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The key conclusions of several mathematical models of malaria are reviewed with emphasis on their 
relevance for control. The Ross-Macdonald model of malaria transmission has had major influence on 
malaria control. One of its main conclusions is that endemicity of malaria is most sensitive to changes in 
mosquito imago survival rate. Thus malaria can be controlled more efficiently with imagicides than with 
larvicides. An extension of this model shows that the amount of variability in transmission parameters 
strongly affects the outcome of control measures and that predictions of the outcome can be misleading. 
Models that describe the immune response and simulate vaccination programs suggest that one of the 
most important determinants of the outcome of a vaccine campaign is the duration of vaccine efficacy. 
Apparently malaria can be controlled only if the duration of efficacy is in the order of a human life-span. 
The models further predict that asexual stage vaccines are more efficient than transmission-blocking 
vaccines. Directions for further applications of mathematical models are discussed. 
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Introduction 

The epidemiology of malaria deals with the reasons for the prevalence of disease and 
the nature and causes of its variation. Its aim is to understand the dynamics of 
malaria transmission well enough to manage control programs efficiently. Biological 
studies in the field and the laboratory have greatly increased our knowledge of the 
life cycle of the malaria parasite and its interactions with its mosquito vector and its 
final host. However, since the beginnings of malaria research (Ross, 1911; Mac- 
donald, 1957), it has been clear that even the most detailed biological knowledge of 
the parasite's life-cycle cannot lead to a complete understanding of what causes such 
radical differences in malaria patterns in different parts of the world. Such under- 
standing can only be reached by synthesizing the many factors controlling transmis- 
sion, integrating detailed biological information into one coherent picture. 

This integration is the aim of mathematical epidemiology. As Macdonald (1957, 
p. 4) writes: 
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'[Mathematical epidemiology] gives a sense of proportion, relating the various factors of 
the transmission cycle to each other and to relevant biological characteristics of the 
mosquito. It can show the scale of changes in infection rates to be expected following 
changes in one of the transmission factors, and why this scale should differ greatly under 
different conditions. It can supply the principle which connects happenings in two countries 
and explain the detail of happenings in any individual country.' 

The integration of the complex interactions between parasites and hosts leads to 
non-linear terms in the description of  malaria transmission. The importance of such 
nonlinearities, both for an understanding of the dynamics of  the system and for the 
interpretation of  observed patterns of  interactions between the malaria parasite, the 
mosquito vector, and the human host has been made clear by Anderson et al. (1989). 
But grasping the effect of nonlinearities is impossible without the help of a mathemati- 
cal model. 

Despite the early recognition by Ross and Macdonald of  the importance of  a 
quantitative description of  malaria transmission, mathematical epidemiology has 
encountered many difficulties in gaining general acceptance by epidemiologists and 
public health workers. One of  the reasons for this lack of acceptance may lie in the 
increasing complexity of  the models published in the 1960's and 70's (reviewed by 
Bailey, 1977). These models are not only difficult for non-mathematicians to under- 
stand, but the interpretation of their results may actually be misleading. On the one 
hand, the more variables included in a model, the closer the predictions of  the model 
often agree with observations, simply because more degrees of freedom are involved. 
However, a close agreement between prediction and observation does not necessarily 
imply an agreement between the structure of  the model and the biological processes. 
Therefore the qualitative predictions of  simple models may be more biologically 
meaningful than the precise quantitative predictions of complex models involving 
many parameters. On the other hand, more detailed models do not necessarily result 
in greater predictive power. In fact, the results of  more complex models may be less 
reliable than those of simple ones (Lee, 1973; O'Neill, 1973). As one includes more 
detail into a model, the number of  assumptions about interactions increases exponen- 
tially. Therefore, the probability of  making a wrong and critical assumption increases 
rapidly, and it has been found that the predictive power of a model usually declines 
after some level of  detail has been exceeded. 

In this review, emphasis is placed on simple mathematical models and on their 
qualitative predictions. This is not a complete review of malaria models, which can 
be found in Aron and May (1982), Bailey (1982), N~tsell (1985), Nedelmann (1985) 
or Dietz (1988). My aim is to review the key conclusions of those mathematical 
models that have enhanced our understanding of malaria and that could help to plan 
control strategies. So that such conclusions can be seen clearly, some of  the models 
presented are modifications of  published models. 

All of  the models presented here are based on the life-cycle of  malaria parasites 
outlined in Fig. 1, and basically describe changes of  infection in the human host and 
the mosquito vector. Infection can be expressed in three ways. Prevalence of  infection, 
or parasite rate, describes the proportion of the population harboring malaria para- 
sites. Parasitaemia describes the density of parasites within a host, and is thought to 
be an important factor determining the severity of disease in humans (Trape et al., 
1985). Intensity of  infection describes the number of separate infections received by 
a host. Because different strains of parasites differ in their antigenic properties 
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Fig. I. Schematic life-cycle of the malaria parasite. 

(Forsyth  et al., 1989), intensity is certainly impor tan t  in determining the level o f  
acquired immunity.  It  might  also contr ibute  to severity o f  disease (Snow et al., 1988), 
possibly by determining the probabil i ty o f  a h u m a n  becoming infected with a virulent 
parasite strain. 

