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In the latter part of the seventeenth century, Sir Isaac Newton stated the fundamental principles of mechanics,
which are the foundation of much of today’s engineering. His Principia, published in 1687, summarized his work
in terrestrial, celestial, and fluid mechanics.
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1.1. WHAT IS MECHANICS?

Mechanics can be defined as that science which describes and pre-
dicts the conditions of rest or motion of bodies under the action of
forces. It is divided into three parts: mechanics of rigid bodies, me-
chanics of deformable bodies, and mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dy-
namics, the former dealing with bodies at rest, the latter with bodies
in motion. In this part of the study of mechanics, bodies are assumed
to be perfectly rigid. Actual structures and machines, however, are
never absolutely rigid and deform under the loads to which they are
subjected. But these deformations are usually small and do not ap-
preciably affect the conditions of equilibrium or motion of the strue-
ture under consideration. They are important, though, as far as the
resistance of the structure to failure is concerned and are studied in
mechanics of materials, which is a part of the mechanics of deformable
bodies. The third division of mechanics, the mechanics of fluids, is
subdivided into the study of incompressible fluids and of compressi-
ble fluids. An important subdivision of the study of incompressible
fluids is hydraulics, which deals with problems involving water.

Mechanics is a physical science, since it deals with the study of
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these
views are justified in part. Mechanices is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study.
However, it does not have the empiricism found in some engineering
sciences, that is, it does not rely on experience or observation alone;
by its rigor and the emphasis it places on deductive reasoning it re-
sembles mathematics. But, again, it is not an abstract or even a pure
science; mechanics is an applied science. The purpose of mechanics
is to explain and predict physical phenomena and thus to lay the foun-
dations for engineering applications.

1.2. FUNDAMENTAL CONCEPTS AND PRINCIPLES

Although the study of mechanics goes back to the time of Aristotle
(384-322 8.c.) and Archimedes (287-212 B.c.). one has to wait nntil
Newton (1642-1727) to find a satistactory formulation of its funda-
mental principles. These principles were later expressed in a modi-
fied form by d’Alembert, Lagrange, and Hamilton. Their validity
remained nnchallenged, however, until Einstein formulated his theory
of relativity (1905). While its limitations have now been recognized,
newtonian mechanics still remains the basis of today’s engineering
sciences.

The basic concepts used in mechanics are space, time, mass, and
force. These concepts cannot be truly defined; they should be ac-
cepted on the basis of our intuition and experience and used as a men-
tal frame of reference for our study ol mechanics.

The concept of space is associated with the notion of the position
of a point P. The position of P can be defined by three lengths mea-
sured from a certain reference point, or origin, in three given
directions. These lengths are known as the coordinates of P.



To define an event, it is not sufficient to indicate its position in
space. The time of the event should also be given.

The concept of mass is used to characterize and compare bodies
onthe basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in
the same manner; they will also offer the same resistance to a change
in translational motion.

A force represents the action of one body on another. It can be
exerted by actual contact or at a distance, as in the case of gravita-
tional forces and magnetic forces. A force is characterized by its point
of application, its magnitude, and its direction; a force is represented
by a vector (See. 2.3).

In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in relativistic me-
chanics, where the time of an event depends upon its position, and
where the mass of a body varies with its velocity.) On the other han,
the concept of force is not independent of the other three. Indeed.
one of the fundamental principles of newtonian mechanies listed
below indicates that the resultant force acting on a body is related to
the mass of the body and to the manner in which its velocity varies
with time.

You will study the conditions of rest or motion of particles and
rigid bodies in terms of the four basic coneepts we have introduced.
By particle we mean a very small amount of matter which may be
assumed to occupy a single point in space. A rigid body is a combi-
nation of a large number of particles occupying fixed positions with
respect to each other. The study of the mechanics of particles is
obviously a prerequisite to that of rigid bodies. Besides, the results
obtained for a particle can be used directly in a large number of prob-
lems dealing with the conditions of rest or motion of actual bodies.

The study of elementary mechanics rests on six fundamental prin-
ciples based on experimental evidence.

