=0.2 \times 0.25=0.05 \mathrm{eq}$
There is an excess of weak acid \rightarrow in solution there will be the newly formed salt and the remaining acid \rightarrow BUFFER solution

$$
\begin{aligned}
\mathrm{Cs} & =\mathrm{Eq}(\text { base }) / \mathrm{V}(\text { tot })=0.05 /(0.25+0.25)=0.1 \mathrm{~N} \\
\mathrm{Ca} & =[\mathrm{Eq}(\text { acid })-\mathrm{Eq}(\text { base })] / \mathrm{V}(\text { tot })=[0.125-0.05] / 0.5=0.15 \mathrm{~N} \\
p H & =p K a+\log \frac{C s}{C a}=4.74+\log \frac{0.1}{0.15}=4.74+\log 0.67=4.74-0.18=4.56
\end{aligned}
$$

Exercise 4

- 500 ml of HCN 0.2 N are mixed with 500 ml of KOH 0.2 N . Calculate the pH of the final solution $\left(\mathrm{Ka}=2 \cdot 10^{-4} \mathrm{M}\right)$.

$$
\mathrm{HCN}+\mathrm{KOH} \rightarrow \mathrm{~K}^{+}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalents of acid: $\mathrm{Ca} \times \mathrm{Va}=0.2 \times 0.5=0.1 \mathrm{eq}$
Equivalents of base: $\mathrm{Cb} \times \mathrm{Vb}=0.2 \times 0.5=0.1 \mathrm{eq}$
There is an equivalence of acid and base \rightarrow in solution there will ONLY be the newly formed salt, which gives a basic hydrolysis $\rightarrow \mathrm{pH}>7.0$

$$
\left[O H^{-1}\right]=\sqrt{K i \cdot C s}=\sqrt{\frac{K w \cdot C s}{K b}}=\sqrt{\frac{10^{-14} \cdot 0.1}{2 \cdot 10^{-4}}}=\sqrt{5 \cdot 10^{-11}}=2.23 \cdot 10^{-6} \mathrm{~N}
$$

$$
\mathrm{pOH}=-\log [\mathrm{OH}-]=5.65 \quad \rightarrow \quad \mathrm{pH}=14-5.65=8.35
$$

Exercise 5

- Calculate the pH of a solution made by dissolving 0.6 g of acetic acid and 0.82 g of sodium acetate in 1 L of water. Calculate the pH after having added 1 ml of $\mathrm{HCl} 1 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right)$.

In solution there are a weak acid and its salt \rightarrow acidic buffer
$\mathrm{FW}_{\text {(СнзЗоон) }}=60 \quad \mathrm{FW}_{\text {(СНЗСоола) }}=82$
$\mathrm{Ca}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{V})=0.6 /(60 \cdot 1)=0.01 \mathrm{~N}$
$\mathrm{Cs}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{V})=0.82 /(82 \cdot 1)=0.01 \mathrm{~N}$
$p H=p K+\log \frac{C s}{C a}=4.74+\log \frac{0.01}{0.01}=4.74$

1) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
2) $\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

- Therefore: Ca increases and Cs decreases by the same amount of acid added to the solution:

$$
\mathrm{Eq}_{(\mathrm{HCl})}=\mathrm{Ca} \cdot \mathrm{Va}=1 \cdot 10^{-3}=10^{-3} \mathrm{eq}
$$

We can approximate the volume to remain constant since we are adding 1 ml of acid into 1 L of solution

$$
\begin{aligned}
& \mathrm{Ca}=\left[\mathrm{Eq} 1+\mathrm{Eq}_{(\mathrm{HCl})}\right] / \mathrm{V}=(0.01+0.001) / 1=0.011 \mathrm{~N} \\
& \mathrm{Cs}=\left[\mathrm{Eq} 2-\mathrm{Eq}_{(\mathrm{HCl})}\right] / \mathrm{V}=(0.01-0.001) / 1=0.009 \mathrm{~N}
\end{aligned}
$$

$$
p H=p K a+\log \frac{C s}{C a}=4.74+\log \frac{0.009}{0.011}=4.74-0.087=4.653
$$

Exercise 6

- Calculate how many grams of KOH should be added to 400 ml of weak acid HA $0.1 \mathrm{M}\left(\mathrm{Ka}=3 \cdot 10^{-6} \mathrm{M}\right)$ to obtain a solution at $\mathrm{pH}=5.3$.

The exercise is asking to prepare an acidic buffer solution, therefore we can express the Henderson-Hasselback formula without log

$$
\begin{aligned}
& p H=p K a+\log \frac{C s}{C a} \quad \quad\left[H_{3} O^{+1}\right]=K a \cdot \frac{C a}{C s} \\
& C b=C s=K a \cdot \frac{C a}{\left[H_{3} O^{+1}\right]}=\frac{3 \cdot 10^{-6} \cdot 0.1}{5.01 \cdot 10^{-6}}=0.06 \mathrm{M} \\
& \mathrm{~g}=\mathrm{Cs} \cdot \mathrm{FW} \cdot \mathrm{~V}=0.06 \cdot 56 \cdot 0.4=1.344 \mathrm{~g}
\end{aligned}
$$

Exercise 7

- Calculate the pH of a solution made by dissolving 2.8 g of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and 5.0 g of $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$ in 500 ml of water $\left(\mathrm{Kb}=4.4 \cdot 10^{-4} \mathrm{M}\right)$.

Methyl-amine is a weak base, here it is in solution with its salt: basic buffer solution

$$
\begin{aligned}
& \mathrm{Cs}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{~V})=5 /(111.9 \cdot 0.5)=0.089 \mathrm{M} \\
& \mathrm{Cb}=\mathrm{g} /(\mathrm{FW} \cdot \mathrm{~V})=2.8 /(31 \cdot 0.5)=0.181 \mathrm{M}
\end{aligned}
$$

$$
p O H=p K b+\log \frac{C s}{C b}=3.36+\log \frac{0.089}{0.181}=3.36-0.30=3.07
$$

$$
\mathrm{pH}=14-\mathrm{pOH}=14-3.07=11
$$

Exercise 8

- Which is the pH of a solution obtained after mixing 200 ml of KOH 0.1 M with 300 ml of formic acid $0.15 \mathrm{M}\left(\mathrm{Ka}=1.8 \cdot 10^{-4} \mathrm{M}\right)$?

$$
\mathrm{HCOOH}+\mathrm{KOH}^{4} \Longleftrightarrow \mathrm{HCOO}+\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalents $(\mathrm{acid})=\mathrm{Ca} \cdot \mathrm{V}=0.15 \cdot 0.3=0.045 \mathrm{eq}$
Equivalents(base) $=\mathrm{Cb} \cdot \mathrm{V}=0.1 \cdot 0.2=0.02 \mathrm{eq}$
There is an excess of weak acid \rightarrow in solution there will be the newly formed salt and the remaining acid \rightarrow BUFFER solution

$$
\begin{aligned}
& \mathrm{Cs}=\mathrm{Cb}=0.02 / 0.5=0.04 \mathrm{~N} \\
& \mathrm{Ca}=[\mathrm{Eq}(\mathrm{a})-\mathrm{Eq}(\mathrm{~b})] / \mathrm{Vtot}=(0.045-0.02) / 0.5=0.05 \mathrm{~N}
\end{aligned}
$$

$$
p H=p K a+\log \frac{C s}{C a}=3.74+\log \frac{0.04}{0.05}=3.74-0.097=3.643
$$