A basic model 

The first model  o f  malar ia  transmission was developed by Ross (1909, 1911) and 
later extended by Macdona ld  (1957). This so-called Ross -Macdona ld  model  is the 
best -known and most  widely used model.  Despite its simple structure (Fig. 2), it 
allows a compar i son  and interpretat ion o f  b road  epidemiological patterns. The mode '  
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Fig. 2. Structure of the Ross-Macdonald model of malaria transmission. The flow of humans from a 
susceptible class to an infected class and, through recovery from infection, the reverse are shown in the 
upper part of the figure. The flow of mosquitoes from a susceptible class to an infected class, and finally 
to an infectious class are shown on the bottom. The human and mosquito populations are linked through 

the transmission process. See the main text and Appendix A for a more detailed description. 
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is a direct translation of the schematic life-cycle shown in Fig. 1 into quantitative 
terms, as shown in Appendix A. A few of the major assumptions underlying the 
model are (1) no acquired immunity in the human host, (2) that mosquitoes bite 
humans randomly, and (3) that human and mosquito populations are homogeneous. 
Its basic results can best be described by considering the basic reproductive number, 
Ro. This number describes the number of secondary cases of malaria arising from a 
single case in an otherwise uninfected population (Macdonald, 1957; Anderson and 
May, 1980), and can be thought of as a measure of the intensity of transmission. It 
can be derived algebraically (Appendix A) as 

ma2blb2e-~ 'T 
Ro - ( 1 )  

r/~ 

where m denotes the number of mosquitoes per human host, a denotes the biting 
rate of the mosquitoes on their human host, b2 denotes the susceptibility of humans, 
bl denotes the infectiousness of humans to mosquitoes, p denotes the mortality of 
adult mosquitoes, T denotes the incubation period of parasites within the mosquito 
vector, and r denotes the rate of recovery of infected humans. A graphical representa- 
tion of the basic reproductive number (Aron and May, 1982) is shown in Fig. 3. 

The result of equation (1) is intuitively understandable. Transmission of malaria 
is helped by high densities of mosquitoes (high m) that bite frequently (high a) and 
by highly susceptible humans (high bz) and mosquitoes (high bl), and transmission 
is hindered by quick recovery of infected humans (high r) and by high mortality rate 
of the mosquito vector (high/~). Because mosquitoes must bite twice for transmission 
of the parasites (once to take up gametocytes, and once to inject sporozoites), the 
square of the biting rate, a, enters the equation. The term e , r  denotes the proportion 
of mosquitoes surviving from the time of being infected through the incubation 
period of the parasites. 

Malaria can spread in a population only if the basic reproductive number exceeds 
one, i.e. if each infection gives rise to at least one additional case. This can be seen 
in the phase-plane representation of Fig. 3, or by considering the equilibrium propor- 
tions of infected humans and mosquitoes. Setting equations (A.1) to (A.3) to zero 
and applying equation (1) leads to the prevalence of infection in humans 

Ro-1  
= - -  (2a) 

a 
R o - -  

and in mosquitoes 

(/ 

if= R°-~l- # e -ur (2b) 
Ro a 

l + -  
P 

These values are positive only if Ro > 1 (Fig. 4), giving the basis for Ross's Threshold 
Theorem of Malaria (Ross, 1911, Section 28): 

'We may therefore conclude, [1] That the amount of malaria in a locality tends towards a 
fixed limit determined by the number of malaria-bearing mosquitoes and by other factors. 
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Fig. 3. Phase plot of the Ross-Macdonald model defined in Appendix A. Each point corresponds to a 
particular pair of values for the prevalence in humans and in mosquitoes. Prevalence in humans is not 
changing along the line j ,=0 (human isocline), and prevalence in mosquitoes is not changing along the 
line ff = 0 (mosquito isocline). The intersection of the two lines represents the equilibrium prevalences as 
defined by the Ross-Macdonald model. At other pairs of values, the prevalences move in the direction 
indicated by the arrows. In (a) the initial slope of the mosquito isocline is greater than that of the human 
isocline. Therefore, a stable equilibrium exists and malaria can be established in the population. In (b) 
the initial slope of the mosquito isocline is less than that of the human isocline, and the isoclines do not 
cross. Both prevalences are drawn to zero, and malaria cannot maintain itself. The condition for the 
maintenance of malaria is thus that the initial slope of the mosquito isocline is greater than that of the 
human isocline. This is equivalent to the condition that the basic reproductive number is greater than one 

(see equation (1)). 

[2] That if the number of malaria-bearing Anophelines is below a certain figure, that limit 
will be zero.' 

Several  features  o f  the  R o s s - M a c d o n a l d  m o d e l  are w o r t h  m e n t i o n i n g .  First ,  the  
T h r e s h o l d  T h e o r e m  states that  m a l a r i a  can  persist  in a p o p u l a t i o n  o n l y  i f  the  n u m b e r  
o f  m o s q u i t o e s  is greater than  a g iven  thresho ld .  S e c o n d l y ,  the preva l ence  o f  i n f e c t i o n  
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Fig. 4. Prevalence of infection in humans and mosquitoes as a function of the basic reproductive number. 
The values are predicted by the Ross-Macdonald model, as shown in equation (2). 

in the human and the mosquito host depends directly on the basic reproductive 
number (equation 2). Their relationship is highly nonlinear. When the reproductive 
number is near one, prevalence increases greatly for small increases in Ro. On the 
other hand, when the reproductive number is large, even large reductions in Ro lead 
to almost no reduction in prevalence. Thirdly, equations (2) define a stable equilib- 
rium. This means that temporary interventions can lead only to a temporary reduc- 
tion of prevalence. When the intervention is relaxed, prevalence again increases to 
its original value. Fourthly, for very high reproductive numbers, the model predicts 
that virtually everyone in the human population is infected. This obvious overesti- 
mate is due to the model's neglect of acquired immunity. 

A final feature of the model is found by performing a sensitivity analysis 
(Macdonald, 1957) of the basic reproductive number defined by equation (1). The 
sensitivity analysis consists of calculating the effect of small changes in each of the 
parameters on the basic reproductive number, and comparing the effects with each 
other. The larger the effect, the more sensitive the endemic level is to changes in the 
corresponding parameter. The outcome of such an analysis is shown in Fig. 5. It is 
shown that, say, halving the mosquito population, m, (e.g. by larvicides) reduces Ro 
by a factor of two, whilst halving biting rate, a, (e.g. with bed nets) reduces R o by a 
factor of four. The largest reduction of Ro is expected for increases in adult mosquito 
mortality,/~, (e.g. by imagicides) because of their exponential relationship. An impor- 
tant conclusion of the model is thus that imagicides are more effective for controlling 
malaria than are larvicides. The conceptual changes in malaria control strategies 
following Macdonald's conclusions are described by Harrison (1978). Macdonald 
(1957) used the conclusions of his calculations to help to explain the extreme differ- 
ences in the epidemiological pattern between East Africa, where malaria is charac- 
terized by very high endemicity and high levels of immunity, and South Eastern 
India, where malaria is characterized by epidemics (Macdonald, 1957). In India, the 
most important vector is Anopheles culicifacies. This species has a short life expec- 
tancy of about four days and bites humans at a rate of about 0.01 per day. In East 
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Fig. 5. Sensitivity of basic reproductive number as calculated for the Ross-Macdonald model on mosquito 
density, biting rate, and mosquito survival. A given endemic setting is given with the values one for each 
parameter and for Ro. Changes in parameter values are shown as factors relating to the original setting, 
e.g., a value of 2 for mosquito density denotes that density decreased two-fold. Mosquito density enters 
the equation for the basic reproductive number linearly. Therefore a two-fold decrease in mosquito density 
leads to a two-fold decrease in reproductive number. Biting rate enters the reproductive number quad- 
ratically, so that a two-fold decrease leads to a four-fold decrease in reproductive number. Survival 
of adult mosquitoes enters reproductive number exponentially, and decreases lead to the largest changes 