The Parallelogram Law for the Addition of Forces. This
states that two forces acting on a particle may be replaced by a sin-
gle force, culled their resultant, obtained by drawing the diagonal of
the parallelogram which has sides equal to the given florces (Sec. 2.2).

The Principle of Transmissibility. This states that the condi-
tions of equilibrium or of motion of a rigid body will remain un-
changed if a force acting at a given point of the rigid body is replaced
by a force of the same magnitude and same direction, but acting at a
different point, provided that the two forces have the same line of
action (Sec, 3.3).

Newton’s Three Fundamental Laws. Formulated by Sir Isaac
Newton in the latter part of the seventeenth century, these laws can
be stated as follows:

FIRST LAW. I the resultant force acting on a particle is zero,
the particle will remain at rest (if originally at rest) or will move with
constant speed in a straight line (if originally in motion) (Sec. 2.10).

1.2. Fundamental Concepts and Principles 3
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Photo 1.1 When in earth orbit, people and objects
are said 10 be weightless even though the
gravitational force acting is approximately 90% of
that experienced on the surface of the earth. This
apparent contradiction will be resolved in Chapter
12 when we apply Newton's second law to the
motion of particles.

SECOND LAW. If the resultant force acting on a particle is not
zero, the particle will have an acceleration proportional to the mag-
nitude of the resultant and in the direction of this resultant force.

As you will see in Sec. 12.2, this law can be stated as

F =ma (1.1)

where F. m, and a represent, respectively, the resultant force acting
on the particle, the mass of the particle, and the acceleration of the
particle, expressed in a consistent system of units.

THIRD LAW. The forces of action and reaction between bodies
in contact have the same n';atghitlldc. same line of action, and uppnsite
sense (Sec. 6.1).

Newton’s Law of Gravitation. This states that two particles of
mass M and m are mutually attracted with equal and opposite torces
F and —F (Fig. 1.1) of magmludt- F given by the formula

Mm
F=G— (1.2)
>

where r = distance between the two particles
G = universal constant called the constant of gravitation

Newton’s law of gravitation introduces the idea of an action exerted
at a distance and extends the range of application of Newton's third
law: the action F and the reaction —F in Fig. 1.1 are equal and op-
posite, and they have the same line of action.

A p‘i.mcuhu case of great importance is that of the attraction of the
earth on a particle located on its surface. The force F exerted by the
earth on the particle is then defined as the weight W of the particle.

Taking M equal to the mass of the earth, m equal to the mass of the
particle, and r equal to the radius R of the earth, and introducing the
constant

_GM
R’

(1.3)

the magnitude W of the wcight of a pal‘ticle of mass m may be ex-
pressed ast

W = mg (1.4)

The value of R in formula (1.3) depends upon the elevation of the
point considered; it also depends upon its latitude, since the earth is
not truly spherical. The value of g therefore varies with the position
of the point considered. As long as the point actually remains on the
surface of the earth, it is sufficiently accurate in most engineering
computations to assume that g eqndls 9.81 m/s® or 32.2 ft/s>.

A more accurate definition of the weight W should take into account the rotation of
the earth.




The principles we have just listed will be introduced in the course
of our study olP mechanics as they are needed. The study of the stat-
ics of particles carried out in Chap. 2 will be based on the parallelo-
gram law of addition and on Newton’s first law alone. The principle
of transmissibility will be introduced in Chap. 3 as we begin the study
of the statics of rigid bodies, and Newton’s third law in Chap. 6 as we
analyze the forces exerted on each other by the various members form-
ing a structure. In the study of dynamics, Newton’s second law and
Newton’s law of gravitation will be introduced. Tt will then be shown
that Newton’s first law is a particular case of Newton’s second law
(Sec. 12.2) and that the principle of transmissibility could be derived
from the other principles and thus eliminated (Sec. 16.5). In the mean-
time, however, Newton'’s first and third laws, the parallelogram law of
addition, and the principle of transmissibility will provide us with the
necessary and sulficient foundation for the entire study of the statics
of particles, rigid bodies, and systems of rigid bodies.

