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2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ∼50

million people worldwide. The severity of this pandemic resulted from a complex interplay

between viral, host, and societal factors. Here, we review the viral, genetic and immune

factors that contributed to the severity of the 1918 pandemic and discuss the implications

for modern pandemic preparedness. We address unresolved questions of why the 1918

influenza H1N1 virus was more virulent than other influenza pandemics and why some

people survived the 1918 pandemic and others succumbed to the infection.While current

studies suggest that viral factors such as haemagglutinin and polymerase gene segments

most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in

victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young

adults was most likely associated with the host’s immune status. Lack of pre-existing

virus-specific and/or cross-reactive antibodies and cellular immunity in children and

young adults likely contributed to the high attack rate and rapid spread of the 1918

H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population

points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to

the role of humoral and cellular immunity, there is a growing body of evidence to suggest

that individual genetic differences, especially involving single-nucleotide polymorphisms

(SNPs), contribute to differences in the severity of influenza virus infections. Co-infections

with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition

or obesity are also known to affect the severity of influenza disease, and likely influenced

1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new

challenges, such as changing population demographics, antibiotic resistance and climate

change, which we will face in the context of any future influenza virus pandemic. In the

last decade there has been a dramatic increase in the number of severe influenza virus

strains entering the human population from animal reservoirs (including highly pathogenic

H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the

lessons that we have learnt from them has therefore never been more pertinent.
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INTRODUCTION

In 1918 a mysterious and deadly disease spread around the
world in three consecutive waves (spring 1918, autumn 1918,
and winter 1918–19). This pandemic infected over one third
of the world’s population and killed an estimated 50 million
people (Johnson and Mueller, 2002; Murray et al., 2006), with
unusually severe clinical manifestations in previously healthy
young adults (Collins, 1931; Hoffman, 2011). In 1918, the
etiological agent that caused this disease was unknown (Hildreth,
1991). However, we now know that these events represented
the largest influenza virus pandemic on record: the catastrophic
1918 influenza pandemic. Since 1918, the world has experienced
three additional influenza pandemics: the 1957 “Asian” influenza
pandemic, the 1968 “Hong Kong” influenza pandemic and the
2009 so-called “swine flu” pandemic. These pandemics, although
mild in comparison to that of 1918, highlight the constant threat
that influenza virus poses to human health. Given that almost
100 years have passed since 1918, it behooves us to ask: are we
truly better prepared for the next influenza virus pandemic or are
there still lessons to be learned? This review gives an overview of
lessons learned from the 1918 influenza pandemic, highlighting
new insights into our understanding of viral pathogenesis and
their impact on our preparedness for the next outbreak of
influenza.

The Origins 1918 Influenza Virus
The 1918 influenza pandemic is often colloquially referred to as
the “Spanish” influenza pandemic. However, it is unlikely that the
1918 influenza virus originated in Spain. Instead, influenza cases
were widely reported in Spain due to the fact that, as a neutral
country in World War I, Spain did not practice censorship in the
press. In contrast, other countries involved in the war, such as
Germany, Britain and France, most likely limited the news of this
deadly pandemic, so as not to lower the moral of the troops and
raise questions about their military readiness (Johnson, 2006).
Today, the general consensus is that the 1918 influenza virus
originated in theMidwest of the United States of America (Barry,
2004). Medical records reported the first cases of “influenza of
a severe type” around March 1918 in military camps in Kansas
(Barry, 2004). From here, the virus is thought to have spread
throughout the United Stated and then transported by American
troop ships to the battlefields of France, where it gradually spread
throughout Europe and the rest of the world (Patterson and Pyle,
1991). The spread of the virus beyond port cities was further
facilitated by local transport networks, predominately railways
(Patterson and Pyle, 1991; Johnson, 2006). However, it is possible
that the predecessor of this killer virus first entered human
population prior to 1918 and became more virulent and/or more
transmissible over time. Unusual influenza activity was already
reported in the United States and several European countries
before the first (spring) wave of the 1918 influenza outbreak
(Frost, 1919; Johnson, 2006; Hoffman, 2011). Military camps in
France already reported influenza infections accompanied with
high mortality in the winter of 1916–17 (Hammond et al., 1917),
which was followed 2 months later by a similar outbreak near
London at Aldershot, one of Britain’s biggest military camps

(Oxford et al., 1999, 2002, 2005). Interestingly, no records of
civilian influenza cases around that time exist, possibly because
influenza cases were not recorded at the time or because they
got lost with time. Alternatively, it is tempting to speculate
that military camps, with their high population density, close
proximity to livestock, high mobility, and large number of people
with pre-existing lung conditions (due to exposure to toxic gasses
in the trenches) served as the perfect breeding ground for the
emergence of this catastrophic pandemic (Oxford et al., 2005).

Just as the geographic origins of the 1918 virus remain
unclear, the original animal reservoir of the virus also remains
controversial. As a segmented virus, influenza virus is capable
of undergoing the process of reassortment. Reassortment occurs
when two influenza virus strains co-infect the same cell,
facilitating the emergence of a new “reassortant” virus which
contains a novel constellation of genes. Reassortment between
avian and human influenza viruses gave rise to the 1957 and
1968 influenza pandemics (Figure 1; Scholtissek et al., 1978;
Kawaoka et al., 1989; Schäfer et al., 1993). In contrast, the
2009 influenza pandemic resulted from a reassortment event
between avian, human and swine influenza viruses (Figure 1;
Garten et al., 2009; Smith et al., 2009b). Unlike these more recent
influenza pandemics, the 1918 virus is thought to have been
directly introduced in the human population (i.e., in the absence
of reassortment) from a single unidentified host (Taubenberger
et al., 2005). This notion is supported by the fact that the 8
individual gene segments of the 1918 virus appear to have co-
evolved in the same host. However, the exact identity of this
host remains unclear, as the nucleotide sequence of the virus
is genetically distinct to all other known avian and mammalian
influenza viruses (Reid et al., 2004a,b; Taubenberger et al., 2005).
In contrast, others argue that the 1918 influenza virus could
have indeed originated from a reassortment event between avian
and mammalian, possibly swine and/or human, influenza viruses
in the years prior to the 1918 pandemic (Smith et al., 2009a;
Worobey et al., 2014). Unfortunately, in the absence of influenza
virus sequence data in the years preceding the 1918 pandemic,
this question may never be definitively answered.

