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Abstract

Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/
nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G
locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross ‘Contender’
(C, peach) x ‘Ambra’ (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence
(Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome
formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the
insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A
functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was
validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown
to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the
nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs.
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Introduction

Peach (Prunus persica L. Batsch) is one of the most important fruit

crops in temperate regions with about 21 million tons produced

worldwide and Italy, with over 1.6 million tons, is the second

producer after China (FAOSTAT 2011, http://faostat.fao.org/).

The presence or absence of skin pubescence (fuzziness) is one of

the commercial characteristics used to classify peach fruits along

with flesh features (color, adhesion and texture) and fruit shape.

Nectarines, characterized by the absence of fruit trichomes, are

widely cultivated and play an important role in world peach

production (30% in Italy, http://agri.istat.it/, 2013; 20% in USA,

http://www.nass.usda.gov/, 2013) and may be associated with

decreased allergenic properties. In P. persica two major allergens,

Pru p 1 and Pru p 3, are known as responsible for the oral allergy

syndrome (OAS) [1]. Indeed, the Pru p 3 protein was undetectable

in the nectarine ‘Rita Star’ suggesting that this may be considered

as a hypoallergenic variety [2]. Interestingly, in Humulus lupulus and

in Nicotiana tabacum, genes encoding proteins highly similar to Pru p

1 and Pru p 3 are mainly expressed in trichomes [3,4].

The peach/nectarine character is monogenic (G/g) with

nectarine recessive to fuzzy fruit [5]. The G locus was mapped

in the distal part of linkage group (LG) 5 [6,7] spanning a region

from 15,126,681 to 16,315,341 (1.189 Mb) of pseudomolecule 5 of

the peach reference genome (Peach v1.0) [8]. Peach originated in

North-West China and was domesticated there about 4,000–5,000

years ago [8]. From China it spread westwards reaching Persia

following the Silk Road, was introduced to Rome in the first

century BC and then disseminated to all the Roman Empire [9].

Nectarines have been known in China for over 2,000 years [10]

and have been reported in most of the oases of the Tarim Basin

(China) and along the Silk Road trade routes in Central Asia and

the Caucasus [9,11]. The means and timing of their introduction

in Europe are not clear. Likely, Romans did not know this type of

peaches [9], but nectarines have been described by several

botanists in Europe since the Renaissance period [9]. Old

European nectarine varieties include ‘Lord Napier’, ‘Precoce di

Croncels’ and ‘Galopin’. In Southern Italy, traditional local white

nectarines, called ‘Sbergie’ (Sicily) or ‘Merendelle’ (Calabria), have

been cultivated since the 16th century [12]. Cluster analysis

suggested that these local accessions are distinct from the western

nectarine germplasm, pointing to a putative different origin of this

group of cultivars [13]. Historically, nectarines have had little

impact in China’s peach industry [11], and nowadays there are no

reports of traditional nectarine cultivars available in China [14].

The timing of introduction of nectarines to the United States (US)
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is controversial: their cultivation is reported in the early 20th

century, although a newspaper article (New York Gazette March

28, 1768, p. 3) described nectarines being grown in the US prior to

the War of Independence. Modern nectarine breeding started in

the US in the middle of the 20th century. In 1942, Anderson

introduced the nectarine ‘Le Grand’ using the accession ‘Quetta’,

discovered near the homonymous city in India (now part of

Pakistan) in 1906 [15], as the source of the nectarine trait. Other

known sources of the nectarine trait used in modern western

breeding programs were ‘Goldmine’ and ‘Lippiatt’ discovered in

New Zealand in 1900 and 1916, respectively [15]. These latter

three genotypes are acknowledged as donors of most of the current

nectarine cultivars widespread in US and Europe. Modern

Japanese breeding programs have extensively used two old

European nectarines, ‘Precoce di Croncels’ and ‘Lord Napier’,

and modern US cultivars [16]. In the last decades, the trait was

introduced to Chinese breeding programs directly from western

accessions or indirectly using Japanese material [17].

Trichomes are hair-like appendages that derive from the

differentiation of epidermal cells and are classified based on their

morphology (unicellular or multicellular), and secretory abilities

(glandular or non-glandular) [18,19]. Trichomes may develop on

several plant organs (leaf, fruit, seed, etc.). They play an important

role in protecting plants against biotic and abiotic stresses [20–22]

and can also hold a direct economic relevance. Aromatic

substances are often synthesized by glandular trichomes, for

example in aromatic plants, such as peppermint (Mentha piperita)

[23] and basil (Ocimum basilicum) [24]. Cotton (Gossipium hirsutum)

seed fibers are classified as non-glandular trichomes and represent

one of the most highly expanded plant cell types [25]. In peach

fruit, trichomes are non-glandular and unicellular and first appear

on the ovary as early as four weeks before anthesis as observed in

the peach ‘Contender’ [26]. By the time of physiological ripening

most fruit skin trichomes are dead cells [27]. In Arabidopsis a

number of genes involved in trichome formation and development

have been identified by mutant analyses [28] and transcriptome

profiling [29], revealing a complex regulatory network. Several

transcription factors interact during trichome initiation and

formation: in particular members of the R2R3-MYB class are

known to act as positive regulators [30–33], while single-repeat

MYB proteins function in negative control [34–36]. Mutations in

the R2R3-MYB gene GLABRA1 (GL1) result in glabrous plants in

A. thaliana [37], A. lyrata [37,38] and other Brassicaceae species

[39]. In Gossipium hirsutum, GhMYB25, which encodes an R2R3-

MYB factor, is involved in the differentiation of ovule epidermal

cells into cotton fibers, as well as in the formation of leaf thricomes

[40].

The aims of the present study were to precisely map the G locus,

identify a candidate gene and develop a reliable marker for the

nectarine phenotype (glabrous fruit). To these ends, we used an F2

population from a cross between the peach ‘Contender’ (C) and the

nectarine ‘Ambra’ (A) [41,42] to develop a Single Nucleotide

Polymorphism (SNP) map around the G locus. Analysis of the

corresponding region in the peach genome sequence (Peach v1.0)

[8] led to the identification of an R2R3-MYB gene as a candidate

for trichome formation in peach fruit. A functional marker (indelG)

developed on this gene provides a useful tool for early seedling

selection for the peach/nectarine trait in breeding programs.

Materials and Methods

Plant materials & DNA extraction
An F2 population of 305 seedlings derived from the cross

between the peach ‘Contender’ (C) and the nectarine ‘Ambra’ (A),

segregating for the peach/nectarine trait, [41,42] (CxA F2), was

used to develop a SNP map around the G locus. The trees were

located in a farm belonging to the Municipality of Castel San

Pietro (Bologna, Emilia Romagna, Italy) leased to ASTRA

(latitude: from 44u24944.180N to: 44u24930.080N; longitude: from

11u35947.210E, to: 11u3692.000E). No specific permission was

required because Daniele Bassi is the curator of the peach

germplasm collection grown there and no endangered or

protected species were involved.