As noted earlier, the six fundamental principles listed above are
based on experimental evidence. Except for Newton’s first law and the
principle of transmissibility, they are independent principles which can-
not be derived mathematically from each other or from any other ele-
mentary physical principle. On these principles rests most of the intri-
cate structure of newtonian mechanics. For more than two centuries a
tremendous number of problems dealing with the conditions of rest
and motion of rigid bodies, deformable bodies, and fluids were solved
by applying these fundamental principles. Many of the solutions ob-
tained could be checked experimentally, thus providing a further veri-
fication of the principles from which they were derived. It was only in
the last century that Newton’s mechanics was found at fault, in the study
of the motion of atoms and in the study of the motion of certain plan-
ets, where it must be supplemented by the theory of relativity. But on
the human or engineering scale, where velocities are small compared
with the speed of light, Newton’s mechanics has yet to be disproved.

1.3. SYSTEMS OF UNITS

Associated with the four fundamental concepts introduced in the pre-
ceding section are the so-called kinetic units, that is, the units of
length, time, mass, and foree. These units cannot be chosen inde-
pendently if Eq. (1.1) is to be satisfied. Three of the units may be
defined arbitrarily; they are then referred to as base units. The fourth
unit, however, must be chosen in accordance with Eq. (1.1) and is
referred to as a derived unit. Kinetic units selected in this way are
said to formn a consistent system of units.

International System of Units (S| Unitst). In this system,
which will be in universal use when the United States completes its
conversion to ST units, the base units are the units of length, mass,
and time, and they are called, respectively, the meter (m), the kilo-
gram (kg), and the second (s). All three are arbitrarily defined. The
second, which was originally chosen to represent 1/86 400 of the mean

1S stands for Systéme International d'Unilés (French).

1.3. Systems of Units 5
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a=951 mas=

Fig. 1.3

W=051N

solar day, is now defined as the duration of 9 192 631 770 cycles of
the radiation corresponding to the transition between two levels of
the fundamental state of the cesium-133 atom. The meter, originally
defined as one ten-millionth of the distance from the equator to either
pole, is now defined as 1 650 763.73 wavelengths of the orange-red
light corresponding to a certain transition in an atom of krvptcm-86

The kilogram, which is approximately equal to the mass of 0.001 m®

of water, is defined as the mass of a platinum-iridium standard kept
at the International Burcau of We1ghte and Measures at Sévres, near
Paris, France. The unit of force is a derived unit. It is called the new-
ton (N) and is defined as the force which gives an acceleration of
1 m/s> to a mass of 1 kg (Fig. 1.2). From Eq. (1.1) we write

N = (1 kg)(1 m/s®) = 1 kg * n/s” (L5)

The ST units are said to form an absolute system of units. This means
that the three base units chosen are independent of the location where
measurements are made. The meter, the kilogram, and the second
may be used anywhere on the earth; they may even be used on an-
other planet. They will always have the same significance.

The weight of a body, or the force of gravity exerted on that body,
should, like any other force, be expressed in newtons. From Eq. (1 4)
it follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W=mg
= (1 kg)(9.81 nvs®)
=98I N

Multiples and submultiples of the fundamental SI units may be
obtained through the use of the prefixes defined in Table 1.1. The
multiples and submultiples of the units of length, mass, and force most
frequently used in engineering are, respectively, the kilometer (km)
and the millimeter (mm); the megagramt (Mg) and the gram (g); and
the kilonewton (kN). According to Table 1.1, we have

1 kem = 1000 m 1 mm = 0.00l m
1 Mg = 1000 kg 1g=0.001 kg
1 kN = 1000 N

The conversion of these units into meters, kilograms, and newtons,
respectively, can be effected by simply moving the decimal point three
places to the right or to the left. For example, to convert 3.82 km into
meters, one moves the decimal point three places to the right:

3.82 km = 3820 m

Similarly, 47.2 mm is converted into meters by moving the decimal
point three places to the left:

47.2 mm = 0.0472 m

Also known as a metrie ton.