in reproductive number. 

Africa, the major  vector is A. gambiae s.l., which has a life-expectancy of about  ten 
days and its biting-rate is about  0.5 per day. I f  all other parameters  were equal in 
the two areas, these differences in survival and biting rate would lead to a 20000- 
fold difference in reproductive number. Of  course this difference is lessened by 
reductions in human recovery rate, susceptibility and infectiousness due to acquired 
immunity. Nevertheless, the calculations reinforce the epidemiological patterns. 
Based on these calculations, Macdonald (1957) concluded that, in East Africa, 'con- 
trol by imagicides would be relatively difficult, to be effective needing the achieve- 
ment of  a 40 to 50 per cent daily mortali ty among the vectors',  and that 'control 
falling only slightly short of  the necessary quality is not likely to produce much 
apparent  result'. In contrast, in South East India, 'control by imagicides is likely to 
be very easy, mortalities such as 20 to 25 per cent daily often being sufficient.' 

Thus, the simple Ross-Macdonald model can teach a great deal about  the epidemi- 
ology of  malaria and can aid decision-making in control strategies. However,  the 
conclusions of  the model are most  useful at a conceptual level. The model helps to 
interpret differences between endemic situations and helps to predict major  impacts 
of  control strategies. It thus tells us that imagicides are more efficient than larvicides. 
The model is less useful at explaining details of  the epidemiology of  malaria in any 
given area or at designing control strategies at the implementation level. It cannot 
tell us where or how often to apply insecticides. 

One step towards more detailed explanations of  epidemiological patterns of  
malaria involves dropping the assumptions of  the Ross-Macdonald model mentioned 
above. These assumptions are that infected humans cannot develop immunity against 



malaria and that the human and mosquito populations are homogeneous. The effects 
of  acquired immunity and of variable mosquito and human populations on the 
predictions of the Ross-Macdonald model are discussed in the following sections. 

Effect of variability 

It is well-known that mosquitoes bite some persons more than others (for a review 
see Burkot, 1988). Dye and Hasibeder (1986) have demonstrated two important 
consequencies of  this variability. First, variability in biting rate increases the basic 
reproductive number above the value obtained for uniform biting. Thus variability 
in biting rate makes malaria more difficult to control. Secondly, variability in biting 
rate can either increase or decrease equilibrium prevalence (Fig. 6a). In particular, 
in highly endemic areas (where R o is high), the assumption of  uniform biting over- 
estimates prevalence, but in areas where Ro is low, the assumption of  uniform biting 
underestimates prevalence. 

Of course, other parameters other than biting rate show considerable variation 
between individuals within a population. As examples consider the effect of  sickle 
cell disease (Fleming et al., 1985) or of glucose-6-phosphate dehydrogenase deficiency 
(Luzzato et al., 1985) on susceptibility to malaria, the effect of age and immune status 
on recovery rate (Cohen and Singer, 1979), or the effect of chloroquine on infectious- 
ness of gametocyte carriers to mosquitoes (Wilkinson et al., 1976; Ichimori, 1987; 
Ichimori et al., 1990). Dye and Hasibeder's (1986) analysis was extended to include 
variability in other parameters (Appendix B). Analysis of a model that incorporates 
variability in, say biting rate, a, susceptibility, bz, and duration of  disease, p =  l/r, 
shows that the basic reproductive number can be written as 

I var(a)+2 c°v(a'b2,'~c°v(a'p, p(~22bz)l (3) Ro=Roo 1+ a---- ~ ab2 + z  a---fi + c o  

where 

R-o- m-dblb-2 e - " r ~  
# 

denotes the basic reproductive number due to the mean parameters, 2 denotes the 
mean of  x, var(x) denotes the variance of x, and cov(x,y) denotes the covariance of  
x and y. 

Equation (3) shows that variability in any given parameter affects the basic repro- 
ductive number only if at least one of the following conditions holds. First the 
parameter may covary with a second parameter. In this case, Ro can be either 

Fig. 6. Mean prevalences of infection in populations consisting of two sub-populations, differing in biting- 
rate (panel a), susceptibility (panel b), and recovery rate (panel c). In each panel, prevalence is shown for 
uniform populations and for populations where the sub-populations differ in the parameter by a factor 
3 or 10. In (a), the basic reproductive number is calculated using the mean biting rate, and is thus an 
underestimate of the true value. This estimate leads to the prediction that, at high transmission intensities, 
variability decreases prevalence, but at low transmission intensities, increases prevalence. In (b) and (c), 
the true basic reproductive number of the population is calculated according to equation (3). This leads 

to the prediction that variability decreases prevalence at any intensity of transmission. 
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increased or decreased, depending on the sign of the covariance. Secondly, the param- 
eter may affect the basic reproductive number nonlinearly (e.g. biting rate affects the 
reproductive number quadratically). In this case, variability always increases R, 
through a term involving the variance of the parameter. 

