
Additional Perspectives articles for Influenza: The Cutting Edge book collection are available
at http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge.

Selective Genome Packaging Mechanisms
of Influenza AViruses

Takeshi Noda

Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University,
Kyoto 606-8507, Japan

Correspondence: t-noda@infront.kyoto-u.ac.jp

The genome of influenza Avirus (IAV) comprises eight segmented, single-stranded, negative-
sense RNAs. The genome packaging mechanism of IAV was a long-standing enigma, but it is
now widely accepted that IAV packages one copy of each of the eight viral RNA (vRNA)
segments in a selectivemanner. Accumulating evidence over the last decade suggests that the
eight unique vRNAs are selected via intersegment interactions mediated by their segment-
specific genome packaging signals; however, the characteristics of these RNA-based inter-
actions largely remain unknown. This review summarizes our current knowledge of IAV
selective genome packaging and the possible mechanisms underlying the selection of the
eight unique vRNAs.

Influenza A virus (IAV) is a member of the
Orthomyxoviridae, which is a family of envel-

oped viruses with a segmented, single-stranded,
negative-sense RNA genome. Each of the eight
viral RNA (vRNA) segments of IAV, which en-
code distinct viral protein(s) essential for effi-
cient virus replication, associates with multiple
viral nucleoproteins (NPs) and a heterotrimeric
RNA-dependent RNA polymerase composed of
PB2, PB1, and PA to form a ribonucleoprotein
(vRNP) complex. The eight vRNPs are indepen-
dently responsible for the transcription and rep-
lication of the vRNA. The segmented nature of
the IAV genome is advantageous in that it allows
IAV to evolve rapidly through the exchange of
the vRNA segments, a process termed reassort-
ment, in which two or more different IAV
strains co-infect the same cell to generate genet-
ically different viruses from the parental viruses.

IAV is classified into 18 hemagglutinin (HA)
subtypes and 11 neuraminidase (NA) subtypes
on the basis of their antigenic properties. All
subtypes except for the H17N10 and H18N11
subtypes circulate in their natural reservoir of
wild aquatic birds (Tong et al. 2012, 2013). Since
the twentieth century, we have experienced four
pandemics: H1N1 Spanish influenza in 1918,
H2N2 Asian influenza in 1957, H3N2 Hong
Kong influenza in 1968, and H1N1 pandemic
influenza in 2009. Although the origin of the
H1N1 Spanish IAV remains controversial (Tau-
benberger et al. 2005; Worobey et al. 2014), the
H2N2Asian IAVwas generated by the introduc-
tion of the HA, NA, and PB1 vRNA segments of
an H2N2 avian virus into the circulating human
H1N1 virus through reassortment (Kawaoka
et al. 1989; Kilbourne 2006). Reassortment be-
tween the human H2N2 virus and avian H3
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viruses led to the generation of the H3N2 Hong
Kong IAV, in which HA and PB1 vRNA seg-
ments were introduced from the avian H3 virus-
es into the human H2N2 virus background.
Multiple reassortment events among avian,
swine, and human IAVs in swine resulted in
the generation of the 2009 H1N1 pandemic vi-
rus (Garten et al. 2009; Neumann et al. 2009;
Smith et al. 2009). Thus, the introduction and
exchange of vRNA segments between different
IAVs through reassortment plays an important
role in the emergence of pandemic strains,
which acquire an HAwith novel antigenic prop-
erties and the ability to transmit efficiently
among humans, allowing the rapid evolution
of IAVs.

Despite these evolutional advantages, the re-
assortment event must surmount substantial
difficulties in order to produce infectious IAVs
with adequate viral fitness (Villa and Lässig
2017). One such difficulty is overcoming RNA-
based incompatibility among vRNA segments.
Reassortment is tightly associatedwith the selec-
tive genome packaging process in which eight
distinct vRNAs are selected from a large pool
of viral and host genetic material in the virus-
infected cell and are packaged into each virion to
be replicated (Hutchinson et al. 2010; Noda and
Kawaoka 2010; Gerber et al. 2014). During this
process, the eight vRNA segments are thought to
interact with each other. Correct intersegment
interactions would ensure the integrity of the
genome packaging process and produce novel
viruses with pandemic potential within a co-
infected cell. Although a large body of recent
research clearly supports the idea that IAV
packages eight distinct vRNAs through their in-
teractions, the underlying mechanism remains
largely unknown. In this review, we summarize
our current understanding of selective genome
packaging and the possible mechanism by
which the eight unique vRNAs are selected.