Table 1.1. S| Prefixes

Multiplication Factor Prefix| Symbol
1 000 000 000 000 = 10* tera P
1 000 000 000 = 10° giga G
1 000 000 = 10° mega M
1 000 = 10° kilo k
100 = 10° hecto} I
10 = 10* dekal da
01=10" decit d
0.01 =10 * centi} ¢
0.001 = 1073 milli "
0,000 001 = 107° micro i
0.000 000 001 = 107" nano n
0.000 000 000 001 = 10~ '* pico P
0.000 000 000 000 001 = 10 '? femto f
0.000 000 000 000 000 001 = 10~'% atto a

IThe first syllable of every prefix is accented so that the prefix will retain sty identity.
Thus, the preferred pronuneiation of kilometer places the accent on the first syllable. not
the second.

IThe nse of these prefixes should be avoided. except [or the measurement of areas
anel volumes and for the nontechnieal use of centimeter; as for body and clothing
uleasurements.

Using scientific notation, one may also write

3.82 km = 3.82 X 10° m
472 mm =472X 10 m

The multiples of the unit of time are the minute (min) and the
hour (h). Since 1 min = 60 s and 1 h = 60 min = 3600 s, these multi-
ples cannot be converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit,
one can avoid writing very large or very small numbers. For example,
one usually writes 427.2 km rather than 427 200 m, and 2.16 mm
rather than 0.002 16 m.f

Units of Area and Volume. The unit of area is the square me-
ter (m”), which represents the area of a square of side 1 m; the unit
of volume is the cubic meter (m®). equal to the volume of a cube of
side 1 m. In order to avoid execedingly small or large numerical values
in the computation of areas and volumes, one uses systems of sub-
units obtained by respectively squaring and cubing not only the mil-
limeter but also two intermediate submultiples of the meter, namely,
the decimeter (dm) and the centimeter (cm). Since, by definition,

1dm=01m=10"m
lem =001 m=10*m
Ilmm=0001m=10"m

1Tt should he noted that when more than four digits are used on either side of the dec-
imal point to express a quantity in ST inits—as in 427 200 m or 0.002 16 m—spaces, never
wommas, should be-used to separate the digits into groups of three, This is to avoid con-
fusion with the comma used in place of a decimal point, which is the convention in many
oonntries,

1.3. Systems of Units 7
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the submultiples of the unit of area are

1de®=(1dm)?=00" "mP=10*m®
lem®*=(lem)* =102 m)*=10""m*
Tmm2=1mmP=10"m)?=10"m?

and the submultiples of the unit of volume are

1dm* =0 dmP=00""m)?*=10"*m®
lem®=(1lem)’ = (102 m)’=10"%nm?
lmm®= (1 mm)* =10 " m)*=10""m"

It should be noted that when the volume of a liquid is being mea
sured. the cubic decimeter (dm®) is usually referred to as a liter (L)

Other derived SI units used to measure the moment of a force
the work of a force, ete., are shown in Table 1.2. While these unit
will be introduced in later chapters as they are needed, we shoul
note an important rule at this time: When a derived unit is obtainec
by dividing a base unit by another base unit, a prefix may be used i
the numerator of the derived unit but not in its denominator. For ex
ample, the constant &k of a spring which stretches 20 mm under a loac
of 100 N will be expressed as

100 N 100 N

b 20mm  0020m 5000 N/m  or  k=35kN/m

but never as k = 5 N/ mm.

Table 1.2. Principal Sl Units Used in Mechanics

Quantity Unil Symbol Formula
Acceleration Meter per second squared g e m/st
Angle Radian rad f
Angular acceleration  Radian per second squared . . . rad/s*
Angular velocity Radian per second < oais rad/s
Area Square meter me
Density Kilogram per cubic meter . . . kg/m®
Energy Joule ] N+m
Force Newton N kg + m/s
Frequency Hertz Hz g
Impulse Newton-second b kg - nvs
Length Meter m {
Mass Kilogram kg {
Moment of a force Newton-meter AT N:'m
Power Watt W Jis
Pressure Pascal Pa N/m®
Stress Pascal Pa N/m’
Time Second S H
Velacity Meter per second /s
Volume