In contrast, variability in any given parameter always affects prevalence of infec- 
tion. If, for example, a population is divided into a highly susceptible (large b2) and 
a less susceptible (low b2) group, but these groups do not differ in any other parame- 
ters, the basic reproductive number is 

R 
0 

=mab,b2 epPT 

rP 

and is thus independent of the variability in susceptibility. For any given R, on the 
other hand, mean prevalence in the population decreases as the variability in duration 
of susceptibility (Fig. 6b) increases. Similarly, mean prevalence decreases as the vari- 
ability in duration of infection (Fig. 6c) increases. 

There are three practical consequences of this. First, the description of the endemic 
setting of malaria depends on the level at which data were collected. Studies of the 
transmission of malaria at the household level and at the village level will lead to 
different interpretations of the malaria situation within the same geographical area. 
Secondly, as Dye and Hasibeder (1986) have pointed out, models that neglect vari- 
ability in biting rate lead to biased predictions of the impact of a control program. 
In particular, as transmission is reduced, the neglect of variability initially leads to 
overestimates of prevalence. As transmission is reduced further, the neglect of vari- 

ability eventually leads to underestimates of prevalence. Thirdly, the present analysis 
shows that a control program should focus not only on the reduction of overall 
transmission in a population, but consider also the variability of transmission. In 
particular, if differing control strategies lead to a similar reduction of transmission, 
but one maintains a higher level of variability in susceptibility or duration of disease, 
this strategy may reduce prevalence of infection to a greater extent. 

Immunity and vaccines 

Incorporating immunity into malaria models is important for two reasons. First, the 
neglect of immunity leads to such unrealistic predictions as a prevalence of close to 
100% in endemic areas. Incorporating immunity can help to make models more 
realistic. Secondly, modelling immunity, and in particular the effect of vaccines, can 
help to predict the outcome of vaccination programs. Models can help to determine 
the proportion of the population that must be vaccinated for the eradication of the 
disease (Anderson, 1982) and to determine the optimal age of vaccination (Hethcote, 
1988). Where vaccination implies a risk to the individual of developing the disease 
due to the vaccine, models can help to find a balance between individual and public 
priorities (Fine and Clarkson, 1986). Such predictions are difficult to make without 
the help of mathematical models because of the inherent nonlinearities in the trans- 
mission dynamics. Mass immunization changes endemicity and distribution of 
malaria through protection of vaccinated individuals, but also through indirect effects 
resulting from reduction in intensity of transmission. The discussion of antimalaria 
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vaccines is further complicated by the loss of immunity when exposure is interrupted 
(Boyd, 1949; Lancet Editorial, 1985). The incorporation of these nonlinearities into 
predictions of the effect of vaccines on endemicity can help to plan future vaccination 
programs. 

General model of immunity 

The general model of immunity consists of three differential equations denoting 
changes in the proportions of susceptible, x, infected, y, and immune, z, people 
(Fig. 7). The formulation of the model is described in Appendix C, and combines 
models proposed by Elderkin et al. (1977) and Aron (1988a,b). One of its major 
features is that the rate, y, at which immunes become susceptible again, depends on 
the rate, h, at which they acquire new infections. It is assumed that immunity lasts 
only for z years in the absence of new infections, and is boosted by new infections. 
Because r is equal to the mean residence time in the immune class, l/(y + S), where 
S denotes the death rate of humans, the rate of loss of immunity, y, becomes (Aron, 
1988a) 

y(h) = (h + S) e - (’ + ‘jr 
1 _,-W+% 

As shown in Appendix C, the infection rate, h, can be written as 

h= ma2blb2 eepTL 
P+ay 

(5) 

Analysis of the model at equilibrium leads to the basic reproductive number 

ma2blb2 empT 

R”= (r+Q 

Note that the basic reproductive number is independent of any parameter of 

$ 
death 

r---i rrlosquito 

population 

Fig. 7. Structure of model incorporating immunity. The flow of susceptible humans to infecteds (through 

infection by the mosquito population), the flow of infecteds to immunes (through recovery), and the flow 

of immunes to susceptibles (through loss of immunity in the absence of reinfections) are shown. See the 

main text and Appendix C for more details. 
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immunity, and thus is, aside from the inclusion of the human mortality ~, identical 
to the reproductive number defined by the Ross-Macdonald model (equation 1). 

The model allows the calculation of the age-specific prevalence (Aron, 1988b) 
following a method described by Dietz et al. (1974). In a population that has reached 
its equilibrium pattern of infection, the equilibrium inoculation rate can be applied 
to a cohort of susceptible newborns, expressed by an initial x = 1. The time parameter 
can then be interpreted as the age of the cohort. The equilibrium infection rate must 
be changed from equation (5) to 

h=ma2blb2 e -"T 37 (7) 
~t+a37 

where ~ denotes the overall prevalence in the cohort. If human mortality, ~, is 
assumed to be independent of age, the overall prevalence can be written as 

37= ~ e-~ry(t) dt. (8) 

A typical age-specific pattern of infection is shown in Fig. 8a. With increasing age 
of the cohort the proportion infected initially increases, but as immunity is built up, 
eventually decreases to a low value. This is the pattern observed in highly endemic 
areas (Molineaux and Gramiccia, 1980). Fig. 8a further shows that as transmission 
(i.e. basic reproductive number) increases, prevalence increases in very young chil- 
dren. In contrast, prevalence in adults decreases due to the increase of immunity. 
Therefore, the model predicts that age-specific prevalence curves drawn for differing 
transmission levels cross. This pattern is indeed observed (Boyd, 1949; Cornille- 
Br6gger et al., 1978). A striking feature of the model is shown in Fig. 8b. Whenever 
immunity exists (r > 0), overall prevalence of infection, )7, is highest for an intermedi- 
ate level of transmission, i.e. decreasing Ro from very high values to intermediate 
values increases prevalence. This is most obvious when the duration of immunity r 
is about one year. 

An important conclusion of models incorporating immunity is thus that control 
measures that focus on transmission may be counterproductive: Introducing bed- 
nets in endemic areas may, by reducing immunity in a population, increase pre- 
valence. 