STRUCTURE OF THE IAV vRNP

The eight single-stranded negative-sense vRNA
segments of IAV (PB2, PB1, PA, HA, NP, NA,
M, and NS) vary in length from 2341 to 890
bases, but share the same structure: a central

coding region in the antisense orientation
flanked by segment-specific noncoding regions
(NCRs) (19–58 nucleotides) and the terminal
promotor regions U12 and U13 (12 and 13 nu-
cleotides from the 30 and 50 ends, respectively),
which are highly conserved among all eight
vRNA segments (Fig. 1A). The sequences of
the terminal regions containing U12 and U13
are partially complementary to each other (Rob-
ertson 1979) and form a corkscrew structure
through base-pairing (Fodor et al. 1994; Flick
et al. 1996; Tomescu et al. 2014), where the het-
erotrimeric RNA-dependent RNA polymerase
complex is associated (Klumpp et al. 1997).
The rest of the single-stranded vRNA is bound
by multiple NPs through its phosphate-sugar
backbone in a sequence-independent manner
(Baudin et al. 1994). In this way, each vRNA
forms a twisted rod-like vRNP complex (Fig.
1B), which is about 12 nm in diameter but varies
in length from about 30 to 120 nm, which cor-
relates with the nucleotide length of each vRNA
(Pons et al. 1969; Compans et al. 1972; Murti
et al. 1988; Sugita et al. 2013). Recent cryo-elec-
tron microscopy (cryo-EM) has yielded a more
detailed structure of the twisted rod-like vRNP,
in which a single strand of a multiple NP-vRNA
complex is folded back to form a loop at the
opposite end to the polymerase-bound end
and coils back on itself to form an antiparal-
lel double-stranded helix (Arranz et al. 2012;
Moeller et al. 2012).

One of the most important findings regard-
ing the vRNP structure in recent years came
from the RNA sequencing technique CLIP
(UV-cross-linking and immunoprecipitation).
Previously, it had been believed that NPs uni-
formly bind to the entire length of the single-
stranded vRNA, where secondary and tertiary
structures of the vRNA are completely melted
by the binding of the NPs (Baudin et al. 1994),
although there is a report that a bacteriophage
PP7 RNA tag inserted into the NAvRNAmain-
tains the hairpin structure in the context of the
vRNP (York et al. 2013). Recently, Lakdawala
and her colleagues performed a HITS-CLIP
(high-throughput sequencing of RNA isolated
by CLIP) analysis to determine the NP-binding
sites of vRNAs within virion-derived vRNPs

T. Noda

2 Cite this article as Cold Spring Harb Perspect Med 2021;11:a038497

w
w

w
.p

er
sp

ec
ti

ve
si

nm
ed

ic
in

e.
or

g

Laboratory Press 
 at ARCURI BCS on March 31, 2023 - Published by Cold Spring Harborhttp://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


(Lee et al. 2017; Le Sage et al. 2018). They found
that NPs associate with vRNAs in a nonuniform
and nonrandom manner, in which NPs prefer-
entially bind to guanine-rich and uracil-poor
regions, and that there are NP-free regions
on vRNAs. Similarly, Boon and colleagues
performed a PAR-CLIP (photoactivatable ribo-
nucleoside-enhanced CLIP) analysis to assess
NP–vRNA interactions in virus-infected cells.
They demonstrated that NPs bind to about 12
nucleotides of vRNAwith a mean distance of 25
nucleotides between adjacent NP binding sites
without apparent sequence specificity (Williams
et al. 2018). Interestingly, ∼10% of the viral ge-
nome comprises low-NP binding regions and

the vRNAs of low-NP binding regions are pre-
dicted by use of in silico analysis to form sec-
ondary and/or tertiary structures. Collectively,
these studies led to a revised vRNP model, in
which certain vRNA regions are free of NP and
form secondary and/or tertiary structures that
protrude from the twisted rod-like body of the
vRNP (Fig. 1C). According to the vRNP struc-
ture revealed by cryo-EM (Arranz et al. 2012;
Moeller et al. 2012), vRNA nucleotides located
in the spaces between two neighboring NPmol-
ecules are “naked” (i.e., not associated with NP)
and potentially form secondary and/or tertiary
structures on the vRNP. In agreement with this
revised vRNP model, several bioinformatics

