RADIODATING

Archeological dating

- Needed to identify time and location of the findings
- Classification: identification of the presence of common technical aspects among findings
- Typology: identification of differences among manufacts
- Archeometry (the use of science and modern technology in archaeology to examine and interpret archaeological remains)
- Geochronology (the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves)
- Absolute geochronology: radiactive isotopes
- Relative geochronology: paleomagnetism/stable isotope ratioes

Geo Chronology

SIMPLE

Logic of radiodating

e.g. U-Pb or K-Ar method

The abundance of the decay product vs the decaying isotope is measured (R)

Different methods for different materials

Metodi di datazione di interesse archeologico

- Metodo del Potassio - Argon (K/Ar) - Minerali. Rocce ignee e sedimentarie.
- Metodi basati sul disequilibrio delle famiglie radioattive del ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$ e ${ }^{232} \mathrm{Th}$.

Esempi:
Metodo del Th (${ }^{230} \mathrm{Th} /{ }^{232} \mathrm{Th}$) - Sedimenti oceanici, vulcaniti recenti.
Metodo del Pa ($\left.{ }^{230} \mathrm{Th} /{ }^{231} \mathrm{~Pa}\right)$ - Sedimenti oceanici.
Metodo del ${ }^{230} \mathrm{Th} /{ }^{238} \mathrm{U}$ - Carbonati, conchiglie.
Metodo del ${ }^{210} \mathrm{~Pb}$ - Pitture, vernici.

- Metodo dell'Elio $\left({ }^{4} \mathrm{He}\right)$ - Conchiglie, coralli.
- Metodo delle tracce di fissione (Fission Tracks) - Ossidiane, vetri, minerali.
- Termoluminescenza (TL) - Manufatti di cottura, ceramiche in particolare.
- Metodo del Radiocarbonio (${ }^{14} \mathrm{C}$) - Resti di organismi.
- Metodo del ${ }^{10} \mathrm{Be}$ - Sedimenti.
- Metodo del ${ }^{36} \mathrm{Cl}$ - Rocce ignee o metamorfiche di superficie.
- Metodo del Trizio $\left({ }^{3} \mathrm{H}\right)$ - Acque.
- Metodo della Racemizzazione degli amminoacidi - Ossa, legno, sedimenti.
- Metodo dell'Idratazione delle ossidiane.
- Metodo del Fluoro o dell'Azoto - Ossa.
- Metodi basati su processi ritmici naturali

Dendrocronologia - Alberi, anche manufatti lignei.
Metodo delle varve - Ritmititi o sedimenti glaciali, lacustri, ecc. varvati

Differenti terniche ner temni differenti

Techniques based on isotopic composition measurements

Metodi di datazione di interesse archeologico

- Metodo del Potassio - Argon (K/Ar) - Minerali. Rocce ignee e sedimentarie.
- Metodi basati sul disequilibrio delle famiglie radioattive del ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$ e ${ }^{232} \mathrm{Th}$.

Esempi:
Metodo del Th (${ }^{230} \mathrm{Th} /{ }^{232} \mathrm{Th}$) - Sedimenti oceanici, vulcaniti recenti.
Metodo del Pa (${ }^{230} \mathrm{Th} /{ }^{231} \mathrm{~Pa}$) - Sedimenti oceanici.
Metodo del ${ }^{230} \mathrm{Th} /{ }^{238} \mathrm{U}$ - Carbonati, conchiglie.
Metodo del ${ }^{210} \mathrm{~Pb}$ - Pitture, vernici.

- Metodo dell'Elio (${ }^{4} \mathrm{He}$) - Conchiglie, coralli.
- Metodo delle tracce di fissione (Fission Tracks) - Ossidiane, vetri, minerali.
- Termoluminescenza (TL) - Manufatti di cottura, ceramiche in particolare.
- Metodo del Radiocarbonio (${ }^{14} \mathrm{C}$) - Resti di organismi.
- Metodo del ${ }^{\text {ºb }}$ Be - Sedimenti.
- Metodo del ${ }^{36} \mathrm{Cl}$ - Rocce ignee o metamorfiche di superficie.
- Metodo del Trizio (${ }^{3} \mathrm{H}$) - Acque.
- Metodo della Racemizzazione degli amminoacidi - Ossa, legno, sedimenti.
- Metodo dell'Idratazione delle ossidiane.
- Metodo del Fluoro o dell'Azoto - Ossa.
- Metodi basati su processi ritmici naturali