Vaccines 

The general model introduced above can be used to predict the impact of future 
malaria vaccines. Two classes of vaccines are considered here. First, vaccines that act 
upon the asexual stages of the parasite (Fig. 1) protect the individual from becoming 
infected (anti-sporozoite vaccines) or from developing parasitaemia and the disease 
(anti-bloodstage vaccines). Secondly, vaccines that act upon sexual stages of the para- 
sites do not protect individual humans, but block transmission from infected humans 
to the mosquito vector. Both classes of vaccines are here applied in a mass vaccination 
program to a proportion of all newborns. Other strategies, e.g. repeated cohort vacci- 
nation, are considered by Anderson et al. (1989) with a slightly simplified model. 

Asexual stage vaccine Mass vaccination with an asexual stage vaccine is modelled 
by slightly altering the general model of immunity described by Fig. 7. It is here 
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predicted by the model of immunity described in Appendix C. Intensity of transmission is described by 
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sion, (b) Crude prevalence (weighted average over all age groups) as a function of intensity of transmission 

for various durations of immunity. 

assumed that a proportion p of  all newborns are immune,  leaving a proportion 1-p 
o f  the newborns susceptible. Note  that this proportion is the product o f  the propor- 
tion vaccinated and the efficacy of  the vaccine. The vaccine is assumed to stimulate 
immunity in the same way as does natural immunity,  so that the mean duration o f  
efficacy of  the vaccine is equal to the mean duration of  immunity,  3. 

The basic reproductive number is calculated in Appendix D, and malaria is eradi- 
cated when this value is less than one. This condit ion can be written as (Fig. 9a) 

p >  ( 1 - ~ o ) ( 1  + ~ )  (9a) 
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Fig. 9, Predictions of model of asexual stage vaccine on endemicity of malaria. (a) The relationship 
between the intensity of transmission and the proportion of newborns that must be vaccinated for 
the eradication of malaria. Intensity of transmission is described as the basic reproductive number. 
Various durations of immunity are shown. (b) The reduction of crude prevalence as a function of the 
proportion of newborns vaccinated. Different durations of immunity are shown. Intensity of transmission 

is intermediate (R 0 = 10). 

where Ro is defined by equat ion (6) and 7o is the duration o f  immuni ty  when infection 
rate is zero. Thus  7o/6 is the ratio o f  mean h u m a n  life expectancy to the mean 
duration o f  immuni ty  in susceptibles that are never infected. Fig. 9a shows that when 
immuni ty  is l i felong (7o--*0) malaria can be el iminated from any area if a sufficient 
proportion,  p, o f  the populat ion  is vaccinated. However ,  i f  the efficacy o f  the vaccine 
decreases over time, areas from where malaria can be el iminated are l imited to 

70+6 
Ro < - -  (9b) 

70 
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Thus even when the longevity of immunity is on the order of half of a human life- 
span, malaria can be eliminated only from epidemic areas with Ro < 1.5. 

Another way of expressing equation (9a) is shown by reformulating is as 

p> I -  1 _ e _ ~  (9c) 

Note that l-e -~ is the proportion of the vaccinated newborns that die before the 
vaccine becomes ineffective. Thus condition (9c) can be reduced to the standard 
condition for eradication of disease (Anderson, 1982) 

p'> ( 1 - ~ o )  (96) 

where p' denotes the effective proportion vaccinated, i.e., the proportion of the 
population that are vaccinated, develop immunity, and maintain immunity 
throughout their lives. 

The model further predicts that prevalence decreases more or less linearly as the 
proportion vaccinated increases (Fig. 9b). The major determinants of prevalence are 
the basic reproductive number and the duration of immunity. The impact of the 
vaccine on prevalence increases as the basic reproductive number decreases and as 
the duration of immunity, i.e. the duration of efficacy of the vaccine, increases. 

Transmission-blocking vaccine Mass vaccination with a sexual stage vaccine is mod- 
elled by splitting the general model of Fig. 7 into two categories (Fig. 10). A propor- 
tion 1-p of newborns remains unvaccinated, becomes infected (and infectious), and 
immune. A proportion p of the newborns is vaccinated. These individuals become 
infected and immune at the rates of the unvaccinated individuals. However, they 
cannot transmit the disease to the mosquito vectors for the period during which the 
vaccine remains effective. The mean duration of efficacy of the vaccine is set to 1/v. 
It is assumed that the vaccine is not boosted by natural infections. Note that, in 
contrast to the general model, it is assumed here that immunity against the asexual 
stages is life-long. This leads to the most optimistic prediction of the effect of trans- 
mission-blocking vaccines. 

The basic reproductive number is calculated in Appendix E and the proportion of 
newborns that must be vaccinated for eradication of malaria is (Fig. l la) 

This condition includes, as does the condition for eradication with an asexual stage 
vaccine, a term describing the ratio of human life expectancy to the mean duration 
of vaccine efficacy, v/6. It further includes a term describing the ratio of the duration 
of infection to the duration of vaccine efficacy, v/(r + 6). The product of these two 
ratios results from the condition that a transmission-blocking vaccine must remain 
effective from birth up to a first infection and additionally throughout the period of 
this infection. 

Fig. 11 b shows the effect of a transmission-blocking vaccine on the prevalence of 
malaria. It shows that prevalence remains at high levels over most of the range of 



16 

unvacc ina t ed  

b i r t h s  

(i-v) 

l" A - -  I c e  

dea th  / , d e a t h  

. . . . . . . . . . . . . . . . . .  

V _1 inZee~ea suseeptibl 

vacc ina ted  

b i r th s  

(p) 

immune 

d e ! t h '  

dea th  

_J 
y[ immune 

Fig. 10. Structure of model of transmission-blocking vaccine. The upper part of the structure, showing 
the unvaccinated proportion of the population, is similar to the structure of the model of immunity shown 
in Fig. 7. It is assumed that no immunity to asexual stages can be acquired. The lower part of the structure, 
showing the vaccinated proportion of the population is identical to the upper part except that transmission 
from humans to mosquitoes is blocked. Efficacy of the vaccine is lost at a constant rate, so that vaccinated 

individuals move to the unvaccinated class. See the main text and Appendix E for more details. 

parameters. Only if a very high proportion of the population is vaccinated and if the 
duration of vaccine efficacy is long does prevalence decrease significantly, even when 
the basic reproductive number is low. 

