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Abstract: Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive
cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation
process of the infected keratinocyte. The normal replication cycle involves an early and a late phase.
The early phase encompasses viral entry and initial genome replication, stimulation of cell division
and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome
amplification, virion formation, and release into the environment from the surface of the epithelium.
The main proteins required at the late stage of infection for viral genome amplification include E1, E2,
E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of
these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from
a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing,
polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at
the level of translation. This review will discuss current knowledge of how HPV late gene expression
is regulated.

Keywords: human papillomavirus; infection; epithelial differentiation; gene regulation;
RNA processing

1. Introduction

Over 210 human papillomavirus (HPV) genotypes have been characterized. Most HPVs do
not cause any symptoms or disease. However, some can cause benign lesions such as warts on the
hands or verrucas on the soles of the feet. Importantly, around 40 can infect the anogenital tract and
cause benign lesions such as genital warts, or precancerous lesions such as cervical intraepithelial
neoplasia [1]. Anogenital HPV infection is very common and affects around 80% of the population
during their lifetime. Infection is usually transient because the virus is eventually recognized by
the immune system and the infection is cleared without causing significant disease [2]. However,
if infection with one of the so-called “high risk” (HR) anogenital-infective HPV genotypes becomes
persistent, it can cause cellular changes that can lead to cancer formation [3]. HR-HPVs all belong to
the alpha-papillomaviridae. There are 12 HR-HPVs for which the International Agency for Research
on Cancer considers that there is sufficient evidence of carcinogenicity to humans (HPV16, HPV18,
HPV 31, HPV 33, HPV35, HPV 39, HPV45, HPV51, HPV52, HPV56, HPV58 and HPV59). HPV68 is
considered probably carcinogenic and HPV26, HPV53, HPV66, HPV67, HPV68, HPV70 and HPV73
are considered possibly carcinogenic [4]. The causative association of HPV infection with cervical
cancer is well studied but more recently, HR-HPV has been found to be increasingly associated with
oropharyngeal cancer, especially in younger men [5]. Understanding the infectious life cycle of HPVs
that cause benign diseases—and of those HR-HPVs that can cause cancer—is essential for elucidating
how persistent infection occurs and what molecular changes support cancer progression.
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HPVs infect mucosal or cutaneous epithelia and there is a tight regulatory linkage between
the viral life cycle and epithelial differentiation. Initial infection is targeted to dividing cells in the
basal epithelial layer. Upon cell entry, the HPV genome is deposited in the nucleus and begins to
express viral early proteins, which carry out an initial round of viral genome replication to yield
around 50–100 genome copies per cell [6]. Once an infected basal epithelial cell divides, these viral
genome copies are replicated and segregated equally into daughter cells. Continued presence of the
viral genome over a period of several years in actively dividing epithelial cells results in persistent
infection [6]. However, in a normal infection upon basal cell division, an infected daughter cell will
become a transit amplifying cell that is destined to complete epithelial differentiation and move up
through the various epithelial layers (Figure 1). During this process, there is a carefully orchestrated
pattern of viral gene expression in response to epithelial differentiation such that different viral gene
expression events are specifically linked to different epithelial layers (Figure 1). The viral genome
within the cell nucleus responds to keratinocyte differentiation by activating viral late gene expression.
Viral late proteins are required to accomplish productive viral genome amplification and virion
production. These late events in the viral life cycle occur specifically in the differentiating upper layers
of the epithelium (Figure 1) [7]. Therefore, cellular events linked to cellular gene expression make a
significant impact on viral replication. It seems clear that persistent HPV infection is associated with a
loss of the virus’s ability to carry out productive viral replication and synthesize new viral particles [8].
This review article will explore current knowledge of the viral and cellular molecular mechanisms of
gene regulation that are required for the virus to accomplish late events in its life cycle.
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Figure 1. Eosin-stained HPV16-infected cervical epithelium (nuclei are stained purple). Key events in 
the viral replication cycle are noted on the left hand side. The approximate region of expression of 
viral proteins is shown on the right hand side. It is expected that E1 follows the pattern of E2 while 
E5 follows the pattern of E4. However, lack of suitable antibodies against these proteins have 
precluded confirmation of their expression pattern. 

2. Viral Genome Organization 

Non-enveloped icosahedral HPV virions are around 55 nm in diameter and each contains a 
double stranded circular DNA genome of around 8 kb in length. The genome can be divided into 
three regions, the early region containing open reading frames for at least seven viral regulatory 
proteins, the late region containing open reading frames for the two viral structural proteins, the 
capsid proteins, and an approximately 1 kb regulatory region called the Long Control Region (LCR) 
or Upstream Regulatory Region (URR) (Figure 2A). This non-coding region contains the viral early 
promoter and transcriptional enhancer, the viral origin of replication, the late polyadenylation site 
and the late (or negative) regulatory element (LRE/NRE) that controls late gene expression at various 
post-transcriptional levels (Figure 2A). The early viral promoter (HPV16: P97) is located at the 5′ end 
of the E6 open reading frame. Other start sites just upstream of this have been identified for HPV16 
late mRNA in clinical samples (Figure 2B P7437) [9] and for HPV18 in raft cultured infected epithelial 
cells [10]. The viral late promoter (HPV16: P670) that is specifically activated in differentiated 

Figure 1. Eosin-stained HPV16-infected cervical epithelium (nuclei are stained purple). Key events
in the viral replication cycle are noted on the left hand side. The approximate region of expression of
viral proteins is shown on the right hand side. It is expected that E1 follows the pattern of E2 while E5
follows the pattern of E4. However, lack of suitable antibodies against these proteins have precluded
confirmation of their expression pattern.