Dendrocronologia - Alberi, anche manufatti lignei.
Metodo delle varve - Ritmititi o sedimenti glaciali, lacustri, ecc. varvati

C14 dating

- Typical ratio $\mathrm{R}={ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}=10^{-12}$
- Not constant in time \rightarrow corrections
- $\tau_{1 / 2}=5730 \mathrm{yr}$
- The method works up to ~50,000 years
- $\mathrm{R}\left(10^{*} \tau_{1 / 2}\right)^{\sim} 10^{-15}$
- Measurement methods
- Radiactivity
- Mass spectrometry

Atmospheric composition and reactions

Nome	Formula	Proporzione
Azoto	N_{2}	$78,08 \%$
Ossigeno	O_{2}	$20,95 \%$
Argon	Ar	$0,934 \%$
Diossido di carbonio	CO_{2}	400 ppm
Neon	Ne	$18,18 \mathrm{ppm}$
Elio	He	$5,24 \mathrm{ppm}$
Monossido di azoto	NO	5 ppm
Kripton	Kr	$1,14 \mathrm{ppm}$
Metano	CH_{4}	$1 / 2 \mathrm{ppm}$
Idrogeno	H_{2}	$0,5 \mathrm{ppm}$
Ossido di diazoto	$\mathrm{N}_{2} \mathrm{O}$	$0,5 \mathrm{ppm}$
Xeno	Xe^{2}	$0,087 \mathrm{ppm}$
Diossido di azoto	NO_{2}	$0,02 \mathrm{ppm}$
Ozono	O_{3}	$\mathrm{da} 0 \mathrm{a} 0,01 \mathrm{ppm}$
Radon	Rn^{2}	$6,0 \times 10^{-14} \mathrm{ppm}$

Il ${ }^{14} \mathrm{C}$ è prodotto negli strati alti dell'atmosfera dai raggi cosmici (principalmente protoni di alta energia). Questi protoni collidono con i nuclei dei componenti dell'atmosfera (principalmente azoto) producendo neutroni di energia più bassa. Alcuni di questi neutroni a loro volta collidono con nuclei di atomi di ${ }^{14} \mathrm{~N}$ secondo la reazione nucleare:
${ }^{14} \mathrm{~N}(7 \mathrm{p}+7 \mathrm{n})+\mathrm{n}={ }^{14} \mathrm{C}(6 \mathrm{p}+8 \mathrm{n})+\mathrm{p}$
Notare che in questa reazione si conservano sia la carica (7e) sia il numero di nucleoni (7 protoni +8 neutroni)

Gli atomi di ${ }^{14} \mathrm{C}$ così prodotti vanno a formare molecole di CO_{2} che diffondono nell'atmosfera in modo tale da mantenere pressochè costante il rapporto ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$, nello spazio e nel tempo.

${ }^{14} \mathrm{C}$ - measurement of radiactivity

- 1 g of Carbon
$\rightarrow 510^{22}$ atoms of ${ }^{12} \mathrm{C}$
$\rightarrow 610^{10}$ nuclei of ${ }^{14} \mathrm{C}$ $\rightarrow \tau_{1 / 2}=5700 \mathrm{yr}$
\rightarrow Activity $610^{10} /\left(2.610^{11} \mathrm{~s}\right)^{\sim} 0.23 \mathrm{~s}^{-1}$ (difficult to measure)
\rightarrow After 10 half-lives (57000 yr) A(1g)~0.2 $10^{-3} \mathrm{~s}^{-1}$ (unmeasureable)

${ }^{14} \mathrm{C}$ - mass spectrometry

1 g of Carbon
$\rightarrow 510^{22}$ atoms of ${ }^{12} \mathrm{C}$
$\rightarrow 610^{10}$ nuclei of ${ }^{14} \mathrm{C}$
\rightarrow After 57000yrs there are
610^{7} nuclei of ${ }^{14} \mathrm{C}$

Combustion subsystem
a) sample dropper
b) combustion column
c) reduction column
d) gas traps (water and optionally CO2)

Mass Spectrometer
e) ion beam source
f) flight tube
g) magnetic beam deflector
h) signal detectors

Mass spectrometry:
R=mv/zeB
For a fixed m, the relative error
on R is the same as v