Trees were planted on their own roots with a spacing of 1 m

within and 4 m between rows and trained as slender spindle (one

stem with short lateral scaffolds). Pruning was performed yearly

and standard cultural practices were applied. Scoring of the

peach/nectarine trait was carried out in two seasons to confirm

correct scoring of the phenotype.

Ninety-five P. persica genotypes, 46 peaches and 49 nectarines

grown at the CRA-FRU experimental farm (Rome, Italy) (except

for ‘Galopin’ and ‘Lord Napier’ grown at Ivalsa-CNR, Follonica,

Italy), were analyzed to validate the functional marker. For each

accession, phenotype, pedigree, geographical origin and putative

donor of the nectarine trait are reported in Table 1. DNA was

extracted from leaf tissue using the DNeasy Plant Mini Kit

(Qiagen GmbH, Hilden, Germany) as per manufacturer’s protocol

and quantified with NanoDrop (Thermo Scientific, Waltham,

MA, USA).

Linkage map
In total 305 individuals from the CxA F2 progeny were analyzed

to map the G locus using an upgraded version of the CxA map

[41,42] covering LG 5 from base 10,192,138 to base 17,544,073 of

the peach genome sequence pseudomolecule 5 and spanning the

already known G interval [7]. To refine the position of the G locus,

SNPs located in this region were selected from those identified

through analysis of re-sequencing data from the CxA F1 individual

[42] (biosample SRS335631, run SRR502997). About 300 bp of

the SNP-flanking sequence were downloaded from the IGA peach

Gbrowse (http://www.appliedgenomics.org/) and the Mass AR-

RAY Assay Design 3.1 software was used to design multiplex

assays for SNP analysis [43]. SNP genotyping was performed using

the iPLEX Gold technology available for Sequenom platforms

(Sequenom, Inc., San Diego, CA, USA). SNP markers and the G

locus (scored as a dominant phenotypic marker) were mapped

using Joinmap 3.0 [44] with a minimum LOD score of 10 for

grouping; the Kosambi mapping function [45] was used to convert

recombination frequencies into map distances. Based on this map,

three new SNP markers (S5_15988499, S5_15865556 and

S5_15866258) were developed in the G locus interval (scaffold_5,

from 15,853,006 to 16,488,104; see Results and Discussion) and

genotyped on eight informative recombinants by sequencing

200 bp encompassing the SNP (primer sequences shown in

Table 2). Standard PCRs were performed using GoTaq Green

Master Mix (Promega, Madison, WI, USA). Each PCR reaction

contained 1 X GoTaq Green Master Mix, 0.4 mM of each primer,

20 ng template DNA and sterile Milli-Q water to a final volume of

25 ml. The PCR protocol consisted in an initial step at 95uC
(5 min), followed by 40 cycles at 95uC (30 s), 60uC (30 s) and 72uC
(1 min), and a final elongation at 72uC (5 min). PCR products

were purified with ExoSapIT (Amersham PharmaciaBiotech,

Uppsala, Sweden) and sequenced with the Big Dye Terminator

v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA,

USA). After ethanol precipitation, sequencing products were

mixed with 15 ml of HiDi formamide and subjected to capillary

electrophoresis in an ABI Prism 3730 DNA Analyzer (Applied

Biosystems, Foster City, CA,USA). Genotyping was performed by
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Table 1. List of 95 peach/nectarine varieties representing the diversity of cultivated P. persica.

Accession name Genotype Phenotype Pedigree
Geographical
origina

Putative donor of nectarine
alleleb

Ambra 197-197 nectarine Stark Red Gold x Mayfire Italy (B) Lippiatt/Goldmine

Aniversario 197-197 nectarine – Argentina (B) -/-

Big Top 197-197 nectarine – USA (B) -/-

Branca 197-197 nectarine Goldmine x Pala Brazil (B) Goldmine/Goldmine

California 197-197 nectarine P60-30 x Fantasia Italy, 1994 (B) Quetta/-

Centenaria 197-197 nectarine Docura 2 op Brazil (B) Goldmine/Goldmine

Chiyodared 197-197 nectarine Hirakutsared x Nectared 5 Japan (B) Lord Napier or Precoce di Croncels/-

Crasiommolo Rosso 197-197 nectarine – Italy (L) -/-

Crimson Gold 197-197 nectarine Nectarine selection x July Elberta USA, 1967 (B) -/-

Sabrina 197-197 nectarine – Spain (B) -/-

Fairlane 197-197 nectarine (Le Grand x Sun Grand) x Fantasia USA, 1973 (B) Lippiatt/Quetta

Fantasia 197-197 nectarine Gold king x p101-24 ( = Red King op) USA, 1969 (B) Quetta/Quetta

Firebrite 197-197 nectarine Flavortop x (Red King F2) USA, 1974 (B) Quetta/-

Fuzador 197-197 nectarine ((Greensboro op x Elberta) x JHHale) F2 France, 1973 (B) -/-

Galopin 197-197 nectarine – England, 1869 (L) -/-

Gold Mine 197-197 nectarine – New Zeland, 1900 (B)

Golden Grand 197-197 nectarine Le Grand x (Le Grand x Kim) USA, 1954 (B) Quetta/Lippiatt

Jacquotte 197-197 nectarine – France, 1979 (B) -/-

Laura 197-197 nectarine – USA, 1995 (B)

JinXia 197-197 nectarine (Okubo x Okitsu) x Okitsu F2 China (B) Lord Napier/Precoce di Croncels

Lord Napier 197-197 nectarine – Belgium, 1859 (L) -/-

Madonna Di Agosto 197-197 nectarine – Italy (L) -/-

Madonna Di Giugno 197-197 nectarine – Italy (L) -/-

Magali 197-197 nectarine – France, 1988 (B) -/-

Max 197-197 nectarine – Italy, 1995 (B) -/-

Mayfire 197-197 nectarine Armking op USA, 1984 (B) Goldmine/Goldmine

Nectaross 197-197 nectarine Stark Red Gold x Le Grand Italy, 1983 (B) Lippiatt/Quetta

Nettarina Pendula 197-197 nectarine – Italy (L) -/-

Nico 197-197 nectarine – Italy (B) -/-

Phn 91-12 197-197 nectarine – USA (B) -/-

Phn 91-14 197-197 nectarine – USA (B) -/-

Phn 91-17 197-197 nectarine – USA (B) -/-

Quetta 197-197 nectarine – Pakistan, 1906 (L)

Ricci 2 197-197 nectarine Stark Red Gold x Tastyfree Italy, 1993 (B) Lippiatt/Quetta

Romamer 1 197-197 nectarine – Romania, 1983 (B) -/-

Romamer 2 197-197 nectarine City 29-245 x RR48-153 Romania, 1983 (B) -/-

Russian Nectarine 592-81 197-197 nectarine – Ukrayne, 1980 (L) -/-

Russian Nectarine 598-81 197-197 nectarine – Ukrayne, 1980 (L) -/-

Shizukured 197-197 nectarine Okitsu x NJN17 Japan (B) Lord Napier or Precoce di Croncels/-