NCR NCR
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5′3′

Segment-specific NCR Segment-specific NCR

Protein-coding region
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Promoter regions and NCRs

Packaging signal regions

Central coding region

Single-stranded vRNA
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Figure 1. Structure of influenza Avirus (IAV) viral RNA (vRNA) and ribonucleoprotein (vRNP). (A) A protein-
coding region in the antisense orientation is flanked by segment-specific noncoding regions (NCRs) and terminal
U12 andU13 promoter regions. The bipartite conventional packaging signal, bundling signal, and incorporation
signal regions are indicated by arrows. (B) Conventional model of vRNP. Predicted promoter regions, NCRs,
packaging signal regions, and central coding regions in the rod-like vRNPare shown. (C) Revisedmodel of vRNP.
Secondary and/or tertiary structures composed of nucleoprotein (NP)-free vRNAs protrude from the vRNP at
multiple positions.
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studies have suggested the importance of pre-
dicted stem-loop and pseudoknot structures in
the HA and NP vRNAs for viral fitness (Gul-
tyaev et al. 2014, 2016). In addition, Kobayashi
et al. predicted several stem-loop structures in
the M vRNA that are highly conserved in IAVs
and they experimentally demonstrated that
disruption of one of the stem-loop structures
consisting of nucleotide positions 219–240
(throughout, nucleotide numbering refers to
positive-sense cRNA) attenuates virus replica-
tion (Kobayashi et al. 2016). Taken together, it
is now believed that vRNPs displaymultiple pro-
truding secondary and/or tertiary structures,
some of which likely play important roles in
virus replication and selective genome packag-
ing as described later.

PACKAGING MODELS OF THE SEGMENTED
IAV GENOME

Genome packaging of IAV occurs during the
late stage of the infection cycle, when eight-seg-
mented vRNAs are incorporated into progeny
virions at the surface of virus-infected cells
(Hirst 1962; McGeoch et al. 1976). Historically,
two conflicting models had been proposed to
explain the mechanism: the random packaging
model and the selective packaging model
(Hutchinson et al. 2010; Noda and Kawaoka
2010). In the random packaging model, any
number and combination of vRNAs are pack-
aged randomly into progeny virions through a
genome packaging signal common to all eight
vRNAs, which theoretically differentiates be-
tween vRNAs and cellular RNAs but not among
the eight vRNAs, resulting in the generation of
considerable numbers of noninfectious and
semi-infectious particles (Enami et al. 1991;
Bancroft and Parslow 2002). In contrast, in the
selective packaging model, one copy of each of
the eight vRNAs is selectively packaged into
each progeny virion through distinct packaging
signals specific to each vRNA (Duhaut and
McCauley 1996; Odagiri and Tashiro 1997). Al-
though a substantial proportion of released vi-
rus particles fails to express one or more viral
gene product(s) in virus-infected cells (Martin
and Heleniust 1991; Brooke et al. 2013), which

seemingly supports the random packaging
model, these observations do not necessarily re-
fute the selective packaging model (Diefen-
bacher et al. 2018), because these phenomena
can be explained by failures of uncoating or nu-
clear import of vRNPs, or lethal mutations or
deletions in the vRNAs for transcription, repli-
cation, and/or viral protein synthesis, or by in-
complete genome packaging of less than eight
vRNA segments (Nakatsu et al. 2018). Rather,
almost all of the evidence obtained over the past
15 years strongly supports the selective packag-
ing model and indicates that the eight distinct
vRNAs are selectively packaged into most, but
not all, progeny virions.