Accelerator Mass Spectroscopy

- Increases sensitivity by accelerating the ions $\rightarrow T^{\sim} 30 \mathrm{MeV}$ as opposed to 100 eV

$\rightarrow \mathrm{V}^{\sim}$ sqrt(T) \rightarrow v increases by $200 \rightarrow \Delta \mathrm{v} / \mathrm{v}$ dicreases by 200
\rightarrow Distinguish ${ }^{14} \mathrm{C}$ from ${ }^{12} \mathrm{C}-\mathrm{H}_{2}{ }^{13} \mathrm{C}-\mathrm{H},{ }^{14} \mathrm{~N}$,

- ION SOURCE (bombardment with Cs --> negative ions)
- FIRST DISCRIMINATOR(mass=12-14)
- ACCELERATOR (Tandem ~ 3 MV)
- STRIPPER (From negative to positive ions)
- PRECISION SPECTROMETER

How well known is the original concentration?

Estimated time from «death»:

$$
t=-\tau \log \left(\frac{R}{R_{0}}\right)
$$

And therefore the error on it is

$$
\Delta t=-\tau \Delta_{r}
$$

where

$$
\Delta_{r}=\sqrt{\left(\frac{\Delta R_{0}}{R_{0}}\right)^{2}+\left(\frac{\Delta R}{R}\right)^{2}}
$$

Original concentration needs to be well known

$$
10 \% \rightarrow 500 \text { yrs error }
$$

Dendrocronology

- Measurement of the age of the rings of a tree (Pines, Sequoias, Oaks,...) \rightarrow uo to 12000 anni
- in each ring the C14 concentration is fixed at the moment of formation \rightarrow correlation C14 and age

Modern Perturbations

- Decrease of R_{0} following the Industrial Revolution (combustion of fossiles)
- Increase of R_{0} following nucler bomb tests

Techniques based on decay products measurements

Metodi di datazione di interesse archeologico

- Metodo del Potassio - Argon (K/Ar) - Minerali. Rocce ignee e sedimentarie.
- Metodi basati sul disequilibrio dele famiglie radioattive del ${ }^{250}$, ${ }^{250} \mathrm{e}^{252} \mathrm{Th}$. Esempi:
Metodo del Th (${ }^{230} \mathrm{Th} /{ }^{232} \mathrm{Th}$) - Sedimenti oceanici, vulcaniti recenti.
Metodo del Pa $\left({ }^{230} \mathrm{Th} /{ }^{231} \mathrm{~Pa}\right)$ - Sedimenti oceanici.
Metodo del ${ }^{230} \mathrm{Th} /{ }^{238} \mathrm{U}$ - Carbonati, conchiglie.
Metodo del ${ }^{210} \mathrm{~Pb}$ - Pitture, vernici.
- Metodo dell'Elio (${ }^{4} \mathrm{He}$) - Conchiglie, coralli.
- Metodo delle tracce di fissione (Fission Tracks) - Ossidiane, vetri, minerali.
- Termoluminescenza (TL) - Manufatti di cottura, ceramiche in particolare.
- Metodo del Radiocarbonio (${ }^{14} \mathrm{C}$) - Resti di organismi.
- Metodo del ${ }^{10} \mathrm{Be}$ - Sedimenti.
- Metodo del ${ }^{36} \mathrm{Cl}$ - Rocce ignee o metamorfiche di superficie.
- Metodo del Trizio (${ }^{3} \mathrm{H}$) - Acque.
- Metodo della Racemizzazione degli amminoacidi - Ossa, legno, sedimenti.
- Metodo dell'Idratazione delle ossidiane.
- Metodo del Fluoro o dell'Azoto - Ossa.
- Metodi basati su processi ritmici naturali

Dendrocronologia - Alberi, anche manufatti lignei.
Metodo delle varve - Ritmititi o sedimenti glaciali, lacustri, ecc. varvati

U-Pb Radio-dating

Allows dating rocks between 1 milion and 4.5 billion years agowith an accuracy <~1\%.
If during the rock formation $\mathrm{Zircone}\left(\mathrm{ZrSiO}_{4}\right)$ is created, Uranium is incorporated with the isotopic abundance at the time of the rock formation. Since ${ }^{206} \mathrm{~Pb}$ is not incorporated, all the detected lead is due to the decay of ${ }^{238} \mathrm{U}$.