A Broad Spectrum of Clinical Disease
During the 1918 influenza pandemic, a broad spectrum of clinical
illness was observed (Brundage and Shanks, 2008). In the first
spring wave of the pandemic, disease was typically mild and
mortality rates were not unusually high (Johnson and Mueller,
2002). However, there was a surprisingly large number of young
adults who were affected by the outbreak (Ahmed et al., 2007).
The second or autumn wave of influenza emerged in late August
1918 and by the end of 1918 almost no country was spared
(Patterson and Pyle, 1991; Johnson, 2006). The striking feature of
the autumn wave was its unprecedented virulence (Taubenberger
et al., 2001). Patients typically suffered from a high fever, cyanosis,
and fluid accumulation in the lungs (Johnson, 2006). In ∼5%
of the fatal cases, death occurred rapidly after the onset of
clinical symptoms (i.e., within 3 days), although for the majority
of cases the time from clinical symptoms to death was ∼7–10
days (Brundage and Shanks, 2008). The third and final wave of
influenza emerged at the start of 1919 (Beveridge, 1977). This
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FIGURE 1 | Reassortment events of historic pandemic influenza A viruses, adapted from van de Sandt et al. (2015b). Historic serum analysis suggests that the

Russian influenza pandemic of 1889–1892 was of the H3Nx subtype and seasonally circulated up to the 1918 influenza pandemic. It remains undefined whether the

1918 H1N1 pandemic virus originated from multiple reassortment events between avian, swine and human influenza viruses, or if it was introduced by a direct

zoonotic transmission event of an avian, swine or other influenza virus. The H1N1 virus continued to circulate, causing seasonal epidemics, until 1957 when it

reassorted with an avian H2N2 virus. This virus circulated until 1968, when it reassorted again with the avian H3Nx virus, which has caused seasonal epidemics ever

since. In 1977 the H1N1 virus was reintroduced in the human population and co-circulated with H3N2 viruses until the influenza pandemic of 2009 when it was

replaced by another H1N1 virus which was the result of multiple reassortment events between avian, swine, and human influenza viruses.

wave was typically not as virulent as the fall wave and it did not
affect every country (Beveridge, 1977; Taubenberger andMorens,
2006). During the course of the pandemic, ∼500 million people
worldwide were infected, resulting in a case-fatality rate of>2.5%
(Johnson and Mueller, 2002; Johnson, 2006; Taubenberger and
Morens, 2006). While this fatality rate was certainly higher than
other influenza virus pandemics (Taubenberger and Morens,
2006), these data indicate that influenza virus infection was not
always fatal and that a large number of people survived the
infection. These data raise two intriguing questions: (i) Why
was the 1918 influenza pandemic more virulent than other
influenza pandemics of the twentieth century; and (ii) Why did
some people survive the pandemic and others succumb to the
infection?

VIRAL FACTORS ASSOCIATED WITH THE
SEVERITY OF THE 1918 INFLUENZA
PANDEMIC

It was not until 1933, more than a decade after the devastating
pandemic of 1918–19, when the influenza virus was first isolated
and demonstrated to be the causative agent of seasonal influenza
virus infections (Smith et al., 1933). However, even then, an in-
depth understanding of the viral factors that contributed to the
severity of the 1918 pandemic was thwarted by the absence of any

available biological material from the virus in question. Finally, in
the late 1990s the virus’ genetic material was successfully isolated
from formalin-fixed, paraffin-embedded lung tissue from 1918
influenza victims and from the lungs of a 1918 influenza victim
buried in Alaska’s permafrost (Taubenberger et al., 1997; Reid
et al., 1999). These efforts unraveled a partial viral sequence
from four viruses and the complete genomic sequence of one
virus (Reid et al., 1999). The fully reconstructed 1918 influenza
virus proved to be highly pathogenic in mice (Tumpey et al.,
2005), ferrets (Memoli et al., 2009), and macaques (Kobasa et al.,
2007). Interestingly, a recent study in ferrets demonstrated that
the 1918 influenza virus could spread to, and induce cytokine
responses in tissues outside the respiratory tract, which likely
contributed to the severity of the infection (de Wit et al.,
2018) and could explain the neurological complications observed
during the 1918 influenza pandemic (Alexander, 1919; Ravenholt
and Foege, 1982). Various reverse genetics experiments suggest
that the high pathogenicity exerted by the 1918 influenza virus
was most likely an interplay between different virulence factors,
in which proteins encoded by the viral haemagglutinin (HA) and
polymerase gene segments played a crucial role (Kobasa et al.,
2004; Tumpey et al., 2005; Kash et al., 2006; Conenello et al.,
2007; Pappas et al., 2008; Watanabe et al., 2009; Jagger et al.,
2010).

One of the best-known virulence determinants of influenza
virus is the presence of a multibasic cleavage site in the HA
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(Horimoto and Kawaoka, 1994; Subbarao et al., 1998). In avian
species, influenza viruses without a multibasic cleavage site
require the HA to be cleaved by host trypsin-like proteases for
infection. Trypsin-like proteases are commonly found in the
respiratory tract, thus limiting replication of these viruses to these
tissues. However, the presence of the multibasic cleavage site
means that these viruses can be cleaved by ubiquitously expressed
proteases. The presence of a multibasic cleavage site in modern
highly pathogenic avian influenza viruses can be associated with
increased virulence in mammalian hosts (Schrauwen et al., 2012;
Suguitan et al., 2012). However, none of the available 1918 HA
sequences contained a multibasic cleavage site (Kawaoka and
Webster, 1988; Taubenberger et al., 1997; Reid et al., 1999).
Instead, analysis of the HA sequence of the 1918 viruses revealed
that these viruses were adapted to bind to human epithelial
cells. The influenza A virus HA protein requires only one amino
acid change in order to switch binding to α-2,3-linked sialic
acids (typically found on avian cells) to binding to the α-2,6-
linked sialic acids (typically found on human epithelial cells in
the upper respiratory tract) (Glaser et al., 2005). Compared to
victims from the spring wave, an increased incidence of this
mutation in the HAwas observed in viruses isolated from victims
of the more severe autumn wave (Reid et al., 2003; Glaser et al.,
2005; Sheng et al., 2011). A second mutation, which strengthens
the virus binding to the human receptor, could only be found
in some of the 1918 HA sequences (Reid et al., 2003; Sheng
et al., 2011). These data suggest that at least two H1N1 influenza
viruses circulated in 1918, which differed in their binding affinity
for the human receptor. Both viruses displayed a similar cell
tropism in the respiratory tract of terminal stage human influenza
victims (Sheng et al., 2011). However, this secondary adaptation
is essential for effective transmission of the 1918 influenza virus
between ferrets (Tumpey et al., 2007). Mutations in other gene
segments, including PB2, PA, and PB1-F2 of the 1918 influenza
virus can also play a role in host adaptation (Dunham et al.,
2009; Jagger et al., 2010; Mehle et al., 2012; Mazel-Sanchez et al.,
2018). In the absence of additional influenza virus sequences
from 1918, it is hard to establish whether these or othermutations
contributed to the dramatic increase in case-fatality seen during
the autumn wave of the pandemic (Simonsen et al., 2018).

Gain- and loss-of-function experiments, such as those
described above, have provided important insights as to how
novel influenza viruses adapt to the human population (Subbarao
et al., 1993; Mehle and Doudna, 2009; Herfst et al., 2012; Imai
et al., 2012; Belser et al., 2013; Richard et al., 2013; Zhu et al.,
2013;Watanabe et al., 2014). Specifically, this information is used
to evaluate the pandemic potential of novel influenza viruses,
including avian H7N9 and H5N1 viruses, which are frequently
crossing the species barrier into the human population. The
Global Influenza Surveillance and Response System (GISRS), a
surveillance program that monitors which influenza virus strains
circulate at a given time (Hay and McCauley, 2018; World
Health Organization, 2018a), uses this information for a rapid
risk assessment when a potentially pandemic virus is reported
to circulate in animals (predominately birds or swine) or has
crossed the species barrier into the human population. It is
hoped that extensive surveillance activities, in combination with

rapid clinical diagnosis, will afford us a “head start” in the
case of a future influenza pandemic. However, the success of
such surveillance programs is contingent upon their geographical
breadth (Krammer et al., 2018). International cooperation and
support for influenza surveillance will become even more
pertinent in the future as climate changes continues to affect
animal reservoirs and avian migration patterns, both of which
could lead to the spread of influenza viruses to new locations
and across a wider range of avian species (Klaassen et al., 2012;
Shaman and Lipsitch, 2013; Audubon, 2018).