SEGMENT-SPECIFIC GENOME PACKAGING
SIGNALS OF THE IAV GENOME

Although several early studies suggested that the
genome packaging process was not purely ran-
dom (Laver and Downie 1976; Nakajima and
Sugiura 1977; Lubeck et al. 1979; Duhaut and
McCauley 1996; Odagiri and Tashiro 1997; Du-
haut and Dimmock 2000, 2002), the first direct
evidence in support of selective genome packag-
ingwas established byour group. Using a reverse
genetics approach, Fujii et al. systematically
searched for the genome packaging signal of
the NA vRNA and demonstrated that, in addi-
tion to its NCRs (Luytjes et al. 1989; Bancroft
and Parslow 2002), about 180 and 160 nucleo-
tides from the 30 and 50 ends of the coding re-
gion, respectively, are required for efficient and
stable packaging of the NAvRNA into virus par-
ticles, indicating that the bipartite regions act as
the packaging signal of NA vRNA (Fujii et al.
2003). Because the regions contain protein-cod-
ing sequences unique to NA vRNA, this finding
indicates that NA vRNA is packaged into prog-
eny virions in a selective manner. Subsequently,
the genome packaging signals unique to each of
the other seven vRNA segments have been iden-
tified (Watanabe et al. 2003; Dos Santos Afonso
et al. 2005; Fujii et al. 2005; Liang et al. 2005; de
Wit et al. 2006; Muramoto et al. 2006; Ozawa
et al. 2007, 2009); all of the segment-specific
packaging signals are bipartite, being located in
both NCRs and adjacent terminal coding re-
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gions (within 100–300 nucleotides from each
end of the coding region, depending on the
vRNA) (Fig. 1A). Collectively, the existence of
the segment-specific packaging signal sequences
in all eight vRNAs indicates that eight unique
vRNAs are selectively packaged into progeny vi-
rions. Because there seem to be no boundaries in
the packaging signals that separate whether they
are functional or nonfunctional, the packaging
signals appear to comprise multiple short
functional regions, and therefore the minimal
packaging signal sequences have not been
determined. In line with this assumption, the
introduction of synonymous point mutations
into the packaging signal region sometimes can
causea significant reduction in thegenomepack-
aging efficiency of mutated vRNA, although no
significant impact on the genome packaging ef-
ficiencymay be observedwith other synonymous
point mutations (Fujii et al. 2005; Gog et al. 2007;
Marsh et al. 2007, 2008; Hutchinson et al. 2008,
2009; Liang et al. 2008). Therefore, it is thought
that each segment-specific packaging signal is a
cluster that comprises multiple, discontinuous,
short-nucleotide elements (Gog et al. 2007).
This idea is compatible with the revised vRNP
model, in which multiple vRNA regions are free
of NP and form secondary and/or tertiary struc-
tures on the surface of the vRNP; such structured
short vRNA regions would cooperatively and re-
dundantly act as packaging signals.

ORGANIZATIONOF vRNPsWITHIN THE IAV
VIRION

In addition to the reverse genetics studies de-
scribed above, multicolor single-molecule fluo-
rescence in situ hybridization (FISH) analysis
has provided additional evidence in support of
selective packaging. Chou et al. (2012) examined
colocalization of various combinations of two
different vRNAswithin individual virusparticles
and quantitatively showed, by using a photo-
bleaching technique, that most virus particles
likely contain one copy of each of the eight dif-
ferent vRNAs.However, it had remained unclear
howmany vRNPs are exactly packaged into each
virion and how they are arrangedwithin avirion.
By using thin-section electron microscopy, we