2. Viral Genome Organization

Non-enveloped icosahedral HPV virions are around 55 nm in diameter and each contains a
double stranded circular DNA genome of around 8 kb in length. The genome can be divided into
three regions, the early region containing open reading frames for at least seven viral regulatory
proteins, the late region containing open reading frames for the two viral structural proteins, the
capsid proteins, and an approximately 1 kb regulatory region called the Long Control Region (LCR)
or Upstream Regulatory Region (URR) (Figure 2A). This non-coding region contains the viral early
promoter and transcriptional enhancer, the viral origin of replication, the late polyadenylation site
and the late (or negative) regulatory element (LRE/NRE) that controls late gene expression at various
post-transcriptional levels (Figure 2A). The early viral promoter (HPV16: P97) is located at the 50 end
of the E6 open reading frame. Other start sites just upstream of this have been identified for HPV16



Viruses 2017, 9, 245 3 of 18

late mRNA in clinical samples (Figure 2B P7437) [9] and for HPV18 in raft cultured infected epithelial
cells [10]. The viral late promoter (HPV16: P670) that is specifically activated in differentiated epithelial
cells is located within the E7 open reading frame (Figure 2B). A third promoter, the E8 promoter, that is
active both early and late in infection is located in the E1 open reading frame. Other possible promoters
have been described but have not yet been fully tested for functionality (Figure 2B) [9,11–14].
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upward arrow and an orange box. The light blue circle indicates U1 snRNP, light green circle; SRSF1, 
dark red shape; U2AF, dark blue triangle; CUG-BP1 (see Table 1). The curved double headed black 
arrow indicates interactions between these factors and the polyadenylation complex (not shown). The 
viral transcription/replication factor E2 is shown as green ovals. Transcription factors are shown as 
rectangles. NF1; purple, Oct1; red, AP1; beige, Sp1; gray, YY1; orange. This is not an exhaustive list of 
transcription factors that bind the LCR. The curved double headed gray arrow indicates interactions 
between the enhancer and proximal promoter; (B) illustration of the LCR and early region of the 
HPV16 genome. Early open reading frames are shown as coloured boxes. The location on the genome 
of characterised promoters (P) is shown with arrows and associated numbers. 

2.1. Early Gene Expression 

The early promoter is responsible for expression of the early gene region. The viral replication 
factor E1 and its auxiliary protein E2, which is also the viral transcription factor, are probably the first 
proteins expressed during infection [15]. The viral E6 and E7 oncoproteins are also expressed early 
in a normal infection, but at very low levels to limit their oncogenic activity. However, in 
differentiating epithelial cells where cell division would normally be repressed, they act to stimulate 
cell cycle progression [16,17]. Moreover, because inappropriately dividing cells in the upper epithelial 
layers would normally be subject to apoptosis, E6 degrades p53 by targeting it for proteasome-
mediated degradation, thus allowing HPV-infected cells to survive and support viral replication [18]. 
Other open reading frames in the early region encode E8^E2, an antagonist of the viral E2 replication 
and transcription factor [19], E4, which can remodel differentiated keratinocytes to allow release of 
progeny viral particles [20] and regulate the cell cycle [21], and E5, which has roles in keratinocyte 
signaling and immune evasion [22]. The proteins encoded by these open reading frames are 

Figure 2. Regulatory elements on the HPV16 genome. (A) Details of the cis-acting elements, and the
proteins that bind, located in the HPV16 long control region (LCR), otherwise called the upstream
regulatory region (URR). The 30 end of the L1 open reading frame is shown in pink. The 50 end of
the E6 open reading frame is shown in olive. The approximate positions of the proximal promoter
and transcriptional enhancer are shown with double headed arrows. The origin of replication (ori) is
marked with a blue oval. The late polyadenylation site is indicated with a downward facing arrow
and p(A)L. The late regulatory element at the end of the L1 open reading frame is indicated with a
red upward arrow and an orange box. The light blue circle indicates U1 snRNP, light green circle;
SRSF1, dark red shape; U2AF, dark blue triangle; CUG-BP1 (see Table 1). The curved double headed
black arrow indicates interactions between these factors and the polyadenylation complex (not shown).
The viral transcription/replication factor E2 is shown as green ovals. Transcription factors are shown
as rectangles. NF1; purple, Oct1; red, AP1; beige, Sp1; gray, YY1; orange. This is not an exhaustive list
of transcription factors that bind the LCR. The curved double headed gray arrow indicates interactions
between the enhancer and proximal promoter; (B) illustration of the LCR and early region of the HPV16
genome. Early open reading frames are shown as coloured boxes. The location on the genome of
characterised promoters (P) is shown with arrows and associated numbers.