HOST FACTORS ASSOCIATED WITH
VARIATIONS IN INFLUENZA MORBIDITY
AND MORTALITY IN 1918

The 1918 influenza pandemic is notorious for its high morbidity
and mortality rates. However, it is important to recognize
that there were substantial variations in mortality, both within
and between countries (Mills, 1986; Johnson and Mueller,
2002; Johnson, 2006). General estimations assume an overall
death rate of 2.5–5 per 1,000 individuals worldwide. Although
this might be an accurate estimate for some countries [e.g.,
Australia (2.8/1000), Austria (3/1000), Demark (4.1/1000)], it
represents an overestimation for some countries [e.g., Argentina
(1.2/1000), Uruguay (1.4/1000), American Samoa (0/1000)],
and a gross underestimation of others [e.g., Nauru (160/1000),
Western Samoa (236/1000), Cameroon (445/1000)] (Johnson
and Mueller, 2002; Johnson, 2006). These data indicate that in
addition to viral factors, host factors had a major impact on the
outcome of infection.

Age
An individual’s age played a major role in determining one’s risk
of death during the 1918 influenza pandemic. Typically, when
the mortality rates of seasonal influenza are graphed against the
age of the population, a “U” shaped curve is produced, as the
highest mortality occurs in the very young and old (Johnson,
2006). In contrast, pandemic outbreaks (to various degrees)
are characterized by a shift in case-fatality toward younger
age groups (Simonsen et al., 1998; Olson et al., 2005; Ahmed
et al., 2007; Georgantopoulos et al., 2009). This was particularly
pronounced during 1918 pandemic when young adults (15–
30 years) displayed such usually high mortality rate that a
“W” shaped mortality curve was produced (Olson et al., 2005;
Ahmed et al., 2007; Shanks and Brundage, 2012). The underlying
mechanisms driving this mortality shift are not fully understood
but are likely to be associated with the host’s immune status.

Immunopathology
The high mortality rates observed in young adults during the
1918 pandemic has traditionally been attributed to the induction
of an aberrant, dysregulated pro-inflammatory response (often
referred to as a “cytokine storm”). This hypothesis is based
upon experimental studies in various animal models using
the reconstructed 1918 influenza virus. These experimental
studies showed that the 1918 influenza virus triggered a
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potent, dysregulated pro-inflammatory response, which likely
contributed to the severe lung lesions observed in victims of
the 1918 influenza pandemic (Kobasa et al., 2004, 2007; Kash
et al., 2006; Memoli et al., 2009; de Wit et al., 2018). Indeed, this
dysregulated immune response has also been observed in natural
and experimental infections with both the highly pathogenic
avian H5N1 virus and the 2009 pandemic influenza virus (de
Jong et al., 2006; To et al., 2010). However, it is important to
note that all experimental 1918 influenza virus studies to date
have been performed in immunologically-naïve animals. This
is not necessarily indicative of the human situation in 1918, as
influenza viruses caused epidemics and pandemics prior to 1918
(Dowdle, 1999; Johnson, 2006; Morens and Fauci, 2007; Morens
et al., 2009; Valleron et al., 2010). It can therefore be assumed
that a large proportion of the human population in 1918, with
the possible exception of isolated countries/communities, would
have encountered at least one previous influenza virus infection,
resulting in pre-existing humoral and cellular immunity. It
remains unclear whether such pre-existing immunity would
cross-react with the 1918 H1N1 virus, and if so, whether it would
enhance or dampen any dysregulated pro-inflammatory response
in young adults.

Humoral Immune Response
In contrast to young adults, older adults (aged 30–60 years)
fared significantly better during the 1918 pandemic (Luk et al.,
2001). This observation is likely to reflect the beneficial effects
of pre-existing humoral immunity. It is theorized that an H1
and/or N1 influenza virus circulated in the human population
prior to 1889, when it was replaced by a H3 influenza virus
that caused the so-called “Russian” influenza pandemic (1889–
1892) (Ahmed et al., 2007). Accordingly, individuals born before
1889 (i.e., those 30 years or older during the 1918 pandemic)
would have had cross-protective antibodies, while people born
after 1889 would have been immunological naïve to the 1918
H1N1 pandemic virus (Dowdle, 1999; Ahmed et al., 2007). The
lack of pre-existing 1918 influenza virus-specific or cross-reactive
antibodies in children and young adults likely contributed to the
high attack rate and rapid spread of the virus (Ahmed et al.,
2007). Only people infected during the first “spring” wave of
the pandemic acquired a protective immune response against
the second, more virulent, “fall” wave of the 1918–19 pandemic
(Gibbon, 1919; Shope, 1958; Palmer and Rice, 1992; Barry et al.,
2008;Mathews et al., 2010; Shanks et al., 2010, 2011b; Fraser et al.,
2011). Interestingly, unlike the majority of elderly populations
worldwide, elderly populations in remote settings, including
Indigenous Australians, Alaskan Natives, and Latin Americans,
experienced high mortality during the 1918 pandemic. This
most likely reflects the fact that these remote populations were
not exposed to the previously circulating influenza viruses that
conferred cross-protection (Ahmed et al., 2007).

Conclusive evidence that protective influenza virus-specific
antibody responses are indeed long-lived came from the 2009
influenza pandemic. Here, elderly people who were exposed to
the 1918 influenza virus (or its immediate descendant), 60–
90 years prior to the pandemic of 2009, were protected from
infection and severe disease, as they maintained the antibody

response that cross-reacted with the 2009 pandemic strain (Yu
et al., 2008; Hancock et al., 2009; Ikonen et al., 2010; Reed and
Katz, 2010).

Interesting, a recent study suggested that individuals
medically-treated for influenza-like illness in the years prior to
the 1918 pandemic (1916–1918) were actually at an increased
risk of having clinically significant respiratory illness during
the autumn wave of the 1918 pandemic (Shanks et al., 2016a).
Similarly, the presence of cross-reactive but non-neutralizing
antibodies, was associated with immune complex deposition and
increased disease severity during the 2009 influenza pandemic
(Monsalvo et al., 2011). These data suggest that protection
against disease is dependent not just upon the presence of
pre-existing antibodies, but rather their ability to neutralize the
influenza virus strain in question.

Cellular Immune Response
The issue of prior influenza virus exposure in the general
population prior to 1918 raises the question as to why a pre-
existing cellular immune response, in particular cross-reactive
CD8+ T cells, offered so little protection to young adults during
the 1918 influenza pandemic?