$$
\begin{gathered}
N_{\mathrm{U}}=\mathrm{N}_{0} \mathrm{e}^{-t / \tau} \\
\mathrm{N}_{\mathrm{Pb}}=\mathrm{N}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \\
\rightarrow \mathrm{N}_{\mathrm{Pb}}=\mathrm{N}_{\mathrm{U}}\left(\mathrm{e}^{\mathrm{t} / \tau}-1\right) \rightarrow \mathrm{t}=\tau \log \left(1+\mathrm{N}_{\mathrm{Pb}} / \mathrm{N}_{\mathrm{U}}\right) \sim \tau \mathrm{N}_{\mathrm{Pb}} / \mathrm{N}_{\mathrm{U}}
\end{gathered}
$$

By detecting the ratio between lead and uranium the time passed since the rock formation is identified

BLOCKING TEMPERATURES

- The "Blocking Temperature" is an important concept; it refers to processes that result in a "resetting" of the atomic clocks in a rock.
- Essentially, it is possible to heat igneous and metamorphic rocks to high enough temperatures that they no longer behave as "closed systems". That is some of the daughter products can "leak" out of the primary mineral, giving an erroneous parent/daughter ratio and hence a wrong age.
(Age for what? How could the age be interpreted in a rock in which the blocking temperature has been reached?)

Blocking temperatures for some common minerals and decay series.

Fig. 5.6
The blocking temperature is the temperature above which a mineral or rock no longer behaves as a closed system and the parent/daughter ratios may be altered from that due to pure radioactive disintegration.

This can result in resetting the isotopic clock and/or give what are called discordant dates.

These types of problems have given opponents of the radiometric dating of the Earth ammunition to attack the 4.5 By age geologists cite.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Different uranium isotopes

Possibility to have simultaneously two measurements of t :
$\mathrm{t}=\tau \log \left(1+\mathrm{N}_{\mathrm{Pb}-206} / \mathrm{N}_{\mathrm{U}-238}\right)$
$\mathrm{t}=\tau \log \left(1+\mathrm{N}_{\mathrm{Pb}-207} / \mathrm{N}_{\mathrm{U}-235}\right)$
Agreement between the two allows cross-check
Note: current abundance of U-235 is now $0.72 \% \rightarrow$ at the creation of earth (4.5 billion years ago) it was ~ 1.6

Note: dating with Uranium metheorites lead to the

 measurement of the age of the earth: $E=(4.54+/-0.05) 10^{9} \mathrm{yr}$
K-Ar method

Potassium is a common element found in many materials, such as micas, clay minerals, tephra, and evaporites. In these materials, the decay product ${ }^{40} \mathrm{Ar}$ is able to escape the liquid (molten) rock, but starts to accumulate when the rock solidifies (recrystallizes).

Used for specific rocks
$\mathrm{T}_{1 / 2}\left({ }^{40} \mathrm{~K}\right)=1.210^{9} \mathrm{yr} \rightarrow$ allows dating up to billion years

Rb-Sr method

Exploits the ${ }^{87} \mathrm{Rb} \rightarrow{ }^{87} \mathrm{Sr}$ beta decay
used to date old igneous and metamorphic rocks, and has also been used to date lunar samples. Closure temperatures are so high that they are not a concern. Used for lunar rocks
$\mathrm{T}_{1 / 2}\left({ }^{87} \mathrm{Rb}\right)=5010^{9} \mathrm{yr} \rightarrow$ allows dating up to tens of billion years

Thermoluminescence

- Between 50 and 600,000 yr
- Used for ceramics, which are in great majority thermoluminescent
- When manufactured, the heat removes all TL from ceramics \rightarrow starts new accumulation phase
- When exposed to light, the luminescence starts again

Rilevamento geomorfologico - tecniche

TRACCE DI FISSIONE (FISSION TRACKS)

risoluzione: $10^{2} \div 10^{6}$ anni
\checkmark PRINCIPIO: si basa sui danni (tracce) causati dalla disintegrazione del ${ }^{238}$ U nell'ambito di una reazione di fissione. Il numero di tracce di fissione all'interno di un minerale (ideali sono apatite e zircone) dipende dal tempo trascorso dalla sua formazione (o dall'ultimo riscaldamento intenso in grado di azzerare le tracce preesistenti).

