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Abstract.—If a population is growing in a randomly varying environment,
such that the finite rate of increase per generation is a random variable with no
serial autocorrelation, the logarithm of population size at any time ¢ is normally
distributed. Even though the expectation of population size may grow in-
finitely large with time, the probability of extinction may approach unity,
owing to the difference between the geometric and arithmetic mean growth rates.

A problem of recurrent interest to population ecology is the question of
“density-dependent” control of population numbers. The literature on this
subject is so vast and so well known to ecologists that it cannot and need not
be referenced here. Briefly, the question is to what extent the actual growth
rates of populations are affected by the population density, and so to what
extent density and resource shortage must be taken into account in explaining
the observed history of population numbers.

The solution to this difficult and not always well-defined problem involves,
among other things, an adequate description of how a population would change
its numbers if its growth rate were not related to number, but only to variations
in the independent environment (including other species, of course). Thus, we
ask whether the observed variation in numbers of a species could be satisfactorily
explained by supposing that at all times numbers are growing by the simple
exponential growth law, but that the exponential rate of increase r is varying
according to some extrinsic law unrelated to N, the population number. As
stated, this proposition about variation in r is so general that no theoretical or
experimental distinction could possibly be made between this hypothesis and
that of density dependence. More specification is required. We assume a sta-
tionary distribution for r. Specifically, then, we want to ask how population
numbers will change if the population is undergoing simple geometric increase
or decrease with a rate that varies at random independently of both N and ¢.

Although many sophisticated treatments of stochastic population growth exist
for a variety of models,!' 2 it is our purpose in this note to point out a peculiarity
of multiplicative population growth which is apparently not widely appreciated
and which gives rise to some confusion.

Consider a population of size N, at time ¢, which in a single reproductive
period has a multiplicative increase [; so that

NH—I = Nl (1)

and in general
t

N3=Nonl,‘. (2)
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We now suppose that the rate of multiplication l; varies randomly from genera-
tion to generation with some stationary probability density function f(I). We
should like to know the probability that N, lies within some specified limits. A
case of interest is the probability that N; > 0, that is, that the population is
still in existence at time ¢; but we might equally well want to know the chance
that population is greater than the initial size (N, > N,). The exact specification
of these probabilities is more or less difficult, depending upon the nature of the
probability density function f(I).

A usual first approach to the problem would be to find the expectation of N,.
If the I, are independent of each other, then from equation (2) above

E(N,) = NoE( q L) = N\, 3)

where X is the true mean of the [;. Then if the average ratio between successive
generations is greater than unity, no matter how slightly (A > 1), the expectation
of population size becomes infinite as ¢ grows larger without bound, whereas, if
A < 1, the population expectation eventually shrinks to zero. The trouble
with this approach is that, although it is a correct description of the behavior of
the expected population size, it may give a completely erroneous picture of
nearly every population.

It is well known that there is a class of distributions whose expectation may
grow without bound, while the probability that the variate takes a value different
from zero becomes vanishingly small. This paradox can be illustrated by a
trivial example. Let X be a variate that takes the value N? with probability
1/N and the value 0 with probability (N — 1)/N. Then

s v (3) o (1) -

so that the expectation grows without bound as N goes to infinity. Yet the
probability that X takes the value 0 approaches unity as N grows large. It is
the characteristic of multiplicative processes, like the growth equation given in
equation (2), that they may behave in exactly the same anomalous fashion.
That is, whereas E(N,) may grow infinitely large as t grows large, each population
may be virtually certain to go to extinction!

To show that this may be the case and to get a more satisfactory solution to
our problem, let us return to the original statement and ask for the probability
that N, lies between two values, say K; and K,. Since the logarithm of a variate
is a monotone function

PriK, < N, < K;} = Pr{ln K; £ InN, < In K,}, (4)

but from equation (2)
t
InN.,=InNo+ 2 Inl (5)
t=1

so that from equations (4) and (5)
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t
PriK, < N, < K,} = Pr{ln <> Inl<In K*}, (6)
t=1

N,
and dividing all parts of the inequality on the right by ¢ we get

K,
No

PriK: < Ni < Ks} = Pr {1 &< @mn <ln &} @)
t N, t Ny
where (In 1), is the arithmetic mean of the logarithms of the I; over the previous
¢t generations.

But if the [; are independently and identically distributed with a finite mean
and variance, In [; is also #o distributed with a mean, say, w1, ;. and a variance
62|n l- .

Moreover, according to the Central Limit Theorem, (In [),, being a sample
mean from such a distribution, is approximately normally distributed with mean

. 1 .
pin 1 and variance equal to " 01 i- Our problem is then solved.