A robust CD8+ T cell response plays an important role in
protection against novel influenza virus strains and subtypes.
Unlike antibodies, CD8+ T cells can recognize the internal
proteins of influenza virus. Since these internal proteins do not
undergo rapid antigenic change, CD8+ T cells are able to provide
cross-protection against a broad range of different influenza
virus strains. Accordingly, pre-existing influenza virus specific
CD8+ T cells provided protection against severe disease during
the influenza pandemics of both 1957 and 2009 (Slepushkin,
1959; McMichael et al., 1983; Epstein, 2006; Sridhar et al., 2013;
Hayward et al., 2015). In addition, seasonally induced influenza
virus-specific CD8+ T cells can cross-react with novel potentially
pandemic avian influenza viruses (Kreijtz et al., 2008; Lee et al.,
2008; van de Sandt et al., 2014) and facilitate more rapid recovery
in patients following infection with low pathogenic H7N9 avian
influenza virus (Wang et al., 2015). The presence of conserved
CD8+ T cell peptides in the viral protein sequences of the 1918
influenza virus (Quiñones-Parra et al., 2014) and the ability the
of the 2009 H1N1 pandemic influenza virus to recall influenza
virus-specific CD8+ T cells, cross-reacting with the 1918 H1N1
influenza virus (Gras et al., 2010) suggest that pre-existing CD8+

T cells should have been protective against severe infection
with the 1918 H1N1 influenza virus, especially in the case of
young adults. CD8+ T cells may not have been optimal in very
young children (age 0–4 years) due lack of exposure to previous
influenza viruses (Bodewes et al., 2011a; Sauerbrei et al., 2014).
Similarly, immunosenescence may have impaired CD8+ T cell
function in the elderly (>65 years) (Goronzy andWeyand, 2013).
This may partially explain the high mortality observed in the
youngest and oldest age groups during seasonal epidemics (U-
shaped curve). However, individuals between 15 and 65 years of
age, who suffered the greatest burden of disease during the 1918
pandemic, are thought to display the “gold-standard” immune
response, with optimal cross-reactive CD8+ T cell responses.
The absence of protective immunity in this age group is unlikely
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to be due to the fact that heterosubtypic immunity is short-
lived (Mathews et al., 2010), as the longevity of influenza virus-
specific CD8+ T cells in healthy individuals has recently been
demonstrated (van de Sandt et al., 2015a). It is possible that
the recall of pre-existing influenza virus-specific CD8+ T cell
responses was not rapid enough for the extremely virulent 1918
pandemic virus, causing rapid appearance of clinical disease and
death within 3 days (Ahmed et al., 2007). Alternatively, pandemic
H1N1 influenza viruses (1918 and 2009) may have suppressed
immunogenic RIPK3-driven dendritic cell death needed for the
induction of an effective CD8+ T cell response (Hartmann
et al., 2017). In addition, it is likely that ethnically defined
genetic variations in HLA molecules influenced cross-reactive
CD8+ T cell responses in influenza virus infected individuals
(Quiñones-Parra et al., 2014). This (combined with other socio-
economic factors) would leave some ethnicities, like Alaskan
Natives and Indigenous Australians, more susceptible to severe
influenza virus infections. Indeed, alarmingly highmorbidity and
mortality rates were observed amongst these populations during
the pandemics of 1918 (Ahmed et al., 2007) and 2009 (La Ruche
et al., 2009; Flint et al., 2010). Similarly, it is striking to note
that the matrix protein of the 1918 virus already contained extra-
epitopic amino acid residues that were associated with evasion
from the pre-existing influenza virus CD8+ T cells (van de Sandt
et al., 2015b), a phenomenon not observed in the comparatively
mild 2009 pandemic influenza virus (van de Sandt et al., 2018a,b).

Finally, it is important to note that the highest influenza
virus infection rates in 1918 were observed among children of
school age (5–15 years). However, this increased infection rate
occurred in the absence of highmorbidity (Shanks and Brundage,
2012; Mamelund et al., 2016). Thus, school-aged children are
thought to be in a “honeymoon period” of superior immunity,
whereby they display increased resistance to a variety of different
bacterial and viral pathogens (Ahmed et al., 2007). However, the
mechanisms underlying such superior immunity are completely
unexplored, despite the fact that it holds key information for
inducing effective immune responses to influenza viruses.

In this review, we would like to propose an additional
hypothesis that might have influenced the effectiveness of
the cross-reactive cellular immune response and possibly
contributed to the disproportional mortality amongst young
adults in 1918; namely immune suppression as a resulting
from recent measles infections (Moss et al., 2004; Griffin, 2010;
de Vries et al., 2012; Mina et al., 2015). Measles epidemics
were frequently reported at the end of the nineteenth and
in the early twentieth century (Cliff et al., 1983; Duncan
et al., 1997; Shulman et al., 2009; Shanks et al., 2011a, 2014),
including a large measles outbreak in the US military camps
in the winter of 1917–1918 (Shanks et al., 2014; Morens
and Taubenberger, 2015). The elderly population would have
experienced measles in their childhood and their immunity
would have protected them from contracting measles in the years
prior to the 1918 influenza pandemic. However, children and
young adults, without prior measles infections, would have been
immunologically susceptible to measles in the years preceding
the 1918 influenza pandemic. Recent studies have demonstrated
that the measles virus infects memory T lymphocytes, resulting

in apoptosis and a prolonged state of immune suppression up
to 3 years after the initial measles infection (Moss et al., 2004;
Griffin, 2010; de Vries et al., 2012; Mina et al., 2015). Influenza
virus-specific CTL responses could have been suppressed in
young individuals who had to endure a measles infection in
the years prior to the 1918 influenza pandemic, which may
have increased their susceptibility to a severe influenza infection.
The combination of recovering from immunosuppression and
an infection with an unexpectedly highly virulent virus might
have contributed to severe inflammatory related pathology
in a mechanism better known as the immune reconstitution
inflammatory syndrome (IRIS) (Hirsch et al., 2004; Morens and
Fauci, 2007; Shulman et al., 2009; Barber et al., 2012). Whether
recent measles infections indeed led to immunosuppression of
the influenza virus-specific T cell responses, resulting in a higher
susceptibility for severe influenza virus infections and potential
IRIS or alternatively contributed to dampening CD8+ T cell
immunopathology remains an important area of future research.
Fortunately, measles vaccines are now widely available and have
greatly reduced the prevalence of measles worldwide (Moss and
Griffin, 2012; Perry et al., 2014; Mina et al., 2015). However,
the increased number of measles outbreaks in recent years and
declining vaccination rates represent a key point of concern for
future influenza virus pandemics.

Together, these data demonstrate that an individual’s age
(and the associated differences in their immune response)
played an important role in determining disease outcome in
the context of pandemic influenza virus infections. In 2009, age
and pre-existing humoral immunity were taken into account
when identifying priority individuals for vaccination. In 2009,
the elderly population were less susceptible to severe influenza
(Dawood et al., 2012) as they were protected through cross-
reactive antibodies and CD8+ T cells acquired during previous
seasonal infections, including the antigenically related A/H1N1
virus that circulated prior to 1957 (Yu et al., 2008; Hancock
et al., 2009; Ikonen et al., 2010). Based on these findings, the
first limited 2009 influenza vaccine stocks were administered
to younger individuals, instead of being misdirected to the
traditional high risk group: the elderly (National Center for
Respiratory Diseases, CDC, and Centers for Disease and
Prevention (CDC), 2009). Improving cross-reactive CD8+ T
cell responses to influenza vaccinations and natural infections
remains a key research priority for the future (Clemens
et al., 2018). This includes an understanding of CD8+ T cell
functionality in ethnically diverse populations and different age
groups (Clemens et al., 2018).