Silver Lode 197-197 nectarine (Goldmine x Rio Oso Gem) x (Goldmine x
July Elberta)

USA, 1951 (B) Goldmine/Goldmine

Sirio 197-197 nectarine Flamekist x Fantasia Italy, 1987 (B) Quetta/Quetta

Snow Queen 197-197 nectarine – USA, 1975 -/-

Souvenir Nikitski 197-197 nectarine Lola op Ukrayne, 1988 (B) -/-

StarkRedgold 197-197 nectarine Sun Grand op USA (B) Lippiatt/Lippiatt

Summer Beauty 197-197 nectarine Red Diamond x Sun Grand USA, 1979 (B) Quetta/Lippiatt

Vania 197-197 nectarine – Italy, 1990 (B) -/-

ZeeGlo 197-197 nectarine (Red Grand op) x (Sun Grand x Merril Gem) USA, 1988 (B) Quetta/Lippiatt

Zephyr 197-197 nectarine – France, 1992 (B) -/-

A MYB Gene for the Nectarine Trait
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Table 1. Cont.

Accession name Genotype Phenotype Pedigree
Geographical
origina

Putative donor of nectarine
alleleb

Zincal 5 197-197 nectarine – Spain (B) -/-

Acireale 941-941 peach – Italy (L)

Amber Gold 941-941 peach Red Grand x Royal May USA, 1973 (B)

Amsden 941-941 peach USA, 1868 (B)

Autumnglo 941-197 peach (Candoka x Tennessee Natural) x Merril Fiesta USA, 1977 (B) -

BaekmiJosaeng 941-941 peach Mishima x Nunome Wase Republic of Korea, 1983 (B)

Baldagenais 941-197 peach – France -

Changbang Mutant 941-941 peach – Republic of Korea, 1986 (B)

Chiyomaru 941-941 peach – Japan, 1988 (B)

Chui Huang Tao 941-941 peach – China (B)

Ciccio Petrino 941-941 peach – Italy

City 32-82 941-197 peach – USA (B) -

Contender 941-941 peach Wiblo x [Norman x (Candor x (Summercrest x
Redhaven))]

USA, 1987 (B)

Cp 88/2 941-941 peach – Mexico (B)

Early Gold 941-941 peach – Japan, 1980 (B)

Elberta 941-941 peach Chinese Cling op (perhaps x Early Crawford) USA, 1889 (B)

CxA F1 941-197 peach Contender x Ambra Italy (B) Lippiatt or Goldmine

Fairtime 941-197 peach (Rodeo x Kirkman Gem) op USA, 1968 (B)

Fayette 941-941 peach Fay Elberta x (Fireglow x (Fireglow x Hiley)) USA, 1966 (B)

FeiChing Bai Li 17 941-941 peach – China (B)

FeiChing Tao 941-941 peach – China, 1909 (B)

Fidelia 941-197 peach (O’Henry x Giant Babcock) x (May Grand x Sam
Houston)

USA, 1986 (B) -

Frau Maria Rudolf 941-941 peach Top Red Delicious op Germany (B)

Grosse Mignonne 941-941 peach – France, 1667 (L)

Higama 941-941 peach Japanese seed op France, 1970 (B)

Hwando 1 941-941 peach – Republic of Korea, 1977 (B)

J H Hale 941-941 peach putative selfpollination of Elberta USA (B)

JingYu 941-197 peach Okubo x Okitsu China (B) Lord Napier or Precoce di Croncels

KurakataWase 941-941 peach – Japan (B)

PLove2- 2N 941-941 peach di-haploids of Lovell USA, 1882 (B)

O’Henry 941-197 peach Merrill Bonanza op USA, 1970 (B) -

Pantao 20-58 941-941 peach – China, 1869 (B)

Pillar 941-941 peach – Japan (B)

Redhaven 941-941 peach Halehaven x Kalhaven USA, 1940 (B)

Reginella II 941-941 peach – Italy (B)

Rou Tao 941-941 peach – China (L)

Russotto 941-941 peach – Italy (B)

Sahua Hong Pantao 941-941 peach – China (L)

Sanguinella 941-941 peach – Italy (L)

Shen Zhou Mi Tao 941-941 peach – China (B)

Siberian C 941-941 peach selection of a China seedling Canada, 1967 (B)

Summer Pearl 941-197 peach [(Candoka x Tennessee natural op) x ((Candoka
x Flaming Gold) x NJN5 op)] x (PI119844 x
White Hale)

USA, 1979 (B) -

TaturaDawn 941-941 peach Levis selfpollination Australia, 1960 (B)

Yoshihime 941-197 peach (Nakatsu Hakuto x Nunome Wase) x Akatsuki Japan, 1990 (B) -

Yu Bai 941-941 peach – China (L)

Yumyeong 941-941 peach Yamato-Wase x Nunome Wase Republic of Korea, 1977 (B)

A MYB Gene for the Nectarine Trait
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visual inspection of the resulting electropherograms using

4PEAKS freeware (Nucleobytes Inc.).

Variant discovery from NGS data
In order to identify genetic variants putatively involved in the

control of the nectarine trait publicly available paired-end (PE)

whole-genome re-sequencing data of P. persica accessions from

study SRP013437 [8] were downloaded from the NCBI Sequence

Read Archive (SRA) [46]. Five accessions were considered for this

study: ‘Bolero’ (biosample SRS335629, run SRR501836), ‘OroA’

(biosample SRS335635, run SRR502986), ‘Lovell’ Clone PLov2-

2N (biosample SRS335634, run SRR502985), ‘Quetta’ (biosample

SRS335636, runs SRR502989 and SRR502987) and F1 ‘Con-

tender’ 6 ‘Ambra’ (biosample SRS335631, run SRR502997).

‘Quetta’ was included as the reference nectarine accession. The

CxA F1 individual originated the CxA F2 population used to map

the G locus. The peach ‘Lovell’ Clone PLov2-2N is the doubled

haploid used to generate the reference peach genome sequence

(Peach v1.0) [8], providing an internal control for false variant

calling. Finally, the peaches ‘Bolero’ and ‘OroA’ were chosen as

controls for nectarine segregation, as it has been demonstrated that

the nectarine trait does not segregate in the ‘Bolero’ 6 ‘OroA’ F1

population [42].

SRA data of each run were dumped in fastq format using the

fastq-dump tool of NCBI sratoolkit v2.1.16 software (http://www.

ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view = software), splitting

forward and reverse paired reads for each sample into two

separate files. Reads were quality filtered on a single sample basis

using Trimmomatic v0.22 [47], first trimming leading and trailing

bases below a quality threshold of 20, and then removing trimmed

reads shorter than 24 bp or having an average quality below 20

(calculated on 8 bp long sliding windows). For each sample, only

reads passing the quality filtering as matching pairs were retained

and aligned to the whole P. persica reference genome Peach v1.0

using the Burrows-Wheeler Alignment Tool (BWA v0.6.2) [48].