1K _ 1, Ks_

P N, Min 1 No Hin 1

Define 1 = - and T = p——
Tln l/'\/t O1n l/\/t

then
PI’Ob {K| _<_ Ng S K2} =~ PI'Ob {Tl S T S 72}

which is the standardized normal integral between =, and 7. and can be looked
up directly in the table of the normal distribution.

Let us take an example that illustrates the point made earlier about the danger
of using the expected value of N, to describe population behavior. Suppose
that there are two environments such that in the first I = 0.5, whereas in the
second environment [ = 1.7. If these two environments have equal probability,
w = 1.1, so that the expected value of N, is growing larger by 10 per cent per
generation. After, say, 100 generations, E(N1y) = 1.11°N, = 13781 N,.

On the other hand, the actual behavior of the population is quite different:
pim 1 = —0.08126 and 6%, : = 0.3744. If we wish to know the probability
that the population size is actually larger than the original value N,, we set
K, = Nyand K, = «. Substituting into the expression for r, and 7, and using
the normal tables, we get that Prob {N, > N, = 0.092.

This special case illustrates a general point. If pi, ; is less than zero, then
7; will be positive and will grow increasingly so at a rate proportional to +/%.
As times goes on, 7, approaches infinity, and the normal integral between r, and
72 approaches zero. Thus, if i, ; is less than zero, the population goes to ex-
tinction with a probability that approaches unity in the limit. On the other
hand, if w1, : is greater than zero, 7, is less than zero when K, = Ngand grows
smaller at a rate proportional to /. Then the probability of extinction goes
to zero, and the probability that the population is larger than some arbitrary
value goes to unity. The probability that the population becomes extinet or
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grows without bound depends upon the expectation of the logarithm of the
growth rate. On the other hand, the expected value of population size depends
directly on the expectation of the growth rate. Since the expectation of the
logarithm of a variate is the logarithm of the geometric mean, if the geometric
mean of the finite growth rate is less than unity, the population is sure to go to
extinction, even if the arithmetic mean of the finite growth rate is greater than
unity. Since the geometric mean is always less than the arithmetic mean, this
may happen quite easily. The most obvious and usual case would be that in
which the environment is usually favorable for growth, but there is an occasional
very bad season. For example, suppose that the finite growth rate is 1.1 for
9 years out of 10 but only 0.3 every 10 years. Then u; = 1.02, so that the ex-
pectation of population size grows at 2 per cent per year, but the geometric
mean of the rates is only 0.841, and the population is sure to go to extinction
fairly rapidly.

The difference in prediction of population behavior from the arithmetic mean
of I and the geometric mean of ! arises because of the difference between E(In 1)
and In E(l). Expanding In [ around A, the mean of I, we get

— —_— 2
nisinr+ =2 _0=N
x N
so that
Enl)~Inx — 2 )
- N2

We see, then, that the expectation of In [ is smaller than the logarithm of the
expectation of I by an amount equal to one half the squared coefficient of varia-
tion of [, so that as the I’s grow more variable the effect grows greater.

Although the method we have derived for determining the probability that a
population lies between two limits is not exact, it will be quite close for any
distribution of / that is likely to be encountered, if the /; are independent. If the
l; have a very strong serial autocorrelation, however, especially as they approach
a cyclic process with very long cycle time, the convergence of (In ), to a normal
distribution will be very slow, and in the case of a perfectly eyclic environment
of any fixed cycle length there is no convergence at all. However, for such en-
vironments the rule about the geometric mean governing the eventual population
size is even better applicable and is, in fact, exact, rather than a probability
statement. After one cycle of length k divided between 7 years in one environ-
ment and k£ — j years in the other

N = [,1,*'N, 9)
or N, = (G))*N, where G, is the geometric mean of the ’s.
Finally, we wish to observe that, if we consider a continuous time model, the

discrepancy between geometric and arithmetic mean disappears. In a continu-
ous time model we have

%’ = ()N, (10)
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where r(t) is the value of the intrinsic rate of increase at time ¢, r being a random
variable with mean u, and variance o’
The solution to equation (10) is simply

N(t) = Noexp Sir(t)dt = Noe'tt (11)
so that
PriK, < N, < Ky} = Pr{& <ot < I&} - Pr{llnﬂ <i<im IL’}
ND 0 i No t No

which is identical with our previous result, with 7, playing the role of (In I)..
The reader may note a similarity between the problem treated here and the
problem of the growth of a repeatedly gambled capital.?
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