Genetic Differences
In addition to the role of humoral and cellular immunity,
there is a growing body of evidence to suggest that individual
genetic differences contribute to differences in the severity of
influenza virus infections. For example, during the 2009 influenza
pandemic several single-nucleotide polymorphisms (SNPs) were
strongly associated with severe pneumonia. These included SNPs
in the genes for interferon response factor 7 (Ciancanelli et al.,
2015), Fc fragment of immunoglobulin G, low-affinity IIA,
receptor (Zúñiga et al., 2012), RPA interacting protein (Zúñiga
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et al., 2012), complement component 1q subcomponent binding
protein (Zúñiga et al., 2012), CD55 (Zhou et al., 2012), IL-1α
(Liu et al., 2013), IL-1β (Liu et al., 2013), surfactant protein B gene
(To et al., 2014) and interferon induced transmembrane protein
3 (Everitt et al., 2012; Zhang et al., 2013), and IRF9 (Hernandez
et al., 2018). Unfortunately, there is insufficient information
available to conclude whether mortality variations in 1918 were
influenced by any of the aforementioned SNPs. Defining which
SNPs confer increased susceptibility to severe influenza remains
an important aspect of influenza pandemic preparedness, as it
will help to inform which populations are most at risk of severe
disease.

Malnutrition
Host nutritional status has long been recognized as an important
factor in the outcome of a variety of different infectious diseases
(Cohen, 2000). In India in 1918, the effects of malnutrition
and famine on influenza severity were particularly pronounced.
The 1918 influenza pandemic hit India during a widespread
drought, which affected the viability of many important food
crops (Mills, 1986). Consequently, many Northern-Western,
Western and Central Indian provinces experienced a famine
during 1918 (Mills, 1986). It was these provinces which also
experienced the highest 1918 influenza mortality rates (Mills,
1986). Due to the unusual age distribution of the pandemic,
those who succumbed to the disease were typically young adults
who formed the majority of the agricultural labor force (Mills,
1986). The resultant labor shortage only served to exacerbate
the severity of the influenza pandemic (Mills, 1986). The exact
mechanisms by which malnutrition and famine increase the
severity of influenza remain to be defined. However, experimental
studies suggest that not only doesmalnutrition suppress the host’s
immune response to influenza virus, but that it may also facilitate
the emergence of novel viral variants, which display increased
pathogenicity relative to the original parental strain (Beck et al.,
2004).

Undernutrition (often exacerbated by ongoing civil conflicts)
remains a problem for influenza pandemics of the twenty-first
century and beyond. Indeed, chronic malnutrition was thought
to have contributed to the high morbidity and mortality seen in
Guatemalan children during the 2009 influenza pandemic (Reyes
et al., 2010). Climate change may result in crop failures and
exacerbate any food shortages in the future. However, in any
future influenza virus pandemic, we will face a “double burden”
of malnutrition whereby a proportion of the world’s population
will experience severe disease because of undernutrition and
a proportion of the world’s population will experience severe
disease because of overnutrition. Specifically, it is now well
accepted that obesity increases one’s risk of being hospitalized
with, and dying from, an influenza virus infection (Morgan et al.,
2010; Louie et al., 2011; Van Kerkhove et al., 2011). Perhaps
of even greater concern is the fact that obesity inhibits both
virus-specific CD8+ T cell responses and antibody responses
to the seasonal influenza vaccine (Sheridan et al., 2012). The
challenge for future influenza pandemics is therefore not only to
protect those affected by undernutrition (in particularly in light

of the growing problem of climate change), but also the growing
number of people living with obesity.

UNDERLYING INFECTIONS

Co-infection With Bacterial Pathogens
Historical autopsy reports and examination of lung tissue
sections from 1918 to 19 influenza case material indicated
that for a significant number of patients, the cause of death
was not primary viral pneumonia (Brundage and Shanks,
2008; Morens et al., 2008; Chien et al., 2009). Instead, these
individuals succumbed to a secondary bacterial infection, most
commonly pneumonia caused by bacteria such as Streptococcus
pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and
Streptococcus pyogenes (Morens et al., 2008).H. influenzae was so
frequently observed in influenza patients that it was often cited
as the cause of the pandemic (and was thus named accordingly)
(Hildreth, 1991). The role of secondary bacterial infections
during the 1918 pandemic is consistent with epidemiological
observations that while influenza virus attack rates in 1918 were
similar among soldiers and civilians, mortality rates were much
higher amongst newly arrived soldiers (Shanks et al., 2016b).
The unhygienic circumstances in the army camps led to frequent
bacterial infections, especially amongst immunologically naïve
new army recruits. Thus, following an influenza virus infection,
new army recruits were more likely to develop a lethal secondary
bacterial pneumonia than civilians or long-serving soldiers
(Shanks et al., 2010, 2016b). These observations have been echoed
by numerous experimental animal studies, showing that co-
infection with influenza virus and bacterial pathogens results
in increased disease severity compared to infection with either
pathogen alone (Brightman, 1935; Glover, 1941; Francis and
de Torregrosa, 1945; Harford et al., 1946; Wilson et al., 1947;
Short et al., 2012a, 2013). Different mechanisms have been
proposed to explain this viral-bacterial synergism (McCullers,
2006; McAuley et al., 2007; Smith et al., 2013; Hrincius et al.,
2015). These include, but are not limited to, reduced mucociliary
clearance of inhaled bacteria following influenza virus infection,
bacterial adhesion to the basement membrane (Morens et al.,
2008; Taubenberger et al., 2012; Chertow and Memoli, 2013)
and/or sialic acids exposed by influenza virus (McCullers and
Bartmess, 2003; Peltola et al., 2005), viral alterations to the host
immune response (Navarini et al., 2006; van der Sluijs et al., 2006;
Ballinger and Standiford, 2010; Nakamura et al., 2011; Ellis et al.,
2015; Lee et al., 2015) and the bacterial inhibition of epithelial
cell repair following initial damage by influenza virus infection
(Kash et al., 2011). Importantly, experimental studies suggest that
influenza viruses not only increases the severity of secondary
bacterial infections, but that it also increases the transmission of
S. pneumoniae (Diavatopoulos et al., 2010; Short et al., 2012b).

In addition to co-infections with bacterial pathogens such
as S. pneumoniae, chronic bacterial infections, such as those
with Mycobacterium tuberculosis, contributed to variations in
influenza mortality during the 1918 pandemic. For example, data
from a Swiss sanatorium during the 1918 pandemic suggested
that the risk of influenza death was higher among tuberculosis
(TB) patients than non-TB controls (Oei and Nishiura, 2012).
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Similarly, individuals with TB were 2.2 times more likely to
contract the 1918 influenza virus than non-TB individuals living
in the same household (Noymer and Garenne, 2000; Noymer,
2011). A synergistic relationship between M. tuberculosis and
influenza viruses has also been supported by experimental studies
(Redford et al., 2014). The predominance of TB amongst young
adults in 1918 may have contributed to the striking “W shaped”
mortality curve associated with the 1918 influenza pandemic (Oei
and Nishiura, 2012).