2.1. Early Gene Expression

The early promoter is responsible for expression of the early gene region. The viral replication
factor E1 and its auxiliary protein E2, which is also the viral transcription factor, are probably the first
proteins expressed during infection [15]. The viral E6 and E7 oncoproteins are also expressed early in a
normal infection, but at very low levels to limit their oncogenic activity. However, in differentiating
epithelial cells where cell division would normally be repressed, they act to stimulate cell cycle
progression [16,17]. Moreover, because inappropriately dividing cells in the upper epithelial layers
would normally be subject to apoptosis, E6 degrades p53 by targeting it for proteasome-mediated
degradation, thus allowing HPV-infected cells to survive and support viral replication [18]. Other open
reading frames in the early region encode E8ˆE2, an antagonist of the viral E2 replication and
transcription factor [19], E4, which can remodel differentiated keratinocytes to allow release of progeny
viral particles [20] and regulate the cell cycle [21], and E5, which has roles in keratinocyte signaling
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and immune evasion [22]. The proteins encoded by these open reading frames are expressed at highest
levels in differentiating virus-infected cells [23] and they are required for productive viral genome
amplification [24–28]. mRNAs encoding these proteins have been found to be expressed from both
viral early and late promoters and this suggests that they may have roles at both the early and late
stages of the viral life cycle. Early region mRNAs are polyadenylated at the early polyadenylation site
which is situated just downstream of the E5 open reading frame (Figure 3A) [29].
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Figure 3. Splicing and polyadenylation of HPV16 late RNAs. (A) Diagram of the HPV16 genome.
Coloured boxes indicate viral open reading frames. Promoters are indicated with arrows and (P).
The positions of the early (pAE) and late (pAL) polyadenylation sites and indicated with downward
arrows; (B) diagram of the main splicing events for generation of HPV16 late mRNAs. Boxes indicate
open reading frames. Dotted lines indicate introns that are spliced out. (*), alternative splice acceptor
sites can be used in the E6E7 gene region, including, for HPV16, sites at 409, 526 and 743. The putative
coding potential of each mRNA is indicated to the right-hand side. This is a limited list of possible late
mRNAs. A fuller list can be viewed at https://pave.niaid.nih.gov/#explore/transcript_maps.

2.2. Late Gene Expression and the Late Promoter

Late gene expression is initiated by the viral late promoter, terminated at the late polyadenylation
site (Figure 3A) and occurs in the suprabasal layers (Figure 1) [11]. Viral late proteins E1, E2, E4 and
E5 are required for vegetative viral genome amplification where the ~100 initially replicated viral
genome copies are amplified to hundreds or thousands of copies. This is thought to take place using a
rolling circle mode of replication, or recombination-dependent replication that is specific to this late
life cycle stage [30,31] and is dependent upon the viral replication proteins E1 and E2. Expression of
E2 appears to peak in the spinous layer of infected epithelia, co-incident with initiation of genome
amplification [32–34]. Effective antibodies against E1 are lacking but it is likely that E1 expression
follows a similar expression pattern to E2. HR-HPV E4, the most abundant viral protein, is expressed
in the upper epithelial layers but cutaneous HPVs can express E4 in the basal layer [35]. E5 expression
is likely also restricted to differentiated epithelial cells. Expression of major and minor capsid proteins
L1 and L2 is always subsequent to E4 expression. However, each HPV genotype can display a distinct
late gene expression program [35]. For example, mucosal HR-HPVs 16 and 31 express their capsid
proteins only in the uppermost granular layer, but cutaneous HPVs such as HPV1 and HPV63 carry
out late events much closer to the basal layer [35]. Importantly, HR-HPVs appear to restrict capsid
protein synthesis to the uppermost layers [36–38]. This allows the virus to avoid activating the humoral
immune response [2] and may facilitate the release of newly formed virions from disintegrating dead
squames at the top of the epithelium.

https://pave.niaid.nih.gov/#explore/transcript_maps
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Like many viral genomes, the genome organization of HPVs is complex. There are overlapping
open reading frames (e.g., E2 and E4 or E1 and E8) and multicistronic transcription. Moreover,
alternative promoter and polyadenylation site usage and alternative splicing yields many more
mRNAs than there are open reading frames [39] and these seem to be essential for encoding the full
complement of viral proteins. Therefore, although transcriptional regulation is important for the HPV
life cycle and is a key factor in initiation of viral late gene expression in differentiating keratinocytes,
much of the control of viral gene expression occurs at a post-transcriptional level.

3. Viral Late Promoter Activity

Viral late promoter activation is a key mechanism behind the initiation of late gene expression.
The mucosal oncogenic virus late promoters (HPV16 P670 [36], HPV18 P811 [40] and HPV31 P742 [41])
are the best characterized but similarly positioned promoters exist for other HPVs including the
cutaneous HPV5 (P840) [42], and HPV8 (P7535) [10,43,44]. The HPV31 late promoter has over
30 possible initiation sites stretching from genome positions 605 to 779 [41,45] while for HPV16,
transcription initiation sites have been mapped to various nucleotides within 200 nucleotides
surrounding P670 [11,36]. HPV31 possesses two differentiation-responsive elements in the late
promoter region [41] and a number of transcription factors have been shown to bind and regulate
the HPV16 and 31 promoter regions [46,47]. The HPV18 late promoter is likely also regulated
by similar differentiation-dependent transcription factors but this has not been fully elucidated.
A recent intriguing observation is that HPV18 late promoter activity is controlled by the orientation
of viral DNA replication, thus providing a clear link between vegetative viral DNA amplification
and late transcription [40]. Moreover, this study revealed that hnRNP proteins A/B and DOB bind a
transcriptional repressor to regulate late gene expression. As well as promoter control by proximal
elements, it has been shown that the HPV31 late promoter is also controlled by the viral enhancer
located in the LCR [41]. Linked to this observation, recently it has been shown that the promoter is
mainly controlled at the level of transcription elongation. Although RNA polymerase II is bound at
the late promoter in undifferentiated keratinocytes, elongation is inefficient and does not progress
to the late region. In contrast, in differentiated cells, the enhancer recruits members of the BET
family proteins—including Brd4 and its binding partner CDK8—to the Mediator complex to stimulate
transcription elongation [48]. Changes in signaling during keratinocyte differentiation must also
regulate the late promoter, for example PKC� [49] has been shown to activate it. Finally, the E8
promoter, responsible for expression of the replication and transcriptional repressor E8ˆE2, is active at
both early and late phases of the life cycle but its regulation has not been extensively characterized as
yet [50].