The aln (IS linear-time algorithm) and sampe (all default options

except -n 25 –N 25) commands were applied, respectively, for

finding suffix array (SA) coordinates of each individual read and to

convert them to chromosomal coordinates and to pair the reads.

The resulting alignment SAM files were converted by Picard Tools

version 1.77 (http://picard.sourceforge.net/) to sorted BAM files

compliant to the Genome Analysis Toolkit (GATK) format, using

the tools CleanSam, SamFormatConverter and AddOrReplaceReadGroups.

GATK-compliant BAM files were submitted to GATK version

2.3–3 [49] for pre-processing procedures, i.e. indel realignment,

duplicate removal and base quality score recalibration (BQSR).

The data table needed for the recalibration step in BQSR was

manually generated upon validated SNP data from the Peach 9K

chip array [50]. Variant discovery procedures were then applied

using whole-genome recalibrated alignments of all five samples

simultaneously. Genotypes for SNP and small INDEL variants

were called through the GATK HaplotypeCaller tool applying hard

filtering parameters [51]. Structural variants were also indepen-

dently called on the same recalibrated alignment data by Pindel

software v0.2.4t [52] following standard procedures.

Reads from the resequencing of ‘Quetta’ (biosample

SRS335636, runs SRR502989 and SRR502987) were also

analyzed using the CLC genomic workbench (6.0.1). The 75 bp

pair-end fragments were trimmed for quality retaining only

nucleotides with Phred values higher than 30, and trimmed reads

were aligned against the P. persica reference genome (Peach v1.0)

[8] using the read mapping tool. Only reads with over 90%

identity over at least 92% of their length were mapped on the

reference. All variant discovery searches were limited to the locus

G mapping interval defined by informative recombinants in the

C6A F2 mapping population (scaffold_5, from 15,853,006 to

16,488,104, see Results and Discussion).

Validation of candidate variant
To validate the putative variant individuated among the

resequenced genotypes long-range PCRs were performed on five

nectarines genotypes (‘Quetta’, ‘Goldmine’, ‘Madonna di Agosto’,

‘Stark Red Gold’ and ‘Ambra’) and on the peach ‘Contender’,

with primers Seq16F and Seq4R (Table 3) designed flanking the

putative insertion, using Herculase DNA Polymerase (Agilent

Technologies, Santa Clara, CA, USA). Each reaction contained 1x

Herculase reaction buffer, 0.3 mM dNTP mix, 0.5 mM each

Seq16F and Seq4R primer, 3% DMSO, 2.5 U Herculase

polymerase, 300 ng template DNA, and sterile Milli-Q water to

a final volume of 50 ml. The following PCR protocol was

performed on a Esco Swift Maxi thermocycler (Esco GB Ltd,

Downton, UK) or an Applied Biosystems 2720 Thermal Cycler

(Applied Biosystems, Foster City, CA, USA): 95uC for 5 min; 28

cycles of 95uC (1 min), 59uC (1 min), 72uC (12 min) followed by a

step at 72uC for additional 12 min. All PCR amplicons were

checked on 1% agarose gel in an overnight run in SB buffer.

A standard ethidium bromide staining was used for band

visualization.

For restriction analysis, 5 ml of long-range PCR products from

‘Quetta’, ‘Goldmine’, ‘Madonna di Agosto’, ‘Stark Red Gold’ and

‘Ambra’ were digested with EcoRI and HindIII (Fermentas, Vilnius,

Lithuania) in a single overnight reaction at 37uC. Master mix was

calculated by double digest tool (http://www.thermoscientificbio.

com/webtools/doubledigest/) with 0.5 U/sample of each restric-

tion enzyme and buffer R. Restriction products were separated on

1% agarose gels and stained with ethidium bromide for band

visualization.

The ‘Quetta’ long-range PCR product was first purified with

the Macherey-Nagel PCR clean-up kit (Carlo Erba reagents, Italy)

and quantified by Picogreen (Quant-iT PicoGreen dsDNA kit,

Table 1. Cont.

Accession name Genotype Phenotype Pedigree
Geographical
origina

Putative donor of nectarine
alleleb

ZansetsuShidare 941-941 peach – Japan (B)

a(B) = breeding materials (L) = landrace.
b- = unknown donor of the nectarine allele.
For each accession the following information is reported: name, genotype at the indelG marker (941 bp reference peach allele, 197 bp nectarine allele carrying the
retrotransposon insertion), phenotype, pedigree, country of origin and year of release/discovery when known, putative donor of the nectarine allele in P.persica if
pedrigree information was available.
doi:10.1371/journal.pone.0090574.t001
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Life Technology, US) in preparation for sequencing using the

Illumina MiSeq platform with a 150 bp paired end sequencing

strategy. Preparation of Nextera XT library was performed with 1

ng of genomic DNA according to the Nextera XT protocol (Ver.

Oct 2012, rev C). Briefly, the DNA was fragmented in 5 ml of

Amplicon Tagment Mix and 10 ml of Tagment DNA buffer

(Illumina, San Diego, CA, USA). Tagmentation reactions were

performed by incubation at 55uC for 5 min followed by

neutralization with 5 ml of Neutralize Tagment Buffer for 5 min.

Tagmented DNA (25 ml) was used as the template in a 50 ml

limited-cycle PCR (12 cycles) and processed as outlined in the

Nextera XT protocol. Amplified DNA was purified using 90 ml of

AMPure XP beads then normalized with 45 ml of combined

Library Normalization beads/additives. In preparation for cluster

generation and sequencing, the normalized library was diluted in

hybridization buffer and heat denatured. Due to the low diversity

of the library a phiX spike-in (30%) was added to the final

denatured 10 pM library. The sample was sequenced using the

MiSeq Personal Sequencer (Illumina Inc., San Diego, CA, USA)

running MiSeq Control Software Version 2.0.

A total of 20 M reads were obtained and analyzed using the

CLC genomic workbench (6.0.1). Trimming and De Novo

assembly tools were used with default parameters. The assembly

obtained was filtered retaining only contigs with a length greater

Table 3. List of Primers.

Name Sequence 59-.39

Start Position on
Scaffold 5 (nt) Len Notes

Seq16F ATTCCGCTCCTCATGTAGTACA 15,898,340 22 upstream the LTR insertion

Seq4R CCAAATAAACCACCACCTACTCTGTTA 15,899,297 27 downstream the LTR insertion

Seq15F GCTGTAGGCTAAGGTGGAGAA 15,898,078 21 RT-PCR primer designed on exon 2 of PpeMYB25

Seq15R ACTGAGCAATGTGGCTGAGA 15,898,586 20 RT-PCR primer designed on exon 3 of PpeMYB25

ppaRPII_RT-F TGAAGCATACACCTATGATGATGAAG 26 RT-PCR housekeeping, [53](Tong et al, 2009)

ppaRPII_RT-R CTTTGACAGCACCAGTAGATTCC 23 RT-PCR housekeeping, [53](Tong et al, 2009)

indelG-F CTTGCACCTGAGTTCGATTCCG 15,898,324 22 upstream the indel in PpeMYB25

indelG-1R GGCTTCAATGGCAGAACAAGG 21 within left border of the indel in PpeMYB25

indelG-2R GCAGGTGGTGGAGATTCATTCAT 15,899,264 23 downstream the indel in PpeMYB25

Name, sequence, position on Peach v1.0 and length of primers used to perform long-range PCR, RT-PCR and indelG assay.
doi:10.1371/journal.pone.0090574.t003

Table 2. SNP markers.