Severe complications and morbidity as a result of bacterial
co-infections were not unique to the 1918 influenza pandemic.
Rather, bacterial co-infections were also observed in the influenza
pandemics of 1957, 1968 and 2009, albeit to a lesser extent
than in 1918 (Oswald et al., 1958; Robertson et al., 1958; Louria
et al., 1959; Oseasohn et al., 1959; Chertow and Memoli, 2013;
Joseph et al., 2013). In the 2009 influenza pandemic, TB was
also identified as a risk factor for the development of severe
disease (Morales et al., 2017). Thankfully, unlike in 1918, the
severity of bacterial infections during these more recent influenza
pandemics was likely minimized by the use of antibiotics,
advanced medical care and the availability of bacterial vaccines
[such as the pneumococcal polysaccharide and H. influenzae
type b (Hib) vaccine] (Oswald et al., 1958; Robertson et al.,
1958; Louria et al., 1959; Madhi et al., 2004; Wahl et al., 2018).
However, as the rate of antibiotic resistance continues to rise
and as pathogens such as methicillin-resistant S. aureus (MRSA)
(Memoli et al., 2008) and multidrug-resistant M. tuberculosis
(Zumla et al., 2013; Millard et al., 2015) become more common,
we potentially face a future where antibiotics will be ineffectual
in the treatment of bacterial infections. This will have direct
and severe implications for any future influenza virus pandemic
(Memoli et al., 2008). It must be considered an urgent priority to
not only minimize antibiotic resistance, but also to invest in the
discovery of new antibiotics and alternative treatment options for
bacterial infections.

Malaria
In addition to individuals with bacterial co-infections, mortality
during the 1918 influenza pandemic was considerably higher
amongst malaria-infected individuals (Langford and Storey,
1992; Afkhami, 2003; Shanks, 2015). Although the underlying
mechanism is not fully understood, a malaria-induced
procoagulant state could play a role in increasing inflammation
and subsequent clinical outcome (Shanks, 2015).

Today, chemopreventive strategies have lowered the disease
burden associated with malaria and new eradication strategies
are being developed. However, malaria still causes significant
worldwide morbidity and mortality, there is ever increasing
drug resistance and new malaria vaccines have yet to provide
long-lasting benefits at a population level (Ashley et al., 2018).
Until effective control measures have been developed and
implemented, areas endemic for malaria remain at high risk for
increased mortality during the next influenza pandemic.

NON-PHARMACEUTICAL INTERVENTIONS

In 1918, a variety of different approaches were employed to limit
the spread of influenza virus and treat infected patients. While

many of these methods were of little or no avail, they contain
important lessons for influenza pandemic preparedness in the
twenty-first century.

Maritime Quarantine
In 1918, when the severity of the second wave of influenza
became apparent, many countries imposed strict quarantine
measures on all incoming ships to try and prevent the spread of
influenza (Johnson, 2006). For the most part, these attempts were
unsuccessful (Johnson, 2006). Quarantine measures were either
implemented too late and the virus was already present within the
country or quarantine was breached by infected individuals who
were not yet symptomatic (Crosby, 1976; Tomkins, 1992). Thus,
countries such as the U.K. and South Africa dismissed maritime
quarantine as impractical and ineffectual (Blakely, 2006; Johnson,
2006). However, Australia imposed the maritime quarantine
before any victims of the second wave were reported. All arriving
vessels had to be cleared by Commonwealth Quarantine Officials
before disembarking. This quarantine protected Australia from
the second wave of the pandemic until December 1918 when
the quarantine was finally breached. Maritime quarantine thus
helped to protect Australia from the worst of the pandemic
(Crosby, 2003; Johnson, 2006) and indirectly contributed to
protecting certain Pacific Islands that depended on Australian
supply ships (Shanks et al., 2018).

The most striking example of this was the mortality difference
between American Samoa andWestern Samoa. A strict maritime
quarantine was imposed in American Samoa by the U.S.
Governor in 1918 (Shanks and Brundage, 2013). This quarantine
prevented influenza from entering the country, and no deaths
from the 1918 influenza were ever recorded in America Samoa
(Johnson, 2006; Shanks and Brundage, 2013). This was in sharp
contrast to the nearby Western Samoa (located ∼100 km away),
which did not practice strict maritime quarantine (Tomkins,
1992; Shanks and Brundage, 2013). As a result, Western Samoa
was infected by the New Zealand supply ship, the Talune, and
it is estimated that influenza killed more than a quarter of the
population (Tomkins, 1992).

Global transportation has experienced amajor transformation
in the last century, with ships being replaced by the faster and
more widely used air travel. The rise of commercial air travel
helps explains the rapid global spread of the more modern
influenza pandemics of 1957, 1968, and 2009 in the absence of
major military troop movements (Rvachev and Longini, 1985;
Hufnagel et al., 2004; Khan et al., 2009; Bajardi et al., 2011;
Lemey et al., 2014). Accordingly, maritime quarantine is unlikely
to play a role in limiting the spread of any future influenza
pandemic. However, in 2009 authorities tried to limit the spread
of influenza by using the modern-day equivalent of maritime
quarantine: airport arrival screening. Unfortunately, analysis of
arrival passengers at Sydney airport in 2009 suggested that airport
screening had only a sensitivity of 6.67% for detecting influenza-
infected patients, while costing ∼$50,000 AUD per case detected
(Gunaratnam et al., 2014). This limited efficacy likely reflects
the fact that individuals infected with influenza virus can be
contagious prior to becoming symptomatic (Hollingsworth et al.,
2006). Airport arrival screening is therefore unlikely to control
the spread of influenza by international air travel. Rather,
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advancing modeling (e.g., identifying which travel routes are
most vulnerable to disease spread) and a variety of different
education campaigns (e.g., raising awareness amongst the general
public about the risks of traveling if they have been exposed to an
infected individual) are likely to play a more significant role in
future pandemic preparedness.

Mass Gatherings
In addition to limiting maritime travel, in 1918 most cities
implemented simple non-pharmaceutical interventions to
restrict the viral spread. These included imposing restrictions
on social gatherings where person-to-person transmission
could occur. As a result, schools, theaters, churches, and dance
halls were closed, while mass gatherings such as weddings and
funerals were banned in order to prevent overcrowding (Frost,
1919; Johnson, 2006; Bootsma and Ferguson, 2007; Hatchett
et al., 2007). The peak death rate was lower in cities that rapidly
implemented these non-pharmaceutical interventions within
a few days after the first local cases were recorded, compared
to those which waited a few weeks to respond (Bootsma and
Ferguson, 2007; Hatchett et al., 2007). The timing when these
interventions were lifted also affected the overall mortality
(Bootsma and Ferguson, 2007; Hatchett et al., 2007). Thus, while
restrictions on gatherings of people helped reduce influenza
virus transmission, as soon as these restrictions were relaxed
(typically within 2–8 weeks of their implementation) efficient
viral transmission recommenced (Hatchett et al., 2007).

Following the outbreak of the 2009 pandemic influenza
virus in Mexico, an 18-day period of mandatory school closure
was implemented in the greater Mexico City area (Chowell
et al., 2011). This was associated with a 29–37% reduction in
influenza transmission (Chowell et al., 2011). Similarly, in Hong
Kong there was approximately a 25% reduction influenza virus
transmission following secondary schools closures from June
11 to July 10, 2009 (Wu et al., 2010). However, just as in
1918, the duration of these intervention strategies affected their
efficacy, and there was a dramatic increase influenza activity in 32
Mexican states in the autumn of 2009, a period which coincided
with schools opening for the autumn term (Chowell et al., 2011).