There is evidence of a reciprocal coordination between activity of the viral early and late promoters,
because the early E7 protein has been shown to control the HPV16 late promoter [51]. Although it
has been proposed that early oncoprotein activity wanes as the late phase of the life cycle gets
underway [23,52], transcripts encoding E6 and E7 have been detected in the cytoplasm of cells in
the mid-upper epithelial layers [53–56]. Indeed, it has been reported that transcription initiation at
the HPV31 early promoter is not down-regulated by differentiation [13] and HPV31 late transcript
mapping in differentiated keratinocytes detected transcription initiation in the vicinity of the early
promoter giving rise to several RNAs encoding E6 and E7 [57]. It is unlikely that RNA polymerase
could load simultaneously onto the three closely spaced promoters (Figure 2B) that are active at late
stages in the viral life cycle. Although it is possible that a stochastic choice of promoters takes place,
there must be differentiation-specific control exerted. Therefore, polymerase loading and/or rate of
elongation, controlled by transcription complexes recruited in a differentiation-specific manner to the
viral enhancer and promoter regions, is a more likely mechanism to ensure inter-dependent promoter
activity at late times during the viral replication cycle.
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4. Differentiation-Dependent Regulation of Polyadenylation

Polyadenylation is a two-step process involving cleavage at the cleavage site and subsequent
addition of 200–250 A residues to the 30 end of the mRNA [58]. Polyadenylation is essential
for mRNA export from the nucleus to the cytoplasm, mRNA stability and translation.
Mammalian polyadenylation sites comprise two cis-acting regulatory elements, an upstream
A(A/U)UAAA element, located 10–30 nucleotides upstream of the cleavage site, that binds the cleavage
and poyadenylation specificity factor (CPSF). A 73 kDa subunit of CPSF possesses endonuclease
activity for the cleavage reaction, but CPSF is also required for poly(A) addition. A GU-rich element,
followed by a UUU motif, located 10–30 nucleotides downstream of the cleavage site binds the cleavage
stimulatory factor (CstF). CstF is required for cleavage and it stabilises the binding of CPSF upstream
through protein-protein interactions between its 77 kDa subunit and the 160 kDa subunit of CPSF.

The exact sequence of the cis-acting elements to which these protein complexes bind determines
whether polyadenylation is efficient or not by controlling the stability of the polyadenylation
complex [58]. HPV genomes possess at least two polyadenylation sites—the early site (p(A)E) situated
in the early 30 untranslated region (UTR) (Figure 3A) downstream of the E5 open reading frame,
and the late site, p(A)L, located in the 50 end of the LCR [59]. Early trancription terminates at the
early site, while late mRNA synthesis uses the late site [36,37,60,61]. There is good evidence for
differentiation-dependent control of both sites. Because late mRNA production initiates from the late
promoter located in the early region, transcription must proceed through the early polyadenylation
site to synthesize late mRNAs. This suggests that either rate of RNA polymerase passage through
the early polyadenylation site is up-regulated or use of the early polyadenylation site is repressed
at late times of infection. The HPV31 early polyadenylation site contains a consensus CPSF binding
site, but each of three possible CstF binding sites downstream are of weak consensus and lead to
heterogeneity in polyadenylation site usage [62,63]. The HPV16 early polyadenylation site has a
similar organisation but also contains a long U-rich stretch upstream of the CPSF-binding motif
that binds auxilliary polyadenylation factors such as hFip 1, to enhance early polyadenylation [64].
Other HPV early polyadenylation sites are also of weak consensus [65], however, the HPV18 early site
appears to contain good consensus polyadenylation signals in addition to several upstream U/GU-rich
motifs that could regulate efficient polyadenylation [10]. The HPV31 late polyadenylation site has
a simple AAUAAA and downstream G/U rich element organisation [66]. HPV16 uses two tandem
late polyadenylation sites [11], the first of which is of weak conensus and used less frequently, while
the second is of strong consensus [11,67]. HPV18 has a single late AAUAAA site and a downstream
GU-rich motif but transcript cleavage was detected at a range of nucleotides over a 35 nt region [10].

4.1. Repression of the Early Polyadenylation Site and Late Gene Expression

Most studies have arrived at the consensus view that late mRNA expression is controlled largely
through negative control of the early polyadenylation site, thus allowing transcription to proceed
into the late region. This may be the reason why the early polyadenylation site has to be inherently
weak to allow fine control by RNA binding proteins. The role of the early polyadenylation site in the
control of late gene expression was first demonstrated for HPV31. Mutational analysis of the early
polyadenylation site revealed that the early CPSF-binding site was a key inhibitor of late transcript
production [63]. However, this study also uncovered an element in the 50 end of the downstream L2
open reading frame that repressed capsid mRNA production, probably via positive enhancement of the
early polyadenylation site through binding the 64 kDa subunit of CstF (CstF64) [62,63]. Subsequently,
a similarly located element was discovered for HPV16, but in this case the element bound not only
CstF64 but also hnRNP H through multiple GGG motifs [65,68]. It has been proposed that these
motifs cause formation of a specific RNA secondary structure that is optimal for interaction of RNA
binding proteins with the upstream polyadenylation complex. Whether these would be stimulatory or
inhibitory interactions in vivo is not known.