Markersa cMb
Peach v1.0
position (nt) SNP allelec Forward primer Reverse primer SNP Extension primer d

S5_10192138 0 10,192,138 G/A GATGAATGGGTGAAGGTAAG TTCCGCAAAAAAAAACATATC ttaagGGGTGAAGGTAAGTTTGCACA

S5_11640083 4.2 11,640,083 T/G CCTACTACACAATTGCCTTA GTCGGTCGTCAGTTTTTTTG cgacCTTGTAGATTCTAATGGAAGTA

S5_12847567 11.4 12,847,567 T/A TGCGGATTTTTCTTAGCTAC CTCTTTCCCAATCTCAATCG AATCGCATTGTTGAGAC

S5_13449464 14.3 13,449,464 G/C CGGTGATTGATATGATGATG CCACTCAAATTGCCTTTCCC GTGATTGATATGATGATGATT-
TATAT

S5_13852617 16.7 13,852,617 A/C ATACCTATGTTCACTCCCCG TTGGCTGGTAAGGTTGTTGG TGTACTGATGTGTGAATCTAATG

S5_14584095 24.3 14,584,095 G/C AAGTTGTTCCAGTGGCAACC TATAGTGGGGCTGGAATCTG cccGGCTGGAATCTGTTCTCTCAGAC

S5_14894563 25.5 14,894,563 C/A GCAGAGGAATTTTTCCCTAC TTAGGGAGGGAGCTATGTTG gGTTGGAGGTATTTGGGC

S5_14949332 26.0 14,949,332 T/C AGAAGATGTGGTTCCAGAGG TTCTCGATCCGGAAGGAGAT TCCCAGATCCAAGACCC

S5_15731107 28.4 15,731,107 T/G CTGTTGTAAGACAGGTTTGG AACATGCTTGCGGCTTCGTC GGCTTCGTCCATACGCC

S5_15853006 28.8 15,853,006 T/A TAGTTTGTCTGTCAAACCGC CCGAGAAGACTGAAGAGTTG GCTATTAAAGACATTAGAGATGA

S5_15865556 29.1 15,865,556 A/T GGTTGGGGCCTCTGTATTCT TAAAGGCAACCACATTGCAG

S5_15866258 29.1 15,866,258 A/G TCAGCTTGTCCATGGCATTA GCCGTAAAGGCTTTCCTCTC

S5_15988499 29.4 15,988,499 C/T GCCGTGAAGTGGAGTTCTCT GATTCTCACTCTGCTCCTGTCT

S5_16488104 29.9 16,488,104 A/G TTCGCATTCATTAGTTCAC CAGGTTTGTGAGTTTGCTTG TACTAAACGGAAGCTATGT

S5_17544073 36.2 17,544,073 G/A GCCATCTCTCTGTTTCTCTG GTAGTATCAGCCGACTGTAG cTAACATACATGACATGACATACA-
CCC

aSNP detection was performed by Sequenom MassArray technology, except for the SNPs in italics that were genotyped by Sanger sequence.
bthe genetic distances estimated by the analysis of informative recombinant plants are reported in italics.
cthe first nucleotide correspond to the reference allele in the peach genome (Peach v1.0).
dlower case bases correspond to the tails added to the SNP extension primer for Sequenom MassArray analysis.
For each marker the following information is reported: marker name, position in cM with respect to the map in Figure 1, position in bp with respect to the peach
genome sequence (Peach v1.0), SNP allele and the primer sequences used.
doi:10.1371/journal.pone.0090574.t002
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than 200 bp and formed by more than 500 reads. The filtered

contigs were mapped using BWA v0.7.5a [53] with the MEM

algorithm against the Peach v1.0 genome. Identification of

conserved domains on contigs was performed using HMMER

v3.1 [54] against the PFAM [55] database v27.0. Blast search of

contigs was done using NCBI-BLAST+v2.2.27 [56] against the

NT database downloaded from NCBI FTP site on Oct 23 2013.

Expression analysis
Total RNA was extracted from floral buds collected from

‘Contender’ and ‘Ambra’ at different developmental stages (seven,

five, four and one week before anthesis) using the RNeasy Plant

Mini Kit (Qiagen GmbH, Hilden, Germany) and treated with

DNAse I (Sigma-Aldrich, St. Louis, MI, USA) following manu-

facturers’ instructions; 1 mg of RNA was reverse-transcribed using

the GoScript Reverse Transcription System (Promega, Fitchburg,

WI, USA) with oligo (dT)15 according to the manufacturer’s

protocol. For reverse transcription analysis, primers were designed

on exon 2 (Seq15F) and exon 3 (Seq15R) of the PpeMYB25 gene

and the RNA polymerase II sequence was used as reference gene

[57] (Table 3). For RT-PCR, 1 mL of cDNA was used with 1x

GoTaq Green Master Mix, 0.4 mM of each primer and sterile

Milli-Q water to a final volume of 10 ml. The PCR protocol

consisted of an initial denaturation at 95uC for 2 min, followed by

35 cycles at 95uC (20 s), 62uC (20 s) and 72uC (30 s), followed by a

final elongation at 72uC (5 min). PCR products were checked on

1% agarose gel at 5 V/cm in TBE buffer. A standard ethidium

bromide staining was used for band visualization.

Functional marker design and genotyping
To perform association studies for the nectarine trait and

provide a tool for marker assisted breeding (MAB) a codominant

marker (indelG), consisting of a three-primer PCR assay (primers

indelG-F, indelG-1R and indelG-2R; Table 3), was developed for

genotyping of the candidate insertion: two outer primers (one

forward and one reverse), designed on opposite sides of the

insertion were combined in a single reaction with an inner reverse

primer (designed on the reconstructed left sequence of the

insertion).

PCRs were carried out in 10 ml containing 10 ng of template

DNA, 1x PCR buffer, 1.5 mm MgCl2, 200 mM each dNTP,

0.2 mM each primers and 0.5 U of Platinum Taq DNA

polymerase (Life Technologies, Carlsbad, CA, USA). Amplifica-

tions were performed on a Veriti thermal cycle (Life Technologies,

Carlsbad, CA, USA) with the following temperature profile: 95uC
(5 min) followed by 35 cycles at 94uC (30 s), 61uC (30 s), 72uC (30

s) and a final extension at 72uC (10 min). PCR products were

separated on an ethidium bromide stained 1% agarose gel. The

305 seedlings of the CxA F2 population, the parents and the

hybrid CxA F1, as well as 46 peach and 49 nectarine accessions,

were analyzed (Table 1).