Solids Cubie meter s m®

Liquids Liter L 104 m
Work Joule ] N+ m

tSupplementary mit (1 revolution = 27 rad = 360°),

| Base unit,



U.S. Customary Units. Most practicing American engineers still
commonly use a system in which the base units are the units of length,
force, and time. These units are, respectively, the foot (ft), the pound
(Ib), and the second (s). The second is the same as the corresponding
ST unit. The foot is defined as 0.3048 m. The pound is defined as the
weight of a platinum sr.md.ml called the standard pound, which is kept
at the National Institute of Standards and Technology outside Wash-
ington, the mass of which is 0.453 592 43 kg. Since the weight of a body
depends upon the earth’s gravitational attraction, which varies with lo-

ation, it is specified that the standard pound should be placed at sea
level and at a latitude of 45° to properly define a torce of 1 ﬂ Clearly
the U.S. custormary units do not form an absolute system of units. Be-
canse of their de p{'tldt-'m:e upon ¢ the gravitational attraction ol the earth,
tw\ form a grac itational system of units.

While lll(. standard lmuml also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in en-
gincering mechanics computations, since such a unit would not be
consistent with the base units defined in the p:eccc.mL pe aragraph. In-
deed, when acted upon by a foree of 1 1b, that is, when subjected to
the force of ﬂrmll\ th standard pound receives the acceleration of
gravity, g = 32.2 (t/s> ( (Fig. 1.4), not the unit acceleration required by
Eq 1.1). “lt‘ unit of mass consistent with the [oot, the l)tlll]lll. and
the second is the mass which receives an acceleration of 1 ft/s> when
a force of 1 1b is applied to it (Fig. 1.5). This unit, sometimes called
a slug, can be derived [rom the equation F = ma alter substituting
I Ihand 1 ft/s® for F and «, respectively. We write

F = ma 11b=(1slug)l ft/s”)

and obtain
L slug = _I‘L =11b- Mt (1.6)
> | ft/s™

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2
times lar m I r|1 n the mass of the standard pnlmd

The fact that in the U.S. customary svstem of units bodies are
characterized by their weight in pounds 1: ather than by their mass in
slugs will be a convenience m the study of statics, where one con-
stantly deals with weights and other forces and only seldom with
masses. However, i1 n the study of dynamics, where forces, masses, and
accelerations are involved, the mass m of a body will be expresse «d in
shugs when its weight W is given in pounds. Re calling Eq. (1.4), we
write

m= — (1.7)
o
g

where g is the acceleration of gravity (g = 32.2 ft/s”).

Other U.S. ¢ ustomary units %reqm_ml\‘( ncmmtucd in engineer-
ing |}|0Illu!|5 are the mile (mi), equal to 5280 ft; the inch (in. ), equal
to + ft; and the kilopound (kip), equal to a force of 1000 Ib. The ton
is often used to represent a mass of 2000 Ib but, like the ])(Jllnd must
be converted into shugs in engineering computations.

The conversion into feet, pom:(h and seconds of (uantities ex-

PI‘Lth‘tI in other U.S. customary units is generally more involved

1.3. Systems of Units 9

Fig. 1.4

Fig. 1.5

Photo 1.2 The unit of mass is the only basic unit
still based on a physical standard. Work is in
progress lo replace this standard with one based
on unchanging natura! phenomena



Photo 1.3 The importance ol including units in all
calculations cannot be over emphasized. It was
found thal the $125 million Mars Climate Orbiter
failed to go into orbit around Mars because the
prime contractor had provided the navigation team
with operating data based on U.S. units rather than
the specified Sl units.

and requires greater attention than the L'-vrr'r";lmrulinu operation in S|
units. If, for H\HHPL‘ the magnitude of a \L’qul\ is given as v =
30 mih, we convert it to ft/s as follows. First we write

o = 30
h
Since we want to get rid of the unit miles and introduce instead the
unit feet, we should multiply the right-hand member of the equation
by an expression containing miles in the denominator and feet in the
numerator. But, since we do not want to change the value of the right-
hand member, the expression used should have a value equal to unity.
The quotient (3280 ft)/(1 mi) is such an expression. Operating in a
similar way to transform the unit hour into seconds, we write

f nu /5280 ft\/ 11}
L e

Carrying out the numerical computations and canceling out units
which appear in both the numerator and the denominator, we obtain