Viruses 2017, 9, 245 7 of 18

These important findings indicate that the “weak” early viral polyadenylation site could be
enhanced by upstream and downstream sequences that could bind polyadenylation-stimulatory factors
and thus facilitate polyadenylation of early mRNAs. Alternatively, cellular factors binding to RNA
motifs in the vicinity of the polyadenylation site could create secondary structures that are suboptimal
for efficient early polyadenylation leading to stimulation of late gene expression. Such cellular factors
could be expressed in a differentiation-dependent manner. Polyadenylation regulation, via the carboxyl
terminal domain of RNA polymerase II, is coupled to other post-transcriptional events, including RNA
capping and splicing, all of which take place co-transcriptionally [69]. Therefore, HPV RNA splicing
could be expected to regulate polyadenylation. As shown in Figure 3B, HPV mRNAs are the products
of a range of splicing events. The splicing regulatory protein Serine Arginine Splicing Factor 3 (SRSF3)
binds a splicing enhancer element in the E4 open reading frame to facilitate polyadenylation at the early
polyadenylation site [70]. Another E4 element binds SRSF1 and appears to favour synthesis of HPV16
mRNA early polyadenylation [71,72]. Splicing factors are known to control polyadenylation by forming
protein-protein interactions across exons that link to downstream polyadenylation complexes [58,73].
Differential expression of factors controlling the switch from early to late polyadenylation during
keratinocyte differentiation would be necessary to induce repression of the early polyadenylation
site. However, there is controversy regarding differentiation-stage-specific expression of splicing and
polyadenylation factors because different patterns are observed in uninfected versus HPV-infected
or HPV-associated tumour tissue [70,74,75]. Future studies should analyse protein expression in
normal human cervical keratinocytes and the same cells transfected with episomal HPV genomes.
Finally, HPV E2 has been implicated in a general, potentially low level, inhibition of polyadenylation
by inhibiting assembly of the CPSF complex [76]. Rising levels of E2 in the mid to upper epithelial
layers could lead to selective repression of early gene expression because the majority of mRNAs are
polyadenylated at the early polyadenylation site. Early polyadenylation repression would lead to
increased transcriptional read-through from the early region to the late region and a corresponding
increase (despite some inhibition of late polyadenylation) in production of HPV16 late mRNAs [76].
It remains to be tested whether other E2-interacting proteins, both viral (e.g., E4, E1, E8) and cellular
(e.g., SR proteins) [77,78], might modulate the effects of E2 on polyadenylation.

4.2. Control of Late Gene Expression Occurs at Multiple Post-Transcriptional Levels

Several different mechanisms of regulating capsid protein expression have been reported.
These include transcription initiation and elongation—and polyadenylation, as discussed above—but
also splicing, mRNA stability and translation. These processes are all linked in the cell (Figure 4).
Transcription and RNA processing is linked through the carboxyl terminal domain of RNA
polymerase II [69], while mRNA stability and translation on the ribosomes are also intimately
connected [79]. Cell signaling regulates each of these pathways in order that cells can direct expression
of the appropriate set of mRNAs and proteins to ensure normal function. An early study revealed
that protein kinase C (PKC) signalling post-transcriptionally controlled late protein expression in
HPV31-infected keratinocytes [61]. The mechanism of action could be through polyadenylation,
splicing or RNA stability control. The following sections will discuss each of these post-transcriptional
mechanisms in turn. However, it is important to remember that changes in one process will impact on
the others and alterations in differentiation-specific expression levels of cellular proteins will also play
a major role.

4.3. Control of Late Polyadenylation

The HPV late polyadenylation sites that have been analysed thus far are predicted to be
used efficiently because they possess excellent consensus cis-acting control sequences. However,
polyadenylation efficiency can be positively or negatively controlled through upstream sequence
elements (USEs) or downstream sequence elements (DSEs). These elements are usually U-rich and are
found in the vicinity of some cellular—e.g., COX-2 [80], human complement factor C2 [81] and collagen



Viruses 2017, 9, 245 8 of 18

genes [82]), and many viral, polyadenylation sites (e.g., HIV [83], SV40 [84,85] and adenovirus [86].
They work by recruiting RNA-binding proteins that can stimulate or stabilise the polyadenylation
complexes perhaps by inducing secondary structures that facilitates appropriate protein-proteins
interactions. The upstream and downstream cis-acting elements that regulate HPV16 and HPV31 early
polyadenylation site usage appear to work in this way. Not all USE/DSEs stimulate polyadenylation.
For example, U1A RNAs possess a 30UTR USE that binds U1A protein to negatively autoregulate its
expression [87].Viruses 2017, 9, 245 8 of 18 
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Figure 4. Cartoon of HPV gene regulation in the nucleus and cytoplasm. Transcription of the HPV
genome (blue circle) is carried out by RNA polymerase II (pink oval). The carboxyl terminal domain of
the polymerase (pink thin rectangle) acts to integrate transcription and RNA processing by binding
splicing factors (SF; e.g., SRSFs and hnRNPs, orange ovals) and polyadenylation factors (PF, olive
rectangle). These are then able to bind and process the nascent RNA molecule as it emerges from the
RNA polymerase exit channel. A. Fully processed mRNAs are able to be exported from the nucleus to
the cytoplasm through nuclear pore complexes (NPC, blue tubes) to access the ribosomes (beige ovoids)
for translation (E.). Aberrantly formed mRNAs are targeted for decay. B. mRNAs that aberrantly
retain introns. C. mRNAs that are not properly polyadenylated, or capped. D. RNAs that bind protein
complexes (olive shapes) that inhibit nuclear export. F. RNA decay factors (DF, purple circle), especially
those that bind 30 untranslated region motifs, can control levels of mRNAs in the cytoplasm linked to
translation. This is not an exhaustive list of possible control mechanisms.