Results and Discussion

Mapping of the G locus
Scoring of the CxA F2 progeny revealed the presence of 246

peach and 59 nectarine plants, indicating a slight distortion from

the expected 3:1 segregation (x2 = 5.41, p,0.05 with 1 d.f.). In

agreement with a previous report [7], the peach/nectarine

phenotype was regarded as a dominant trait (G locus). A total of

12 SNPs, covering about 7 Mb of LG 5 around the G locus, were

mapped on the whole progeny (Figure 1). Consistent with the

observed distortion of the phenotypic trait, a skewed segregation

was also found for all the markers around the G locus from

S5_15731107 to S5_16488104 (Figure 1). The G locus was placed

between markers S5_15853006 and S5_16488104 within an

interval 1.1 cM (635 kb, Figure 1). Three additional SNPs inside

the G region (S5_15865556, S5_15866258 and S5_15988499)

were also successfully mapped by genotyping of informative

recombinant plants. However none of them were useful to refine

the position of G locus (data not shown).

Variant identification in the locus G genomic region
In order to identify variants putatively underlying the nectarine

phenotype, genome-wide recalibrated alignment data from five P.

persica accessions were examined in detail around the G locus

(scaffold_5, from 15,853,006 to 16,488,104). In this region, GATK

HaplotypeCaller detected 291 SNP and indel variants above the

chosen minimum phred-scaled score quality threshold of 200, out

of which 67 mapped within predicted genes in the peach genome

(Peach v1.0) [8]. Of the latter, 20 variants, distributed in seven

genes, were heterozygous in CxA F1 with non-segregating joint

Figure 1. LG 5 CxA map around the G locus. Linkage map
obtained from analysis of the CxA F2 progeny. On the left side distances
are indicated in cM; on the right the marker name, the physical position
on Peach v1.0 and marker skewedness are reported. The peach/
nectarine locus and the indelG marker are shown in bold.
doi:10.1371/journal.pone.0090574.g001
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genotype combinations in ‘Bolero’ and ‘OroA’. In the nectarine

‘Quetta’ the same analysis identified two variants, both indels,

homozygous for the non-reference allele and located in two

distinct genes (ppa023682m and ppa023143m). Both of them were

heterozygous in CxA F1, where no other variants were found in

these two genes, and were thus considered as putative candidates

for the G locus. The first candidate variant is a deletion of 3

motives in a known (AAAC)6 microsatellite at position 16,463,040

which maps within the only intron of the predicted gene

ppa023628m (best Arabidopsis thaliana blastx match AT3G29575.1,

ABI five binding protein AFP3, e-value 5610218). ABI Five

Binding Proteins (AFPs) are members of a small plant-specific

protein family, characterized by three conserved domains of

unknown function. AFPs act as negative regulators of ABA

signaling [58] and have no known involvement in trichome

formation. Next we focused on the second variant, reported by

Haplotype Caller as two distinct insertions of 76 and 49 bp on the left

and right side, respectively, of an (AC)3 motif at position

15,898,458. This INDEL variant maps to the last exon (exon 3)

of the predicted gene ppa023143m (best Arabidopsis thaliana blastx

match AT5G15310.1, MYB domain protein 16, AtMYB16, e-

value 1610273). Similarity with R2R3-MYB transcription factors

known to control epidermal cell differentiation [40,59] (see below)

pointed to this gene as a likely candidate for the peach/nectarine

trait [54]. This second variant was also detected by Pindel software

in C6A F1 and ‘Quetta’ samples only, as a large insertion

compared to the reference sequence. In particular, this large

insertion at position 15,898,458 was supported in Pindel by a total

of 31 reads, 17 overhanging on the left side of the insertion (10 in

C6A F1 and 7 in ‘Quetta’) and 14 on its right side (5 in C6A F1

and 9 in ‘Quetta’). The presence of this insertion in the nectarine

allele is also supported by analysis of ‘Quetta’ resequencing data

using CLC Genomic Workbench. Within the considered mapping

interval (from 15,853,006 to 16,488,104) a total of 94,789 reads

(9.15 million nucleotides) were aligned against the reference

genome sequence, 61% of which in pairs and the remaining as

single reads due to unexpected mapping distances, mate inversion,

unmapping or mapping in other contigs. In agreement with Pindel

results, the third exon of the ppa023143m gene showed a dramatic

reduction of paired-end distances and an increase of single reads at

position 15,898,458 (Figure 2), compatible with a large insertion in

‘Quetta’ compared to the ‘Lovell’ reference sequence. Due to this

insertion only single reads could align in the region; the software

reports the lack of paired reads assigning the value zero to the

paired-end distance and increasing to 100% the percentage of

single reads (Figure 2).

Validation and reconstruction of a long insertion in exon
3 of gene ppa023143m

The physical presence of the long insertion within exon 3 of

gene ppa023143m was confirmed by long-range PCR using a

primer pair designed on intron 2 (Seq16F) and exon 3 (Seq4R)

flanking the insertion site. An amplification product of about 7 kb

was obtained in five nectarines, ‘Madonna di Agosto’, ‘Quetta’,

‘Stark Red Gold’, ‘Goldmine’ and ‘Ambra’ (Figure 3). In contrast,

in a peach genotype (‘Contender’) the same primer pair gave an

amplification product of 960 bp (data not shown). ‘Quetta’ and

‘Goldmine’ are two donors of the trait in modern breeding and

‘Stark Red Gold’ is known to carry the nectarine allele of ‘Lippiat’,

the third donor of the trait. ‘Madonna di Agosto’ belongs to a

group of landraces not directly related to modern breeding

germplasm [12,13]. The double digestion of the five amplicons,

with EcoRI/HindIII, shows the same restriction pattern for all the

accessions (Figure 3) suggesting that a unique mutational event

gave origin to the nectarine trait present in the modern nectarine

germplasm as well as in the local southern Italian ecotypes.

The amplicon obtained in ‘Quetta’ was sequenced by Next

Generation Sequencing (NGS). Following filtering and assembly

90% of the reads were collected in three major contigs. Contig_1

(GenBank accession number KJ150676), formed by a consensus

sequence of 5,836 bp, was mapped on scaffold 3 of peach genome

v1.0 and showed a perfect match for 5,713 bp (scaf-

fold_3:13,409,926.13,415,638) corresponding to the predicted

LTR_1684 region (http://services.appliedgenomics.org/gbrowse/

prunus_public/). The missing 123 bp that do not align on scaffold

3 showed a perfect match on scaffold 5 (scaffold_5:15,

898,458.15,898,581), confirming that this contig represents an

insertion in the third exon of predicted gene ppa023143m. When

the LTR_1684 region, found in correspondence of Contig_1

alignment on scaffold 3, was submitted to CENSOR [60] (Release

Figure 2. Alignment of Quetta reads against a 635 kb interval of Peach v1.0 pseudomolecule 5. Alignment results of reads, obtained by
the resequencing of ‘Quetta’, against the peach genome region identified by the mapping interval in LG5 (from 15,853,006 bp to 16,488,104 bp). Top
panel: intron-exon structure of ppa023143m. Central panel: plot of ‘Quetta’ paired-end distance (blue) and frequencies of single reads (yellow) at the
ppa023143m locus. Bottom panel: blue lines are paired reads, green and red lines correspond to single reads with missing mate on the right and left
side, respectively. The orange arrow points to the putative insertion inside exon 3 of ppa023143m.
doi:10.1371/journal.pone.0090574.g002
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18.01, 16 Jan 2013) high similarity was found to a 6,033 bp