The comparison of asexual stage vaccines with transmission-blocking vaccines 
makes several important points. First, the duration of efficacy of either vaccine 
strongly determines the impact on the endemicity of malaria. In particular, the dura- 
tion of efficacy must be about 50-100% of the human life-span for any significant 
effect to occur. Secondly, when durations of efficacy are similar, asexual stage vac- 
cines require a smaller proportion of newborns to be vaccinated for eradication of 
malaria than do transmission-blocking vaccines. Both vaccines must be effective up 
to the mean age of first infection, but transmission-blocking vaccines must addition- 
ally be effective throughout the period of infection. Thirdly, asexual stage vaccines 
are expected to make a larger impact on prevalence of malaria than transmission- 
blocking vaccines. Asexual stage vaccines protect individuals directly, so that any 
vaccinated individual will not become infected during the period of vaccine efficacy. 
Transmission-blocking vaccines reduce transmission in the community, but indi- 
viduals are protected only if transmission in the community is almost completely 
blocked. 
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Fig. 11. Predictions of model of transmission-blocking immunity on the endemicity of malaria. (a) The 
relationship between the intensity of transmission and the proportion of newborns that must be vaccinated 
for the eradication of malaria. Intensity of transmission is described as the basic reproductive number. 
Various durations of efficacy of the vaccine are shown. (b) The reduction of crude prevalence as a function 
of the proportion of newborns vaccinated. Different durations of efficacy of the vaccine, r, are shown. 

Intensity of transmission is intermediate (R o = 10). 

Conclusions and outlook 

The mode l s  discussed above  are only  a small  sample  o f  the many  different mode l s  
published. They were chosen because each contributes  to our knowledge  o f  the 
b io logy  and control  o f  malaria but remains s imple in structure. Perhaps the m o s t  
important  conc lus ions  o f  the mode l s  are, first, that malaria can exist in a populat ion 
only if  m o s q u i t o  density exceeds  a critical threshold. Second,  endemici ty  o f  malaria 
is m o s t  sensitive to changes  in m o s q u i t o  survival rate. Thus imagicides  are a more  
efficient way  o f  control l ing malaria than larvicides. Third, variability in transmiss ion 
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parameters can considerably bias our predictions of the impact of control measures 
and affect their outcome. Fourth, the duration of vaccine efficacy is among the most 
important determinants of the impact of a vaccine program. In particular, it seems 
likely that the duration of efficacy must be about 50-100% of a human life-span for 
any significant impact of vaccination. This imposes severe restrictions on the design 
of a vaccine, in particular as average human life-spans in many countries are increas- 
ing towards 70 years. It is stressed again that in this paper only vaccination at birth 
is explored. Vaccination programmes with repeated vaccinations at certain ages will 
of course let vaccines with short efficacy have considerable impact on the population. 
Lastly, asexual stage vaccines are expected to be more efficient than transmission- 
blocking vaccines. 

Many other models of malaria transmission have been published (see Bailey (1982) 
or Dietz (1988) for a review). Most of these, however, are more complex, and the 
results are more difficult to interpret. In particular, it becomes difficult to decide 
whether unexpected predictions result from properties intrinsic to the population 
dynamics of malaria, or whether they are artefacts of details of the specific model. 
Two examples illustrate this. Nedelmann (1984) reviewed several aspects of the model 
of the Garki project (Molineaux and Gramiccia, 1980), originally formulated by 
Dietz et al. (1974), and compared this model with four variations he constructed. 
One of his main conclusions is that the model representing logically consistent formu- 
lations of recovery and infection rates and resulting in the most reasonable estimates 
of these parameters performs most poorly in fitting the model to the data collected 
by the Garki project. It is therefore not clear, which model best represents malaria 
transmission. Halloran et al. (1989) showed with a variation of the same model that, 
as expected, prevalence of malaria decreases after the onset of a vaccination program 
and increases again if the program is stopped. Unexpectedly, however, prevalence 
overshoots the preprogram value. It is still too early to decide whether this overshoot 
is generally expected. Many of these complex models are reassuring in that they lead 
to many of the qualitative conclusions reached by simple models. For example, 
Halloran et al. (1989) predicts that transmission-blocking vaccines, if no boosting by 
natural infections occurs, result in almost no reduction in prevalence. This is the 
prediction reached by the simpler model described in this paper. 

These examples illustrate central issues in modelling epidemiological processes: the 
questions to be answered must be clearly stated before defining a model. As Brewer 
(1975) has pointed out, too many models have been built with unclear goals, resulting 
in too many inappropriate models. Stating the questions clearly allows decisions on 
the required level of complexity of the model. Two approaches to future modelling 
projects, requiring different levels of complexity, illustrate this. 

First, models can be built with the aim of understanding specific details of malaria 
transmission. Such details can often be understood, and general conclusions reached, 
with relatively simple models involving only few variables. An understanding of only 
a few of the important interactions between hosts and parasites suffices to answer 
the question. An example of this approach is given above in the discussion of malaria 
vaccines. A second example is given in the discussion of the evolution and spread of 
chloroquine resistance by Curtis and Otoo (1986), Singer (1990) and Cross and Singer 
(1990). These models result in suggestions for better strategies for the management 
of drug resistance by combining some basic aspects of Plasmodium transmission and 
population genetics. One of Curtis and Otoo's results is that, if three conditions hold, 
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drug resistance will evolve and spread at a slower rate when two drugs are adminis- 
tered in mixture than when they are used in sequence. These conditions are (1) 
resistances are initially rare, (2) the genes conferring resistance can recombine, and 
(3) a large proport ion of  the parasite population is unexposed to the drug. Although 
these conclusions were reached with few details of  malaria transmission incorporated 
in the models, they are clearly of  great help for the management  of  drug resistance. 