— —

it e
=44 — = 44 {t/s
5

1.4. CONVERSION FROM ONE SYSTEM OF UNITS
TO ANOTHER

There are many instances when an engineer wishes to convert into
ST units a numerical result obtained in U.S. customary units or vice
versa. Because the unit of time is the same in both systems, only two
kinetic base units need be converted. Thus, since all other kinetic
units can be derived from these base units, onlv two conversion fac-
tors need be remembered.

Units of Length. By definition the U.S. customary unit of
length is

1 ft = 0.3048 m (1.8)
It follows that

1 mi = 5280 ft = 5280(0.3048 m) = 1609 m

o1
1 mi = 1609 ki (1.9)
Also
Lin. = i ft = 5(0.3048 m) = 0.0254 m
or
lin. =254 mm (1.10)

Units of Force. Recalling that the U.S. customary unit of force
(pound) is defined as the weight of the standard pound (of mass
0.4536 kg) at sca level and at a latitude of 45° (where g = 9.807 m/s”)
and using Eq. (1.4), we write




W=mg
1 b = (0.4536 kg)(9.807 n/s’) = 4.448 kg m/s”

or, recalling Eq. (1.3),
11b=4448 N (1.11)

Units of Mass. The U.S. customary unit of mass (slug) is a
derived unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write

1lb 4448 N

= = 14 50 N~ &2
T8 i

1slg = 11b - st =

and, recalling Eq. (1.5),
1slug = 11b - s*ft = 14.59 kg (1.12)

Although it cannot be used as a consistent unit of mass, we recall that
the mass of the standard pound is, by definition,

1 pound mass = 0.4536 kg (1.13)

This constant may be used to determine the mass in SI units (kilo-
grams) of a body which has been characterized by its weight in U.S.
customary units (pounds).

To convert a derived U.S. customary unit into SI units, one sim-
ply multiplies or divides by the appropriate conversion factors. For
example, to convert the moment of a force which was found to be
M =47 |b « in. into SI units, we use formulas (1.10) and (1.11) and
write

M=471b-in. = 47(4.448 N)(25.4 mm)
=5310N - mm=33IN-m

The conversion factors given in this section may also be used to
convert 4 numerical result obtained in SI units into U.S. customary
mits. For example, if the moment of a force was found to be
M =40 N - m, we write, following the procedure used in the last
paragraph of Sec. 1.3,

M=40N-m=(4(}N.m)( 11b )( 1t }

4448 N /\ 0.3048 m

Carrying out the numerical computations and canceling out units
which appear in both the numerator and the denominator, we obtain

M=2951b-ft

The U.S. customary units most frequently used in mechanics are
listed in Table 1.3 with their SI equivalents.

1.5. METHOD OF PROBLEM SOLUTION

You should approach a problem in mechanics as you would approach
an actual engineering situation. By drawing on your own experience
and intuition, you will find it easier to understand and formulate the
problem. Once the problem has been clearly stated, however, there is

1.5. Method of Problem Solution

11
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Table 1.3. U.S. Customary Units and Their S| Equivalents

Quantity U.S. Customary Unit S| Equivalent
Acceleration ft/s® 0.3048 m/s”
inss® 00254 m/s*
Area 2 0.0929 m”
in? 645.2 mm"®
Energy ft- b 1.356 |
Force kip 4,448 kN
Ib 4448 N
0z 0.2780 N
Impulse Ib-s 4448 N * 5
Length ft 0.3048 m
in. 25.40 mm
mi 1.609 kin
Mass 0z mass 2835 g
Ib mass 0.4536 kg
slug 14.59 kg
ton 7.2 kg
Moment of a force bt 1.356 N - m
Ib - in. 01130N -m
Moment of inertia
Of an area in* 0.4162 x 10° mm"
Of a mass b ft-s® 1.356 kg m?
Momentum Ib-s 4.448 kg - m/s
Power it - Ib/s 1356 W
hp 7457 W
Pressure or stress Th/t® 4788 Pa
/in® (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s
in./s 0.0254 m/s
mi/h (mph) 0.4470 m/s
mi/h (mph) 1.609 kmvh
Volume ft? 0.02832 m®
in’ 16.39 ¢m®
Liquids gal 3.785 L
qt 0.9464 L
Work ft-1b 1.356 |