revealed that each budding virion packages eight
vRNPs arranged in a specific “1 + 7” pattern, in
which a central vRNP is surrounded by seven
vRNPs (Fig. 2A; Noda et al. 2006). The specific
arrangement of the eight vRNPs is commonly
observed invirionsof various IAVstrains (Harris
et al. 2006;Noda et al. 2006) and also in influenza
B viruses (Nakatsu et al. 2016). These observa-
tions provided strong evidence that eight vRNPs
are packaged into each virion in a selective man-
ner. Interestingly, we also revealed that a mutant
virus that possessed only seven vRNAs and
lacked theHAvRNA also packaged eight vRNPs
arranged ina specific “1 + 7”arrangement (Noda
et al. 2018). This is consistent with the finding
that influenza C and D viruses, which naturally
possess a seven-segmented RNA genome, pack-
age eight vRNPs arranged in the same configu-
ration (Nakatsu et al. 2018) and suggests that
assembly of eight vRNPs into the specific ar-
rangement is an important step for the selective
genome packaging process. When budding viri-
ons are longitudinally sectioned, a set of eight
vRNPs arranged in the specific pattern is always
found at the top of each budding virion, even in
huge filamentous virions of ∼1 μm in length
(Noda et al. 2006), suggesting that there are as-
yet-unidentified viral and/or host factors at the
budding tip that are responsible for the incorpo-
rationof the set of eight vRNPs (Fig. 2B). Regard-
ing the directionality of the eight vRNPs within
the virions, our immunoelectron microscopic
analysis using antipolymerase antibodies re-
vealed that some of the eight vRNPs direct their
polymerase end to the budding tip, but others
direct their loop ends to the budding tip (Sugita
et al. 2013), indicating antiparallel alignment of
some of the vRNPs (Fig. 2B). Because both of the
bipartite packaging signal sequences are located
close to thepolymerase endof the respective rod-
like vRNPs (Fig. 1A), this finding suggests that
the respective packaging signals, in the context of
the vRNPs, are not always close to each other
within a virion (Fig. 2B). It remains unclear
which vRNAs direct their polymerase ends to
the budding tip and whether the directionality
of the eight vRNAs is always the same.

Three-dimensional (3D) analysis of the
eight vRNPs within budding virions by use of
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electron tomography showed that the eight
vRNPs are different in length and that their po-
sitions within the specific “1 + 7” arrangement
are not purely random, although their exact, as-
signed positions have not yet been determined
because of technical difficulties (Fournier et al.
2012a, 2012b; Noda et al. 2012). Importantly, in
our 3D analysis, we foundmultiple nucleic acid–
like string structures connecting neighboring

vRNPs; such interactions were observed across
the entire length of the rod-like vRNPs (Fig. 3A;
Noda et al. 2012). Although the identity of the
nucleic acid–like string structures was unclear at
that time, we now believe that they may be NP-
free, secondary, and/or tertiary structures of
vRNA protruding from the surface of the rod-
like vRNPs. These structural findings suggest
that the eight vRNPs are assembled into the spe-

B

A

As-yet-unidentified factor(s)
for vRNP incorporation

Some vRNPs align in
antiparallel orientation

Figure 2. Eight vRNPs within a virion. (A) (Left) Transverse section of a budding virion (left side ofA is reprinted
from Noda et al. [2006] with permission from the authors); (right) three-dimensional model of eight vRNPs
within a virion reconstructed by electron tomography (right side ofA is reprinted fromNoda et al. [2012] under a
Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License). Each of the eight vRNPs is
colored differently. (B) A single bundle of eight vRNPs arranged in a “1 + 7” pattern, in which some vRNPs align
in antiparallel orientation, associates with the tip of the budding virion, even in huge filamentous virions. Note
that only three vRNPs are depicted here for clarity.
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cific “1 + 7” pattern through multiple interac-
tions via NP-free vRNAs. Because the intercon-
nections through the string-like structures are
observed at multiple positions spanning the en-
tire length, it is feasible that the interactions do
not only occur between the packaging signals.
Rather, given that the eight vRNPs align in an-
tiparallel orientation within budding virions
(Sugita et al. 2013), it has been suggested that
certain packaging signals may interact not only

with the packaging signals of other vRNAs but
also with secondary or tertiary RNA structures
located in the protein-coding regions (Fig. 3B).

FUNCTIONAL vRNA–vRNA INTERACTIONS
DURING GENOME PACKAGING

An attractive model to explain the mechanisms
underlying the selective genome packaging of
eight unique vRNAs is that specific interactions

Tomogram

Interactions between
the packaging signals
(red)

Interactions of the packaging signals
with the central coding regions (blue)