Facemasks and Hygiene
Facemasks were a popular preventative measure employed
during the 1918 pandemic. While people were unsure of the
etiological agent of the pandemic, the consensus was that it
was an airborne disease and wearing a facemask would prevent
infections (Crosby, 1976). Accordingly, many cities and regions,
including Guatemala City, San Francisco, and certain prefectures
of Japan, made wearing a facemask in public places obligatory,
and special task forces and education campaigns were established
to enforce this regulation (Crosby, 1976; Rice and Palmer, 1993;
Rice, 2011). However, in order for a facemask to be at least
partially effective against influenza virus it must be (i) worn
at all times, (ii) properly made and fitted, and (iii) made of
appropriate material. The surgical gauze masks of 1918 often
failed to meet these criteria (Crosby, 1976). Thus, the mortality
rate of Ontario, Canada (where wearing a mask was voluntary)
was not significantly different from Alberta, Canada, (where

mask wearing was enforced by law) (MacDougall, 2007). In fact,
influenza deaths in Alberta continued to rise even after mask
wearing was sanctioned by law, suggesting that in 1918 wearing
a facemask was not sufficient to prevent deaths from influenza
(World Health Organization Writing Group et al., 2006).

Proper hygiene (e.g., frequent hand washing) would also have
helped limiting the spread of the influenza virus during the 1918
pandemic, as influenza viruses are transmissible via hand to face
contact (World Health Organization Writing Group et al., 2006;
Thomas et al., 2014). Thus, the Japanese traditional attitude to
disease and illness might have contributed to a lower national
pandemic mortality in 1918–19, as Japanese children are taught
to remove their shoes and wash their hands upon re-entering the
home (Rice and Palmer, 1993).

In the context of modern influenza pandemics, facemasks
and handwashing/hand sanitizers have been used as preventative,
non-pharmaceutical interventions. However, during the 2009
influenza pandemic for the most part, the use of facemasks was
not obligatory (CDC, 2009). Rather, the CDC only recommended
facemasks for individuals at increased risk of severe illness
from influenza and/or individuals who were the direct careers
of persons infected with the pandemic virus (CDC, 2009).
Moreover, the effectiveness of facemasks in preventing the
transmission of influenza virus remains unclear (Cowling et al.,
2010) and just as was observed in 1918, low public compliance
significantly limits the utility of facemasks in a modern pandemic
setting (Cowling et al., 2010). Perhaps such interventions will be
of greatest relevance to medical personal, who serve in the front
line of a pandemic and are at high risk for infection. In contrast,
handwashing and the use of hand sanitizers (whether or not in
combination with wearing a facemask) had a clear protective
effect during the influenza pandemic of 2009 (Larson et al., 2012;
Suess et al., 2012; Wong et al., 2014).

These data suggest that non-pharmaceutical interventions
such as social distancing, handwashing/hand sanitizers, and
facemasks in any future influenza pandemic may buy valuable
time before vaccines become widely available. However, the
success of these interventions will depend upon their early
and continuous implementation and also people’s willingness to
comply. The 1918 pandemic has shown that measures are most
effective when they are voluntary, as people have low tolerance
for mandatory health measures (Spinney, 2017). Indeed, a
behavioral study showed that individuals were more likely to
wear a facemask when they received autonomy-supportive advice
as compared to controlled instructions (Chan et al., 2015).

MEDICAL INTERVENTIONS, THERAPIES
AND VACCINES: THEN AND NOW

The 1918 influenza pandemic occurred during a period in
history when controlling infectious diseases had become a
realistic goal of the medical profession (Tomkins, 1992; Johnson,
2006). Public health initiatives had already proven successful
in limiting the spread of diseases such as cholera and TB
(Hildreth, 1991; Tomkins, 1992; Tognotti, 2003). Thus, there
was initially little to suggest that an influenza outbreak could
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not be effectively controlled (Hildreth, 1991; Tomkins, 1992;
Tognotti, 2003). However, despite the dramatic advances in
microbiology in the previous decades, the etiological agent of the
1918 influenza pandemic remained a mystery. In the absence of
clear information about the causative agent of the pandemic, a
range of different therapeutic and preventative treatments were
attempted. People experimented with medications (including
Asprin) and homemade remedies such as mustard poultice,
quinine, tobacco, beef tea, the inhalation of zinc sulfate, opium,
salt water, and alcohol (Rice and Palmer, 1993; Johnson, 2006;
Starko, 2009; Keeling, 2010). Traditional eastern medicine, like
the Japanese Kanpo medicine (consisting of herbal remedies
accompanied by green tea) may have had some beneficial effect
by stimulating perspiration (helping to reduce fever), improving
vitamin C levels and replacing lost fluids (Palmer and Rice, 1992;
Rice and Palmer, 1993). Similarly, the use of Traditional Chinese
Medicine may have reduced the severity of influenza infections
in at least some individuals (Kobayashi et al., 1999; Cheng and
Leung, 2007; Chen et al., 2011). However, for the most part little
was available in terms of effective therapeutic and/or prophylactic
treatments. Nursing care actually proved to have contributed to
the recovery of patients, especially those suffering from secondary
bacterial pneumonia (Robinson, 1990; Rice and Palmer, 1993).
In addition, mortality rates were significantly higher in places
deprived from nursing care, e.g., mining compounds (Phimister,
1973; Rice and Palmer, 1993). Unfortunately, during the 1918–19
pandemic many of those who typically performed these duties
were either serving overseas or were sick themselves (Crosby,
2003; Keeling, 2010; Shanks et al., 2011b).

Today, the identification of the etiological agent of influenza
has dramatically improved diagnostic speed and accuracy. Rapid
and highly accurate molecular diagnostic techniques have largely
replaced the labor intensive and time consuming “gold standard”
cell culture method for diagnosing influenza virus infections
(Ellis and Zambon, 2002), which allows for rapid isolation of
infected individuals. Furthermore, risk assessment of potentially
pandemic viruses has greatly improved by screening the viral
genome of human and animal virus isolates for the presence of
mutations that increase human adaptation and/or virulence.

In addition, we are able to deploy both anti-viral drugs and
vaccines in the case of an influenza virus pandemic. Antivirals
(such as the neuraminidase inhibitors oseltamivir and zanamivir)
can be used as a therapeutic in severely ill patients, while also
being employed prophylactically in outbreak situations (Cooper
et al., 2003; Hayden et al., 2004; De Clercq, 2006; Zambon, 2014;
Krammer et al., 2018). At present, potentially pandemic influenza
viruses (such as avian H7N9 and H5N1 viruses) are sensitive to
both oseltamivir and zanamivir (Herfst et al., 2012). However,
acquired resistance to oseltamivir has been observed in several
H5N1 isolates (De Clercq, 2006). Similarly, oseltamivir resistance
is known to emerge in H7N9 viruses within just 2 days from the
start of treatment (Hay and Hayden, 2013). These data suggest
that in the case of any future influenza virus pandemic, antivirals
should be used judiciously, and the emergence of drug-resistant
viral variants closely monitored.