Making optimal decisions in large control programs can be helped by multidiscipli- 
nary modelling approaches (Bailey, 1982). Such an approach would consider malaria 
not as an isolated disease, but as part  of  a network of  interacting sectors. A few of 
the sectors that influence patterns of  malaria transmission and morbity are infection 
with other diseases, agricultural methods, education, and economy. These should be 
included in a large-scale model of  malaria control. Such a large-scale approach has 
never been attempted for the control of  parasitic diseases, though a first step has 
been taken by the Onchocerciasis Control Program in West Africa (Remme, 1989). 
In contrast, problems in environmental assessment and in the management  of  renew- 
able resources have often been tackled by multidisciplinary teams, using models to 
help to guide their ideas (Forrester, 1961; Holling, 1978). Perhaps the most  widely- 
known such study is Meadows et al. 's (1972) report to the Club of Rome The Limits 
of Growth. A multidisciplinary approach to modelling malaria would not only 
describe the morbidity and mortali ty due to malaria but also show its economic and 
social implications. The goal of  such a model is to understand the processes within 
sectors and the interactions between sectors sufficiently well to influence decision- 
making and policy planning in a social and economically sensible way (Holling, 1978; 
ESSA, 1982). 

This outlook on multidisciplinary approaches to malaria control and the examples 
described share the purpose of  showing that the wise use of  mathematical  models of  
malaria transmission can lead to a deeper understanding of  the biology of  malaria 
and can help to design malaria control programs in the most efficient way. Thus, 
this paper  brings us back to what Ross (1911, p. 651) said a long time ago: 

'all epidemiology, concerned as it is with the variation of disease from time to time or from 
place to place, must be considered mathematically, however many variables are implicated, 
if it is to be considered scientifically at all. To say that a disease depends on certain factors 
is not to say much, until we can also form an estimate as to how largely each factor 
influences the whole result. And the mathematical method of treatment is really nothing 
but the application of careful reasoning to the problems at issue.' 

Appendix A: Ross-Macdonald model 

The Ross-Macdonald model is a direct translation of  the schematic life-cycle (Fig. 1) 
into quantitative terms. Consider first the infection of  humans by mosquitoes. Each 
female mosquito bites a host on average a times per night. Assuming a density of  m 
female mosquitoes for every one human, each human is thus bitten ma times per 
night. Only a fraction w of  the mosquitoes have sporozoites in their salivary glands, 
and only a fraction b2 of  these are actually infectious to the human. This reduces 
the number  of  infective bites to b2maw per human per night. An infective bite will 
of  course lead to a new infection only if the person bitten is not already infected. If, 
say, a proport ion y of  the human population is infected, then new infections develop 
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TABLE 1 

List of symbols used in the text 

Symbol Description 

a 

bl 
b2 

h 
m 
p 
r 

Ro 
T 
u 

W 

x 
x 

y 
z 

7 
70 
g 

P 
T 

Biting-rate (number of bites per female mosquito per night) 
Infectiousness of humans to mosquitoes 
Infectiousness of mosquitoes to humans (susceptibility) 
Infection rate of humans 
Mosquito density (number of mosquitoes per human) 
Vaccinated proportion required for eradication of malaria 
Rate of recovery of infected humans 
Basic reproductive number 
Incubation period of parasites in mosquito 
Frequency of susceptible mosquitoes 
Frequency of infected, but not yet infective mosquitoes 
Frequency of infectious mosquitoes 
Intensity of infection (mean number of infections per human) 
Frequency of susceptibles in human population 
Frequency of infecteds in human population 
Frequency of immunes in human population 
Mortality of humans 
Rate of loss of immunity 
Rate of loss of immunity in the absence of further infections 
Mortality of mosquitoes 
Rate of loss of efficacy of transmission-blocking vaccine 
Duration of disease (l/r) 
Duration of immunity in the absence of further infections 

at a rate b 2 m a w ( l  - y ) .  Once infected, a h u m a n  recovers at a rate r, i.e. the average 
time for infections to be cleared is 1/r.  Thus,  the equat ion governing the p ropor t ion  
o f  infected humans,  y, can be written as 

p = m a b 2 w ( 1  - y )  - r y  (A. i) 

where )~ denotes the change of  the p ropor t ion  infected per unit time. Consider  next 
the infection o f  mosqui toes  by humans.  The popula t ion o f  mosqui toes  is separated 
into three categories: a susceptible p ropor t ion  1 - v - w  that  is uninfected, an infec- 
tious p ropor t ion  w with sporozoites in the salivary glands, and a latent p ropor t ion  
v that  is infected, but  has not  yet developed sporozoites.  The susceptible mosqui toes  
become infected by biting infected humans,  o f  which a fraction b 1 harbor  gametocytes  
and are infectious to mosquitoes.  Thus  the p ropor t ion  o f  latent mosqui toes  increases 
at a rate b l a y ( 1 - v - w ) .  These newly infected mosqui toes  become infectious to 
humans  if they survive the incubat ion period, T, required for the development  o f  the 
gametocytes  into sporozoites.  Assuming a mortal i ty  rate o f  #, i.e. an average life 
span o f  1//~, a p ropor t ion  e -~r  survive this period. Thus,  o f  the b ~ a y ( 1 - v - w )  

mosqui toes  infected T days earlier, b l a y ( 1  - v - w ) e - u r  move  f rom the latent state to 
the infectious state. The propor t ions  o f  the latent and infectious mosqui toes  decrease 
th rough  mortali ty.  The process o f  infection in the mosqui toes  can be summarized as 

= ab  ~ y ( 1 - v - ~ )  - ab  ~ f~( 1 - ~ - g,) e - u r  _ # v  (A.2) 