Tomogram
with

3D model

B

A

Figure 3. Interactions among vRNPs. (A) Nucleic acid–like string structures connect vRNPs atmultiple positions.
Note that the string structures are not restricted to the top of the rod-like vRNPs. Arrowheads indicate nucleic
acid–like string structures. (B) Intersegment interactions. Interactions between the genome packaging signals
(red) as well as interactions of the packaging signals with nonpackaging signals (blue) are indicated. (A, reprinted
from Noda et al. [2012] under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported
License.)
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take place among the eight distinct vRNAs
through their genome packaging signals. The
initial evidence suggesting vRNA–vRNA inter-
actions came from our group. Muramoto et al.
(2006) searched for the genome packaging
signals of the PB2, PB1, and PA vRNAs and
showed that those packaging signals are neces-
sary not only for the packaging of the respective
residential vRNAs, but that they also affect the
packaging efficiencies of the other vRNAs. Sub-
sequently, similar findings were reported for the
other vRNAs, in which mutations in the pack-
aging signal of a certain vRNA were shown to
affect the packaging efficiency of one or more
other vRNAs (Gog et al. 2007; Marsh et al.
2007, 2008; Hutchinson et al. 2008, 2009). It
appears that the eight vRNAs are not indepen-
dently, but rather cooperatively, packaged into
virions and interact with each other during the
genome packaging process. Importantly, Mura-
moto et al. (2006) also demonstrated that the
trans-acting effect on the packaging efficiency
of the other vRNAs is most prominent with
PB2 vRNA, indicating that there is a hierarchy
among the eight vRNAs for the selective genome
packaging. Similarly, Gao et al. (2012) used a
different IAV strain to show that all eight vRNAs
are not equally important for the packaging of
the other vRNAs, and that in addition to the PB2
vRNA, the PA, NP, and M vRNAs play impor-
tant roles. Thus, selective genome packaging
likely involves intersegment associations among
the eight unique vRNAs in a hierarchal process,
in which certain vRNA(s) (e.g., the PB2 vRNA)
mayact as amaster segment for assemblingmul-
tiple vRNAs through their interactions.

Our group has also identified important re-
gions in the packaging signal for intersegment
association. Goto et al. (2013) showed that the
NCRs of a vRNA, comprising the promoter re-
gions and segment-specific NCRs, are sufficient
for its efficient packaging into virus particles and
that the terminal protein-coding regions of the
packaging signal are essential for the packaging
of other vRNAs. The finding indicates that
the conventional packaging signal, which is
composed of the conserved promotor region,
segment-specific NCRs, and adjacent terminal
protein-coding regions, can be divided into two

regions based on their different roles: the NCRs
(i.e., the promoter regions and the segment-spe-
cific NCRs) of vRNAs serve as the “incorpora-
tion signal” that is responsible for the packaging
of the residential vRNA, whereas the terminal
coding regions serve as the “bundling signal”
that ensures the packaging of a complete set of
eight vRNAs (Fig. 1A). In this scenario, the bun-
dling signal regions would be important for in-
tersegment associations during selective genome
packaging. This is partially consistentwith a bio-
informatics-based study by Gog et al. (2007),
which showed that codons in the terminal pro-
tein-coding regions of the vRNAs are more con-
served than those in the central protein-coding
regions. Intriguingly, our group also showed that
the bundling signals could have another role in
selective genome packaging. Inagaki et al. (2012)
demonstrated that two artificial vRNAs that had
identical bundling signals but encoded different
reporter proteins competed with each other for
packaging into virions, leading to the packaging
of a single copyof the vRNA. Such self-repulsion
of identical vRNAs through the bundling signals
would strengthen the selectivity of a single copy
of each of the eight unique vRNAs (Venev and
Zeldovich 2013).

Although intersegment associations are pre-
dicted to be mediated by the genome packaging
signals through base-pairing, NP proteins are
also involved in selective genome packaging.
Moreira et al. (2016) introduced mutations
into certain NP residues and showed that such
mutations altered the packaging efficiencies of
specific vRNA subsets. In addition, a defect in
packaging efficiency could be partially restored
by mutations in specific residues of NP (Bolte
et al. 2019). These results strongly suggest
that intersegment associations are regulated
not only by vRNA–vRNA interactions but also
by vRNA–NP interactions. The manner of
vRNA–NP interaction would affect the forma-
tion of stable secondary and/or tertiary struc-
tures of vRNA protruding from the vRNP, and
such local structural changes caused by muta-
tions in NP as well as in the vRNAwould affect
the vRNA–vRNA interactions and subsequent
packaging of specific vRNAs (Takizawa et al.
2019).
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EVIDENCE FOR DIRECT vRNA–vRNA
ASSOCIATIONS