Influenza virus vaccines have also played a major role
in reducing the morbidity and mortality associated with

seasonal influenza. Unfortunately, antibodies elicited by seasonal
influenza vaccines do not provide protection in the case of an
antigenically distinct influenza virus of a novel subtype, such
as A/H5N1 or A/H7N9 (De Jong et al., 2000). Furthermore,
current inactivated seasonal influenza vaccines may even prevent
the induction of cross-reactive CD8+ T cell responses, which
are our primary protection in case of a pandemic outbreak
and may therefore prove to be a double-edged sword (Bodewes
et al., 2009a,b, 2011b,c). Rapid vaccine production also remains
a challenge for future influenza virus pandemics (World Health
Organization, 2005; Rockman and Brown, 2010; Pada and
Tambyah, 2011). This was particularly apparent during the 2009
pandemic when sufficient amounts of the vaccine against the
pandemic virus were only available in October 2009, well and
truly after the pandemic had spread globally (Butler, 2010).
Vaccine production in a pandemic scenario may be further
complicated by the fact that some avian influenza viruses
can kill the embryonated chicken eggs needed for vaccine
production (Tumpey et al., 2005). Novel vaccines strategies,
in combination with alternative vaccine production platforms
are needed to accelerate vaccine production and circumvent
such problems (Schotsaert and García-Sastre, 2014). However,
an influenza vaccine that offers long-lasting, broad-spectrum
immunity remains the gold standard for pandemic preparedness.
How basic fundamental humoral and cellular biology and human
clinical data can be considered for the implementation of a
universal influenza vaccine has recently been reviewed (Clemens
et al., 2018).

CONCLUDING REMARKS

It is estimated that if a pandemic influenza virus were to re-
appear today, with a similar virulence and attack-rate as the 1918
influenza virus, mortality could rise to 21–147 million (Murray
et al., 2006; Madhav, 2013). However, the high morbidity and
mortality rates associated with the 1918 influenza pandemic
resulted from a complex interplay between factors intrinsic
to the 1918 virus itself, the host’s immune response and the
social context in which the pandemic struck. It is thus unlikely
that this exact combination of factors would repeat itself in
the future. Nevertheless, a comprehensive understanding of the
factors that contributed to the severity of the 1918 pandemic
plays an important role in our preparedness for the next influenza
pandemic (Figure 2).

Today, we are better prepared for the next influenza virus
pandemic than we were 100 years ago. Global influenza
surveillance programs have been established to constantly
monitor whether influenza viruses cross the species barrier
into the human population (Hay and McCauley, 2018; World
Health Organization, 2018a; Ziegler et al., 2018). This has
already resulted in improved management strategies (Krammer
et al., 2018) and the preventive slaughter of vast numbers of
poultry that were infected with potentially pandemic viruses,
such as H5N1 and H7N9 viruses (Oi, 2018). In addition, an
improved understanding of the host-adaptation of influenza
viruses and the existence of pre-existing immunity are likely to
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FIGURE 2 | Factors that influence the severity and transmissibility of a pandemic influenza virus. The severity and transmissibility of pandemic influenza viruses are the

result of a complex interplay of viral, host, and external factors. We have come a long way since 1918 and pandemic preparedness programs have learned from the

1918 and later pandemic outbreaks. Although unlikely, we cannot exclude the possibility that an influenza pandemic with similar severity will repeat itself in the future.

However, lessons learned from the 1918 influenza pandemic will ensure that we are better prepared.

contribute to a more accurate predication of viral severity even
before the influenza virus in question becomes established as
a pandemic (Kreijtz et al., 2008; Lee et al., 2008; Herfst et al.,
2012; Imai et al., 2012; Richard et al., 2013; Quiñones-Parra
et al., 2014; van de Sandt et al., 2014; Wang et al., 2015). A
better understanding of the human immune response against
(pandemic) influenza viruses will eventually aid the development
of broad-protective influenza vaccines (Clemens et al., 2018).

However, in the interim, the majority of countries have
established a pandemic preparedness program, which defines the
precautionary measurements needed to be taken in case of an
emerging viral pandemic (van Genugten et al., 2001; RIVM, 2018;
World Health Organization, 2018b). These programs include
surveillance, diagnostics, screening of passengers traveling from
a potential outbreak region, quarantine procedures, stockpiling
antibiotics, antivirals, bacterial and viral vaccines and the
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distribution of medical supplies (Brundage, 2006; Memoli et al.,
2008; Mossad, 2009; World Health Organization, 2018b). We
have also learnt from the 2009 H1N1 pandemic that it is
important to have a somewhat flexible approach to pandemic
preparedness, which allows countries to develop and implement
their own risk assessments based on the global assessments
provided by the WHO (Rudenko et al., 2015). However, good
communication between countries and the WHO remains
essential. In addition, it will be important for governments
and those in authority to gain public trust before the next
major pandemic outbreak. This will ensure that the public
knows what to expect, how to act and is likely to improve
compliance with preventative measures in a pandemic scenario.
The internet represents a powerful and effective tool to disperse
such information (Little et al., 2015).

Despite the advances that we have made in pandemic
preparedness over the last 100 years, there are also several new
challenges that we face in the context of twenty-first century (and
later) influenza pandemics. Today’s population demographic is
dramatically different to that of 1918. Today, a large percentage
of the world’s population is either elderly (Morens et al., 2008;
Mossad, 2009; Murray and Chotirmall, 2015) and/or living
with one or more chronic medical conditions [such as heart
disease, obesity, asthma, chronic obstructive pulmonary disease
(COPD), and/or diabetes mellitus] (Morens et al., 2008; Jain
et al., 2009; La Ruche et al., 2009; Flint et al., 2010; Hulme et al.,
2017). The number of immunosuppressed individuals (due to
untreated HIV infection, transplantation or/and chemotherapy)
is also increasing (Jain et al., 2009; Kunisaki and Janoff, 2009;
Sheth et al., 2011). This changing population demographic is
of significance as each one of these host factors is known to
increase the severity of even mild influenza virus infections.
Mitigating the severity of future influenza pandemics will be
further complicated by the prevalence of antibacterial resistance
(Memoli et al., 2008), an increasing negative attitudes toward
vaccination for other infectious diseases (such as measles and
the pneumococcal polysaccharide and Hib vaccine) (Moss and
Griffin, 2012; Perry et al., 2014) and an increase in seasonal

influenza vaccinations of healthy individuals affecting the

cross-reactive immune response otherwise induced by natural
influenza virus infections (Bodewes et al., 2009b, 2011b). The
high prevalence of underlying infections in less economically
developed countries (such as TB and HIV), coupled with an
underprepared health care system, places less economically
developed countries at particularly high risk of severe morbidity
during future influenza virus pandemics (Murray et al., 2006).
These effects may even be compounded by the impacts of climate
change which will lead to food shortages, famine and migration
of climate refugees (van Schaik and Bakker, 2017).

At present, it is impossible to predict which influenza
virus strain will cause the next pandemic. However, the
growing number of human infections with the avian H7N9
virus represents a point of concern (especially in light of
the approximate 40% mortality rate of this virus in humans).
Like previous influenza pandemic viruses, human H7N9 virus
infections have thus far displayed multiple waves of infections
and shown signs of adaptation to human hosts (Zhu et al.,
2017). Although this virus has yet to display efficient human-
to-human transmission (Chen et al., 2013), it serves as a timely
reminder that even though it has been 100 years since the
1918 pandemic, influenza pandemic preparedness remains of a
paramount importance.
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