¢ v = a b l f ~  ( 1 - f - ~ )  e - u r - # w  (A.3) 
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where f=y( t -T) ,  ~=-v(t-T), and ~=w(t-T) .  
The basic reproductive number, Ro describes the number of secondary cases of 

malaria arising from a single case in an otherwise uninfected population (Macdonald, 
1957; Anderson and May, 1980), and can be derived algebraically from the above 
equations as 

m a 2 b l b 2  e-~ r 
R o = (A.4) 

r# 

Appendix B: Model incorporating variability 

The model incorporating variability follows a model described by N~tsell (1985, 
chapter 3.3). It assumes that humans can be infected several times by various strains 
of parasites. It therefore describes the mean number of infections, X, harbored by 
any one human host. In contrast, the mosquitoes are assumed to be infected only 
once, so that the mosquito population is separated into susceptible, latent, and 
infective mosquitoes. As an extension of N~sell's model, the current model separates 
the human population into N categories, each of which makes up a proportion ~bl of 
the total population. Each category is assumed to be homogeneous with respect to 
malaria infection, and to differ from other categories in susceptibility to infection, 
bE, biting rate, a, and duration of disease, p = 1/r. Within each category humans 
are assumed to be infected randomly, so that prevalence within a category is 
Pi = 1 - e  -x'  (Ngsell, 1985). As in the Ross-Macdonald model, humans are infected 
at a rate maib2,iw, where w denotes the proportion of infective mosquitoes. Suscepti- 
ble mosquitoes are infected within human category i at a rate aibiPi. Thus, averaged 
over all categories, mosquitoes are infected at a rate 

h=~ic~iaibl(1 - e  x') 

Thus, Nhsell's model can be reformulated as 

Xi  = maib  2,i w - riX'i (B. la) 

for the mean number of infections in humans belonging to category i 

t / = p -  ~ ~biaibl(1 -e-X' )u-#u (B.I b) 

for the frequency of susceptible mosquitoes, and 

ff = e - ~'r)-~ ~biai b 1 (1 - e-  x')t~-/~w (B. lc) 
i 

where 2~ = X~(t-T) and t~ = u(t-T)  for the frequency of infectious mosquitoes. The 
basic reproductive number can be calculated from these equations as 

=-- [ -  var(a) 2cov(a,b2) + 2cov(a,p) cov(p,b2)] (B.2) 
R ° = R ° L I + - - - ~ +  ab 2 a--p + ~ - J  

where 

- -  m-abl bE e-"r 
R o -  
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denotes the basic reproductive number due to the mean parameters in the population, 
:~ denotes the mean of x, var(x) denotes the variance of x, and cov(x,y) denotes the 
covariance of x and y. 

Appendix C: General model of immunity 

The general model of malaria immunity consists of three differential equations 
denoting changes in the proportions of susceptible, x, infected, y, and immune, z, 
people. In an extension of a model proposed by Aron (1988a,b), the equations are 
written 

.¢c = 6 - 6 x - -  hx  - 7z (C. 1 a) 

= h x  - (r + 6)y  (C. 1 b) 

2 = r y - ( y + f ) z  (C.lc) 

Susceptibles become infected at a rate h. Infected individuals recover at a rate r to 
enter the immune class. Immunes become susceptible again at rate ?. Deaths occur 
at rate 6 (i.e. life-expectancy is 1/6) and are unaffected by disease status. Deaths are 
balanced by births into the susceptible class so that population size remains fixed. 

Immunity is boosted by new infections, and lasts only for z years in the absence 
of new infections. If  z is set equal to the mean residence time in the immune class, 
1/( 7 + 6), the parameter ~ becomes (Aron, 1988a). 

( h + 6 )  e -(h +a)~ 
7(h)= 1 _e_(n+~)~ (C.2) 

The mosquito dynamics described in the Ross-Macdonald model by equations 
(A.2) and (A.3) operate on a much faster time-scale than the human dynamics 
described by equations (C.1), so that the mosquito population can be considered to 
be at equilibrium with respect to changes in the human population, and its dynamics 
can be collapsed into the inoculation rate. 

h = m a 2 b l b 2  e - " r  Y (C.3) 
# + a y  

Analysis of equations (C.I) to (C.3) at equilibrium leads to the basic reproductive 
number 

ma2blb2  e-U r 
Ro - (C.4) 

(r + ~)~ 

Appendix D: Model of asexual stage vaccine 

Mass vaccination of a proportion p of all newborns with an asexual stage vaccine is 
simulated by letting a proprtion p be born as immunes and a proportion 1 - p  as 
susceptibles in the model of immunity described in Appendix C. No other changes 
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are made to the model. Thus a model of asexual stage vaccination can be written as 

2 = 8(1 - p )  - 8 x -  h x -  ~z (D. I a) 

p = hx  - (r + 8)y (D. 1 b) 

~ =Sp  + r v - ( 7  + 6)z (D.lc) 

The basic reproductive number of this model is 

 o(1 
where R o denotes the basic reproductive number of the model with no vaccination 
described in Appendix C and 7o denotes the rate of loss of immunity in the absence 
of any infections (i.e. when h = 0). Malaria cannot invade a population if the basic 
reproductive number R; is less than one. This condition leads from equation (D.2) 
to the condition 

p> ( l  - ~--~) (1 + ~ )  (D.3) 

for the eradication of malaria. 

Appendix E: Model of transmission-blocking vaccine 

Mass vaccination with a transmission-blocking vaccine is simulated by splitting the 
model described in Appendix C into two categories. The first category, the proportion 
l - p  of the population that is not vaccinated, is identical to the model of Appendix 
C with the exception that immunity against the asexual stage of the parasite is 
assumed to be lifelong. The second category, the proportion p of the population that 
receives the vaccine, is infected and becomes immune at the same rate as the unvacci- 
nated category. However, it does not make any contribution to transmission during 
the period when the vaccine is effective. The vaccine loses its effectiveness at a rate 
v. Thus a model of transmission-blocking vaccination can be written as 

p v = h x o - ( r  + 8 ) y o - v y o  

= r (y .  + y ~ ) -  8z 

the subscript v denotes the 

2u = 8(1 - p )  - (8 + h)xu - vx .  (E. 1 a) 

2v = 8p - (8 + h)xv - vxv (E. I b) 

p . = h x ~ - ( r  + 8)y~ + vyu (E.lc) 

(E.ld) 

(E.le) 

vaccinated, the subscript u the unvaccinated where 
category. 

The basic reproductive number for this model is given by 

3(r+6)  v )p)  (E.2) 
/ ~ = R ° (  1 - ( 8 + v ) ( r + 8 +  

where Ro denotes the basic reproductive number of the model with no vaccination 
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described in Appendix C. Malaria cannot invade a population if R~; is less than one 
or, from a reformulation of equation(E.2), if 
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