Upstream negative regulatory elements that control late gene expression have been identified in
a wide range of HPV genomes [88]. These cis-acting U-rich elements are between 50 and 100 nts in
length and are positioned at the 30 end of the L1 coding region and span into the late 30 untranslated
region (30UTR) (Figure 2A) [89]. They can bind a number of RNA-binding proteins that have known
functions in splicing, polyadenylation and mRNA stability (Table 1). In particular, the HPV16, HPV18
and 31 elements contain 50 splice sites that could bind U1 snRNP [10,66,90]. U1snRNP is a large
RNA-protein complex which, when bound upstream of the polyadenylation site, could repress
formation of the polyadenylation complex. Indeed, there is direct evidence that the HPV16 element
inhibts HPV late polyadenylation in HeLa cells that possess a basal epithelial cell phenotype [91], and
this could be another mechanism of ensuring restriction of capsid protein expression to differentiated
kertatinocytes. Other HPV late elements (including HPV16) are more similar to AU-rich elements
(AREs) that control mRNA stability [88] and theiractivity may be mediated by differentially-expressed
cellular proteins such as the mRNA stability regulator, HuR [89,92].
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4.4. Regulation of Late RNA Stability

RNA stability is a very significant layer of control in gene expression because degradation or
stabilisation of a transcript can rapidly alter its cellular levels (Figure 4) [93]. In the nucleus, incorrectly
processed or mutant RNAs, detected by virtue of the RNA-binding proteins that are loaded upon them,
are destroyed by the exosome and therefore are not exported to the cytoplasm for translation [94].
In the cytoplasm, mRNAs can be stabilised or destroyed by an AU-rich element (ARE)-mediated
pathway or by nonsense-mediated decay (NMD) [93,95].

Table 1. RNA-binding proteins that interact with RNA regulatory elements in the late 30UTR of
different HPVs [96].

HPV Genotype Protein Function

HPV1
HuR mRNA stability, polyadenylation, nuclear export

hnRNPC1/C2 Splicing, polyadenylation, mRNA stability, nuclear export
PABP Polyadenylation, translation

HPV16

U1snRNP splicing
HuR 1 mRNA stability, polyadenylation, nuclear export

SRSF1 3 Splicing regulation
hnRNP A1 Splicing regulation

U2AF Auxiliary splicing factor
CstF-64 Polyadenylation
CUG-BP Alternative splicing, translation

HPV31

U1snRNP 2 splicing
HuR mRNA stability, polyadenylation, nuclear export

U2AF Auxiliary splicing factor
CstF-64 Polyadenylation

HPV18 U1snRNP2 splicing
1 HuR binding was found by our group [92,97], but not by others [88,91]; 2 U1snRNP binding is inferred due to the
presence of 50 splice sites, but not proven; 3 Binding is indirect.

Evidence from early in situ hybridisation studies of mucosally-infective low risk HPV6, 11, and
high risk 16, 18 and 31-positive lesions revealed that some late region transcripts were detected in
mid-epithelial layers but that cytoplasmic late mRNAs, i.e., fully formed mRNAs that are able to be
exported from the nucleus to the cytoplasm, were detected only in the upper epithelial layers [53–56].
This suggests that although the late region can be transcribed in less differentiated cells, RNA
processing or export from the nucleus is inhibited, or cytoplasmic late mRNAs are highly unstable.
Late pre-mRNAs may be synthesised in less differentiated keratinocytes, at least in the W12 and NIKS16
models of the virus life cycle, because it is possible to induce L1 protein expression by manipulating
levels of certain RNA-binding proteins [92,98]. Moreover, expression of reporter constructs containing
the entire wild type HPV16 late regulatory element gave significantly increased RNA nuclear retention
compared to similar constructs with mutations affecting key protein-binding regions of the element [97].
This suggests that RNA-protein interactions on the late regulatory element in undifferentiated cells
could inhibit late pre-mRNA processing or nuclear export, correlating with the previous in vivo
observations [53–56]. Therefore, nuclear retention of late transcripts synthesised in undifferentiated
keratinocytes could be a direct result of polyadenylation inhibition via the late regulatory element.