Early evidence for direct intersegment associa-
tions was obtained by using in vitro electropho-
retic mobility shift assays and in vitro–synthe-
sized naked vRNAs. In both human H3N2 and
avian H5N2 viruses, all eight vRNAs interact
with one or more vRNAs and form single net-
works of intersegment associations (Fournier
et al. 2012a, 2012b; Gavazzi et al. 2013a,
2013b). Similar findings have been reported for
human H1N1 virus, in which each vRNA inter-
acts with at least one vRNA through terminal
coding regions in many cases (Miyamoto and
Noda 2020). Curiously, the networks of inter-
segment interactions are different among these
three strains, and only a few combinations are
conserved. Because vRNA–vRNA associations
are partially regulated by vRNA–NP interac-
tions (Moreira et al. 2016), such in vitro interac-
tion networks do not necessarily reflect actual
networks in the context of vRNPs and could
include false-positive associations while missing
actual associations because of the in vitro exper-
imental conditions and the absence of NPs and
host proteins. However, despite the limited effi-
cacy, such an in vitro study identified a direct
interaction between the PB1 and NS vRNAs of
an H5N2 virus, which was mediated by stem-
loop structures composed of nucleotides 257–
277 of the NS vRNA and nucleotides 289–309
of the PB1 vRNA; the study also showed the
importance of this interaction for efficient virus
replication (Gavazzi et al. 2013b). In addition, a
direct interaction between the PB1 and NA
vRNAs of a human H3N2 virus has also been
shown to play an important role in selective ge-
nome packaging, in which preferential co-pack-
aging of the PB1 vRNAwith the NA vRNA into
progeny virions was shown to bemediated by an
RNA-based direct interaction through nucleo-
tides 1776–2070 of the PB1 vRNA (Cobbin et al.
2014; Gilbertson et al. 2016). To date, these two
reports are the only experimental demonstra-
tions of direct intersegment interactions being
important for co-packaging. However, these re-
gions are located slightly outside the bundling
signals (more than 250 nucleotides from the ter-

mini of the coding regions). Direct interactions
through the bundling signals (or conventional
packaging signal) have not yet been experimen-
tally proven to be essential for co-packaging.

Recently, Dadonaite et al. (2019) employed a
SPLASH (sequencing of psoralen cross-linked,
ligated, and selected hybrids) approach to exam-
ine direct vRNA–vRNA interactions in the con-
text of vRNPs in virio. They found that most
vRNAs establish multiple and redundant
RNA-mediated intersegment interactions at
both the terminal and central protein-coding
regions. The interaction of the PB1 vRNA with
the NA vRNA through nucleotides 1776–2070
(Gilbertson et al. 2016) was detected by using
SPLASH, and the association was experimental-
ly shown to be important for efficient co-pack-
aging, confirming the importance of direct
vRNA–vRNA interactions for selective genome
packaging. However, many of the intersegment
interactions detected by use of SPLASH and
electrophoretic mobility shift assays have not
yet been evaluated in the context of virus repli-
cation, and the contributions of the respective
vRNA–vRNA interactions to co-packaging re-
main uncertain. In addition, because of the lack
of ultrastructural information, it is not clear how
the vRNAs are interconnected in the context of
the vRNPs to form complexes of multiple rod-
like vRNPs.

CONCLUDING REMARKS

Accumulating evidence indicates that interseg-
ment interactions among the eight unique
vRNAs of IAVs are involved in the selective ge-
nome packaging process and that these interac-
tions are likely mediated by secondary and/or
tertiary structures of NP-free vRNA regions pro-
truding from the vRNPs. In addition to packag-
ing signals (i.e., the incorporation signal and
the bundling signal), other regions (i.e., central
protein-coding regions) are likely involved in
the intersegment interactions. Although many
reverse genetics studies have shown the impor-
tance of the bundling signals for the co-packag-
ing of multiple vRNAs, no direct interaction
sites between two vRNAs have yet been identi-
fied in the bundling signals. Accordingly, there
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is a long way to go before the overall picture of
the interactive network is revealed. Further stud-
ies are needed to understand the precise mech-
anisms by which the eight unique vRNPs are
specifically interconnected and form the specific
“1 + 7” arrangement during selective genome
packaging.
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