no place in its solution for your particular fancy. The solution must be
based on the six fundamental principles stated in Sec. 1.2 or on theo-
rems derived from them. Every step taken must be justified on that
basis. Strict rules must be followed, which lead to the solution in an
almost automatic fashion, leaving no room for your intuition or “feel-
ing.” After an answer has been obtained, it should be checked. Here
a?ai"‘ you may call upon your common sense and personal experience.
If not completely satisfied with the result obtained, you should care-
fully check your formulation of the problem, the validity of the meth-
ods used for its solution, and the accuracy of your computations.
The statement of a problem should be clear and precise. It should
contain the given data and indicate what information is required. A
neat drawing showm% all quantities involved should be included. Sep-
arate diagrams should be drawn for all bodies involved, indicating
clearly the forces acting on each body. These diagrams are known as
free-body diagrams and are described in detail in Secs. 2.11 and 4.2.




The fundamental principles of mechanics listed in Sec. 1.2 will
be used to write equations expressing the conditions of rest or motion
of the bodies considered. Each equation should be clearly related to
one of the free-body diagrams. You will then proceced to solve the
problem, observing strictly the usnal rules of algebra and recording
neatly the various steps taken.

After the answer has been obtained, it should be carefully
checked. Mistakes in reasoning can often be detected by checking the
units. For example, to determine the moment of a force of 50 N about
apoint 0.60 m from its line of action, we would have written (Sec. 3.12)

M = Fd = (50 N060 m)=30N -m

The unit N - m obtained by multiplying newtons by meters is the
correct unit for the moment of a force; if another unit had been ob-
tained, we would have known that some mistake had been made.
Errors in computation will usually be found by substituting the
numerical values obtained into an equation which has not yet been
used and verifying that the equation is satisfied. The importance of
correct computations in engineering cannot be overemphasized.

1.6. NUMERICAL ACCURACY

The accuracy of the solution of a problem depends upon two items:
(1) the accuracy of the given data and (2) the accuracy of the com-
putations perﬂmned

The solution cannot be more accurate than the less accurate of
these two items. For example, if the loading of a bridge is known to
be 75,000 |b with a possible error of 100 Ib either way, the relative
error which measures the degree of accuracy of the data is

100 1b
75,000 Ib

In computing the reaction at one of the bridge supports, it would then
be meaningless to record it as 14,322 Ib. The accuracy of the solution
cannot be greater than 0.13 percent, no matter how accurate the com-
putations are, and the possible error in the answer may be as large as
(0.13/100)(14,322 Ib) =~ 20 lb. The answer should be properly recorded
as 14,320 = 20 |b.

In engineering problems, the data are seldom known with an
accuracy greater than 0.2 percent. It is therefore seldom justified
to write the answers to such problems with an accuracy greater than
0.2 percent. A practical rule is to use 4 figures to record numbers
beginning with a “1” and 3 figures in all other cases. Unless otherwise
indicated, the data given in a problem should be assumed known with
acomparable degree of accuracy. A force of 40 Ib, for example, should
be read 40.0 Ib, and a force of 15 1b should be read 15.00 Ib.

Pocket electronic calculators are widely used by practicing engi-
neers and engineering students. The :,peed and accuracy of these cal-
culators facilitate the numerical computations in the solution of many
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. As
noted above, an accuracy greater than 0.2 percent is seldom neces-
sary or meaningful in the solution of practical engineering problems.

= 0.0013 = 0.13 percent

1.6. Numerical Accuracy
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