annotated Ty1-copia retrotransposon (Copia-24_FV-I) from straw-

berry (Fragaria vesca). A conserved protein domain analysis on the

complete sequence of Contig_1 also revealed the presence of

different domains: UBN2 (gag-polypeptide of LTR copia-type)

from position 1,354 to 1,689 of Contig_1, GAG-pre-integrase

domain from position 2,329 to 2,511, RVE (Integrase core

domain) from position 2,551 to 2,928 and RVT2 (Reverse

transcriptase domain) from position 3,694 to 4,431. The four

domains identified showed a high prediction confidence, with E-

values of 3.8e-16, 4.3e-13, 6.8e-28 and 1.6e-98 respectively. All

these predicted domains are typical of retrotransposable elements.

The remaining two contigs, Contig_2 and Contig_3, 300 and

876 bp respectively, were also mapped on the peach genome. Both

were split on scaffold 5 (scaffold_5:15,898,340.15,898,361; scaf-

fold_5: 15,898,458. 15,899,262) in exon 3 of predicted gene

ppa023143m and on scaffold 3 in the same LTR_1684 region of

Contig_1. Thus, these contigs span the point of insertion of the

Ty-copia retroelement within exon 3 of the gene. Flanking this

insertion point, we found a characteristic Target Site Duplication

(TSD) (AC)3 [61] produced by the retroelement upon insertion

into a new site. Together these results confirm the insertion of a

Ty1-copia retrotransposon in the ‘Quetta’ allele of gene

ppa023143m.

A BLASTN search of the retrotransposon sequence of Contig_1

against the peach reference genome returned 5 highly similar hits

(from 87.1% to 100% sequence identity), two on chromosome 3,

and one each on chromosomes 4, 7 and 8. All five hits were about

6 kb long and were precisely delimited by highly similar (from

97.7% to 100.0%) LTR sequences, each flanked by characteristic

Target Site Duplications, thus confirming the existence of other

copies of this LTR-retroelement in the reference peach genome.

In particular LTRs found in the ‘Quetta’ allele of ppa023143m

are identical to those present in scaffold 3 (scaffold_3:14,

488,093.14,488,522) and scaffold 4 (scaffold_4:27,503,652.27,

504,081). These data are consistent with previous analyses

showing that 12.6% of LTR-retrotransposons have identical

LTRs, indicating recent and ongoing retrotransposition activity

in the peach genome [8].

Transposable elements (TEs) are known to cause many kinds of

genetic variations in plants and played an important role in plant

evolution and domestication [62]. In a survey of allelic variants at

60 genes involved in crop domestication and diversification, 15%

were caused by TE insertions [63]. For example, an LTR insertion

in a regulatory region of the teosinte branched1 (tb1) gene resulted in

overexpression of the gene, causing the conversion from highly

branched wild teosinte to the single culm architecture of

domesticated maize [64,65]. However, the most common effect

of TE insertion is the loss of gene function [57] and recessive TE-

Figure 3. Variant discovery in PpeMYB25 (annotation refinement of ppa023143m). Five nectarine genotypes (‘Madonna di Agosto’, MdA;
‘Quetta’, Q; ‘Stark Red Gold’, SRG; ‘Goldmine’, G; ‘Ambra’, A) were analyzed to confirm the presence of the insertion within exon 3 of PpeMYB25. (A)
Long-range amplification products reveal for all the accessions a fragment of about 7 kb (compared to 960 bp expected from the reference genome).
(B) Double digestion results of the long-range PCR products show the same pattern for all the genotypes. (C) Position and structure of the Ty-copia
retrotransposon deduced by the by the NGS analysis of ‘Quetta’ long-range amplicon. The insertion results in a truncated version of the R2R3-MYB
protein.
doi:10.1371/journal.pone.0090574.g003
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induced mutations have played an important role in plant

domestication [62]; examples include ‘‘sticky’’ foxtail millet [66],

Mendel’s wrinkled peas [67], seedless apple [68], fruit color in

grape [69–71] and peach flesh [72,73]. In some cases, multiple

independent mutational events were selected as demonstrated by

insertion of TEs in the waxy locus resulting in the ‘‘sticky’’

phenotype in foxtail millet [66]. Another example is the yellow

peach phenotype, which is associated with three different

mutational events (an LTR insertion, a SNP and a frameshift

mutation at a microsatellite locus) that occurred independently in

a carotenoid cleavage dioxygenase gene directly involved in

pigment degradation [72,73]. In contrast with the situation for

‘‘sticky’’ foxtail millet [66] and peach color [72,73] our results

suggest that a unique mutational event has originated the

nectarine phenotype, i.e. the loss of trichomes in peach fruit.

The occurrence of unique mutations affecting single genes selected

by humans during domestication and diversification of crop

species is not rare. In a recent review of 60 such genes, 26 display a

unique mutational event selected and spread by humans [63].

Gene ppa023143m encodes an R2R3-MYB transcription
factor putatively involved in trichome formation

Careful inspection of predicted gene ppa023143m led us to

reannotate the coding sequence (CDS) extending exon 3

compared to the Peach v1.0 annotation [8]. The reannotated

CDS is predicted to encode a peptide of 330 aminoacids showing

similarity to the R2R3-MYB transcription factors GhMYB25 from

allotetraploid cotton Gossypium hirsutum (58.4% similarity) [40] and

MIXTA-like1 from Antirrhinum (AmMYBML1, 55.3% similarity)

[59] (Figure 4). In eukaryotes, MYB factors represent one of the

largest and most functionally diverse gene families, which

dramatically expanded in plants [74–77] playing a central role

in a variety of processes from plant development to responses to

biotic and abiotic stresses [74,78,79]. MYB family members share

a highly conserved DNA binding domain (the MYB domain)

usually composed of up to three amino acid repeats (R1, R2, R3)

[80]. GhMYB25 and AmMYBML1 belong to R2R3-MYB sub-

group 9 [40,77] along with other genes involved in regulating petal

epidermal cell shape [81]. AmMYBML1 plays a role in trichome

differentiation in the corolla tube of the Antirrhinum flower [59].