The cutaneous HPV1 and mucosal HPV16 late regulatory elements have been shown to bind the
RNA stability regulator HuR [92,97,99–101]. The HPV1 element also binds the RNA stability regulator
hnRNP C1/C2 [97,102]. Regulation of mRNA turnover could control capsid protein expression.
For example, HuR overexpression in undifferentiated keratinocytes caused the induction of L1
protein expression, while siRNA-mediated inhibition in differentiated keratinocytes caused loss
of L1 expresion [92]. Similarly, the HPV16 L2 open reading frame was found to contain a 50and a
30 regulatory element that acts at the level of mRNA stability. The 50 element negatively regulated
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CAT reporter mRNA stability by 3-fold in the cytoplasm of HeLa cells expressing the HIV tat protein,
while the 30 element was only weakly active [103]. Interestingly, the HPV1 L2 gene does not appear to
contain such an element, or indeed, any major regulatory element in the late gene region, apart from
the 30UTR element [103].

4.5. Late RNA Splicing

Late mRNAs are polycistronic transcripts containing the 1.5 kb L1 open reading frame with
several different possible upstream spliced exons (Figure 3B). Other late mRNAs contain both L1 and
L2 (1.4 kb) open reading frames in a read-through mRNA that also contains the short E4 (274 bps) and
E5 (236 bps) open reading frames (Figure 3B). Given that the average size of a eukaryotic terminal exon
is 627 nts [104], this means that the terminal exons of these mRNAs are unusually long at either 1.5 or
2.9 kb. A process called exon definition is important for efficient splicing, especially of long exons [73]
and exons are defined by protein complexes formed at the 50 and 30 exon-intron boundaries and by
splicing regulatory factors such as SR proteins and hnRNP proteins bound to exon- and intron-internal
cis-acting sequences [105]. Chromatin conformation and RNA secondary structure also play a role
in determining efficiency of splicing and which exons are spliced out or retained [105]. Moreover,
due to coupling of transcription elongation and RNA processing—including splicing (Figure 4)—the
promoter used to initiate gene transcription can influence splicing efficiency [106]. Although exon
size is often greatest in genes with few introns (late mRNAs have only one or two introns) [107], the
cellular RNA processing machinery would be predicted to process the late RNAs inefficiently. The late
mRNAs are generated by splicing from four possible splice donor sites, one in the E6 region (HPV16
nt 226, HPV18, nt 233, HPV31 nt 210), one in the E8 gene region (HPV16 nt 1301, HPV18 nt 1202)
and one at the end of each of the E1 and E4 open reading frame (HPV16 nt 3632, HPV18, nt 3696,
HPV31, nt 3590) (Figure 3B). The latter two splice events are by far the most frequently used. At least
for HPVs 16, 18 and 31, late RNAs can be initiated at both the early and late promoters, although the
relative abundance of early promoter-initiated late RNAs versus late, or E8, promoter-initiated late
RNAs has not been determined in the different layers of the infected epithelium.

4.6. Control of Late mRNA Splicing

In general, cellular and viral splicing is positively controlled by SR splicing factors [108], and
negatively by hnRNP proteins [109,110]. HPV controls expression of SRSF1, 2 and 3 through the
viral E2 transcription factor [98] and SRSF levels peak in the mid to upper layers of HPV-infected
epithelial [75,98] where late gene expression commences [23], and E2 is most highly expressed [32,33].
Recently, we reported that SRSF3 controls L1 protein expression in a differentiation-dependent manner.
siRNA depletion of SRSF3 in differentiated HPV16-positive keratinocytes inhibited expression of the
capsid mRNA and protein while SRSF3 overexpression in undifferentiated epithelial cells caused
the induction of L1 protein. Levels of the E1ˆE4ˆL1 mRNA were undetectable in differentiated
keratinocytes treated with siRNA agaisnt SRSF3. While there was a corresponding increase in levels of
the read-through L2L1 mRNA, it is likely that loss of SRSF3 affects other RNA processing events as
well as splicing. We also found that SRSF1 contributed to control of capsid protein expression [98].
This is in agreement with a previous study, which demonstrated that SRSF1 contributed to regulation
of the major alternatively spliced E4ˆL1 mRNA and the L2L1 read-through late mRNA (Figure 3B) [72].
A third SR protein, SRSF9 has also been shown to enhance splicing of late RNAs [111].In HeLa cells,
SRSF9 inhibited splicing at the splice acceptor site at the 50 end of the E4 open reading frame. This led
to use of the next downstream splice acceptor site located at the 50 end of the L1 open reading frame
resulting in enhanced L1 mRNA production.

The L1 open reading frame contains a splicing enhancer element that can be repressed by hnRNP
A1 in HeLa cells [112,113]. However, hnRNP A1 appears to be upregulated during differentiation of
HPV-infected keratinocytes [114]. Although this could be counter-balanced by increased expression of
splicing enhancer proteins—such as SRSF1—that negate the effects of hnRNP A1, it will be important



Viruses 2017, 9, 245 11 of 18

in future to try to understand the complexity of late RNA splicing regulation in differentiated
keratinocytes. hnRNP H can bind a G-rich element in the L2 coding region and, as discussed in
Section 4.1, can control early polyadenylation [65]. The importance of the early polyadenylation
site usage in preventing late mRNA expression means, in effect, that hnRNP H can also inhibit late
mRNA expression. Other sequences in the viral early region can control late mRNA expression.
hnRNPs A2/B1 and D inhibit L1 mRNA production by binding an element in the E4 open reading
frame that likely suppresses use of its 30 splice donor site to inhibit splicing to the L1 splice acceptor
site [115]. Similarly, hnRNP I, (polypyrimidine tract binding protein (PTB)) can induce late transcript
expression by inhibiting the same splice donor site [116]. Conversely, overexpression of hnRNP C1,
and another hnRNP protein, RALYL, induced late mRNA production in C33A cervical cancer cells.
hnRNP C1 binding to the early 30UTR was shown to activate L1 mRNA expression by activating the E4
splice donor site [117]. No doubt the work published thus far only scratches the surface of the possible
SR and hnRNP regulatory interactions that can control HPV late gene expression. Most studies have
examined HPV16. Therefore, it will be of interest to compare the data from this HR-HPV with that
from other HPV types, for example another HR-HPV such as HPV31 or 18, the low risk anogenital
infective HPVs 6 and 11, or the cutaneous infective HPV1. In fact, some elements that control late gene
expression have been shown to be present in a range of HPV types [88,118] suggesting that such an
important regulatory event is likely to be conserved across different HPV types. Finally, it is important
that differentiation is taken into account in such studies due to possible HPV infection-associated
changes in the various proteins that can control splicing.