GhMYB25, normally expressed at the time of fiber initiation in the

outer integument of ovules, is differentially expressed between

fibreless mutants and normal lined cotton [40,82,83] and its

altered expression affects seed, fiber and trichome development in

transgenic cotton [40]. Considering the known role of these

homologues in trichome development, ppa023143m is a strong

candidate for the peach/nectarine phenotype and was named

PpeMYB25. The insertion of the Ty1-copia retrotransposon in exon

3 of the PpeMYB25 gene introduces an H112L substitution and a

premature stop codon (TAA), resulting in a peptide of 112

aminoacids precisely truncated at the C-terminal end of the R3

MYB domain. GhMYB25 and AmMYBML1 share the distinctive

C-terminal motif of R2R3-MYB sub-group 9 [40,59,76] along

with PpeMYB25 and other genes involved in regulating epidermal

cell shape [81]. Analysis of Antirrhinum R2R3-MYB genes from

subgroup 9 indicated that the C-terminal domain folds as an

amphipathic a-helix with putative transactivation ability [84]. An

insertional mutant in the MIXTA gene, resulting in loss of this C-

Figure 4. Aminoacid alignment of the R2 and R3 MYB repeat sequences. MYB domains (pfam00249) of peach PpeMYB25, cotton GhMYB25
(ACJ07153.1, [39]) and Antirrhinum AmMYBML1 (CAB433991.1, [54]) were aligned using the Muscle on line tool at EBI (http://www.ebi.ac.uk/Tools/
msa/muscle/). Graphic display of the alignment was obtained using BoxShade (http://www.ch.embnet.org/software/BOX_form.html). Black shaded
residues are identical, grey shaded residues are similar. Coordinates in the protein sequences are indicated.
doi:10.1371/journal.pone.0090574.g004

Figure 5. Expression analysis of PpeMYB25 in peach and
nectarine flower buds. (A) The expression patterns of the R2R3-
MYB gene were evaluated in ‘Contender’ [C] and ‘Ambra’ [A] buds at
seven, five, four and one week before anthesis (WBA). Genomic DNA of
the two cultivars was also tested as a control. The same samples were
analyzed for expression of RPII as standard (B) and checked for DNA
contamination (C).
doi:10.1371/journal.pone.0090574.g005
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terminal region has been shown to cause recessive phenotypic

alteration in epidermal cell differentiation [85]. The recessiveness

of the nectarine trait indicates that it corresponds to a loss-of-

function mutation. According to this reasoning and by analogy

with observations in cotton, we propose that the observed insertion

in the PpeMYB25 gene results in a non-functional form of the MYB

transcription factor that normally promotes trichome formation in

fuzzy peaches. If this were correct, all nectarines should be non-

functional homozygous mutants at this gene.

In order to evaluate the timing of PpeMYB25 transcript

expression with respect to trichome development, RT-PCR

analyses were performed on ‘Contender’ and ‘Ambra’ floral buds

sampled at seven, five, four and one week before anthesis. A

forward primer designed on exon 2 was used in combination with

a reverse primer on exon 3 (downstream of the LTR insertion) in

order to evaluate the expression profiles of the gene. Expression

was evident in ‘Contender’ from five weeks before anthesis, just

before trichomes begin to appear [26] and continued through to

one week before anthesis accompanying trichome differentiation

(Figure 5). In contrast, the expression of PpeMYB25 was never

visible in ‘Ambra’ floral buds, consistent with the presence and the

position of the large insertion (Figure 5). Together sequence and

expression analyses support the proposed involvement of Ppe-

MYB25 gene in promoting trichome differentiation. Mutational

events in regulatory genes have played a major role during crop

domestication and breeding; in a recent overeview of domestica-

tion and diversification genes, 37 out of 60 (,62%) encoded

transcription factors [63].

Association study and origin of the nectarine trait in
peach germplasm

The genotype at the LTR retrotransposon insertion in gene

PpeMYB25 was assessed in the CxA F2 population as well as in a

panel of 95 peach and nectarine accessions by means of a

functional marker based on a three primers PCR assay (indelG)

(Figure 6). As expected, the marker co-segregated with the G locus

in the CxA F2 progeny (Figure 1), with all the nectarines displaying

a unique fragment of 197 bp. Similarly, all nectarines in the

germplasm panel were characterized by a fragment of the same

length (Figure 6). Peach accessions fell into two categories: those

homozygous for the reference allele (941 bp) and those heterozy-

gous (197 bp, 941 bp). Taking into account pedigree information

[15,86], we confirmed all the known heterozygotes (‘Autumnglo’,

‘Fairtime’, ‘Fidelia’, ‘Jing Yu’, ‘O’Henry’, ‘Summer Pearl’ and

CxA F1, Table 1) and we also detected three previously unknown

heterozygous genotypes (‘Baldagenais’, ‘City 32–82’ and ‘Yoshi-

hime’) carrying the nectarine allele originated from the LTR

insertion. The complete association between the indelG marker

and the trait confirms the presence of the Ty1-copia retro-

transposon within exon 3 of the PpeMYB25 gene in all the

nectarines analyzed.

Figure 6. Functional Marker indelG. A marker assay was developed based on sequence information on the PpeMYB25 gene and the Ty1-copia
insertion. Three primers were designed to discriminate peach and nectarine genotypes (A, B). A panel of nectarines including the putative donors of
the trait, show a unique fragment of about 200 bp (C). A set of peaches, of diverse pedigree and origins (Table 1) (D), shows homozygous or
heterozygous patterns.
doi:10.1371/journal.pone.0090574.g006
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Modern western nectarines trace back to three founders

discovered at the beginning of the last century (‘Quetta’ in

Pakistan, and ‘Lippiatt’ and ‘Goldmine’ in New Zealand). The

founders and their modern descendants show the presence of the

retrotransposon insertion. The insertion is also present in Southern

Italian traditional landraces (‘Madonna di Giugno’ and ‘Madonna

di Agosto’) cultivated since the 16th century [12]. In addition to

these genotypes, we confirmed the presence of the retrotransposon

in several non-related accessions including old European landraces

(‘Lord Napier’ and ‘Galopin’) [15], modern Asian cultivars

(Chinese and Japanese) and different nectarine cultivars of

unknown pedigree (from Italy, East Europe, USA, Mexico and

South America). The modern Asian nectarines analyzed in this

study (‘Chiyodared’, ‘Shizukured’ and ‘Jin Xia’) have two old

European landraces, ‘Lord Napier’ and ‘Precoce di Croncels’, as

donors of the nectarine trait. No traditional nectarine landraces

have been reported in China [14] and all modern Chinese

nectarines inherited the trait from western germplasm [17].

Together these results indicate that all known nectarine

germplasm derives from a unique mutational event in PpeMYB25

selected and spread by humans during peach dissemination and

breeding.

Conclusions

Nectarines play an important role in the peach industry. In the

present study, using a candidate gene approach coupled with fine

mapping and NGS-based variant discovery, we provide strong

evidence that the transcription factor gene PpeMYB25 acts as a

positive regulator of trichome formation in peach fruit. The

insertion of a Ty1-copia retrotransposon within the third exon of

PpeMYB25 was identified as the putative cause of a loss-of-function

mutation underlying the nectarine phenotype, further supporting

the importance of transposition in plant genome evolution and

phenotypic variability in domesticated crops. Finally, the devel-

opment of a functional marker, indelG, provides an efficient

diagnostic tool for the early selection of the peach/nectarine trait

in marker assisted breeding (MAB).
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