4.7. Control of Capsid Protein Translation

Control of the translation of viral late proteins is still poorly understood. HPV polycistronic late
mRNAs are predicted to be inefficiently translated to yield capsid proteins. This is because of the
Kozak rules of translation initation that predict that subsequent open reading frames in polycistronic
transcripts will be poorly translated [119]. In the scanning model of translation initiation, the ribosome
recognises the first AUG in an mRNA as the start codon. Moreover, translation is inhibited when
an intron, that often contains pseudo splice sites, is retained in the mRNA, as it will be for L2L1
readthrough RNAs. The first translation start codon in most late mRNAs is at the start of the E1
open reading frame because the E4 open reading frame does not possess an AUG codon; this is
donated by splicing. E4 is the most abundant viral protein [23], suggesting that it is very efficiently
translated. The L2 and L1 open reading frames are downstream of E4 in all mRNAs indicating
inefficient translation. L1 protein is indeed much less abundant than E4 in HPV-infected tissues [120],
and although levels of L2 relative to E4 have not been directly observed, it is likely that L2 is expressed
at an even lower level than L1 because only one molecule of L2 is required for every 5 molecules of L1
in the virus capsid [120]. If the capsid protein mRNAs were particularly abundant, this might facilitate
capsid protein expression, and they do seem to be readily detected in HPV-positive lesions [53–56].
Alternatively, it has been proposed that viral translation efficiency could be assured through use of
rare codons that are less frequently used for cellular mRNA translation [121,122]. HPV genomes
possess a high A+T frequency at the 3rd position in codons in the L2 and L1, but not the E4, open
reading frames [122]. At least in experiments using reporter gene constructs, this seems to determine
the keratinocyte differentiation-specific expression of L1 protein [123,124]. Undifferentiated and
differentiated keratinocytes were found to have a different tRNA profile whereby only differentiated
keratinocyte tRNAs allowed efficient L1 translation [123,125]. This regulatory mechanism was
favoured in G2/M-like growth arrested cells that expressed keratinocyte differentiation markers [126].
Therefore, the tRNA pools available in differentiated keratinocytes may greatly favour translation of
HPV late mRNAs.

Other studies have examined whether late mRNA-binding proteins control translation.
The HPV16 L2 open reading frames contains a 30 element that binds hnRNP K and poly (rC) binding
protein (CBP) [127]. Depletion of these proteins in an in vitro system caused a reduction in L2 capsid
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protein production but a definitive role for the RNA binding proteins in translation, as opposed to
other events—for example mRNA stability—was not tested. Indeed, the L2 open reading frame has a
second inhibitory element located within the first 845 nucleotides that acts to destabilise the mRNA,
and therefore to inhibit its translation [103]. Any of the late regulatory elements discussed above that
may regulate late mRNA processing are also possible regulators of late mRNA translation because they
bind cytoplasmic proteins that can affect mRNA stability [89]. For example, the HPV1 late regulatory
element has five U-rich motifs that render the late mRNAs unstable in HeLa cells and this results in
inefficient translation [128].

The above mechanisms may all play a part in facilitating viral capsid protein expression from
late mRNAs. However, as stated previously, these mRNAs are unusual in structure due to their
polycistronic nature and this could exacerbate recognition of appropriate start codons for translation
initiaiton. For example, in the case of the L1 open reading frame, there is always at least one AUG start
codon prior to the L1 start. For L2 in the L2L1 read-through RNA there are at least three start sites
that the ribosome must pass through in order to translate L2. Perhaps RNA-binding proteins obscure
the upstream intiation codons in some way during translation initiation. Alternatively, other putative
promoters have been described for a number of HPVs that could give rise to monocistronic mRNAs
encoding each of the late proteins separately [7,11]. However, the activities of these have not been
examined in the context of the viral life cycle.

5. Conclusions

This review has aimed to highlight the various regulatory mechanisms that control late gene
expression of human papillomaviruses. We have most information on the regulation of late gene
expression for HR-HPVs and it cannot always be assumed that other HPVs will undergo similar
regulatory controls. Over the last decade, the extent of the association of the HPV replication cycle
with keratinocyte differentiation has become clearer. Future studies on HPV gene regulation should
continue to focus on how differentiated keratinocytes control viral capsid production. In particular,
what differentiation-specific changes in transcription factors and RNA-binding proteins might be
relevant to facilitating viral late mRNA production and late protein translation should be worked out.
Understanding the mechanism of control of capsid protein expression could facilitate the design of
antivirals to induce expression of the highly immunogenic capsid proteins inappropriately in the lower
epithelial layer to enhanced immune recognition and viral clearance.
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