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! Hepatitis D virus is a defective virus,
dependent on hepatitis B virus for its
assembly.

! Hepatitis D virus infection affects 62–
72 million people worldwide.

! Chronic hepatitis D is the most severe
chronic viral hepatitis.

! Current interferon-based antiviral
treatments have dismal efficiency and
are poorly tolerated.

! Host-targeting molecules inhibiting
the viral life cycle are currently in
clinical development.
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a b s t r a c t

Hepatitis delta virus (HDV) is a defective virus that requires the hepatitis B virus (HBV) to complete its life
cycle in human hepatocytes. HDV virions contain an envelope incorporating HBV surface antigen protein
and a ribonucleoprotein containing the viral circular single-stranded RNA genome associated with both
forms of hepatitis delta antigen, the only viral encoded protein. Replication is mediated by the host cell
DNA-dependent RNA polymerases. HDV infects up to72 million people worldwide and is associated with
an increased risk of severe and rapidly progressive liver disease. Pegylated interferon-alpha is still the
only available treatment for chronic hepatitis D, with poor tolerance and dismal success rate. Although
the development of antivirals inhibiting the viral replication is challenging, as HDV does not possess
its own polymerase, several antiviral molecules targeting other steps of the viral life cycle are currently
under clinical development: Myrcludex B, which blocks HDV entry into hepatocytes, lonafarnib, a preny-
lation inhibitor that prevents virion assembly, and finally REP 2139, which is thought to inhibit HBsAg
release from hepatocytes and interact with hepatitis delta antigen. This review updates the epidemiology,
virology and management of HDV infection.
! 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Hepatitis D or delta is caused by the hepatitis delta virus (HDV),
a human pathogen first identified in 1977 [1]. HDV is a defective
RNA virus that does not encode its own envelope proteins and

depends on the expression of the hepatitis B virus (HBV) surface
antigen (HBsAg) in the same cell to complete its life cycle. HDV
can enter hepatocytes not expressing HBsAg and efficiently repli-
cate its genome and express the hepatis delta antigen (HDAg);
however, no secretion of infectious particles occurs. Hepatitis D
is hence the result of either an acute coinfection by HBV and
HDV or a HDV superinfection of patients chronically infected with
HBV.

https://doi.org/10.1016/j.jare.2019.03.009
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Chronic hepatitis D (CHD) is arguably the most aggressive type
of viral hepatitis and is associated with an increased risk of cirrho-
sis, liver decompensation and hepatocellular carcinoma (HCC) [2],
but the management of HDV has evolved little during the past
years. The main treatment remains pegylated interferon-alpha
(IFN-alpha), with unsatisfactory results. Nucleos(t)ide analogues
specific for HBV have no effect on HDV replication. However, sev-
eral host-targeting molecules with a specific impact on HDV life
cycle are currently under development.

Epidemiology

Worldwide, "248 to 292 million people are chronically infected
with HBV [3,4]. Based on these estimations, "15 to 20 million of
these patients were initially thought to be also affected by HDV
[5]. These figures were challenged by a recent meta-analysis,
proposing that a staggering 62–72 million people may live with
HDV worldwide [6], a prevalence almost two-times greater than
that of human immunodeficiency virus (HIV) infection (estimated
to infect 36.9 million persons in 2017, according to the World
Health Organization). These estimates imply a disease burden
much higher than previously considered and one that is still
debated [7]. Indeed, the exact global prevalence of HDV infection
remains unknown because of heterogeneous and non-
standardised screening practices and the inaccessibility to testing
in many endemic areas.

In Mongolia, HDV infects "60% of the HBsAg-positive individu-
als, corresponding to the highest reported prevalence worldwide
[8]. Other highly affected areas include the Amazon basin [9], West
Africa [10,11], the Mediterranean basin [12] and Eastern Europe
[13].

In Western Europe, although high prevalence rates were
described in Italy early after HDV identification, a subsequent
decrease was documented as consequence of improved socio-
economic conditions and mass vaccination campaigns against
HBV [14,15]. HDV prevalence now seems to be very low in some
European countries, and in close association with intravenous drug
use (IVDU) [16]. However, no decrease has been observed in other
areas, likely because of migration from endemic regions [17,18].

In the United States, HDV infection has for long been considered
rare and screening recommendations are limited to high-risk pop-
ulations [19]. Unfortunately, several recent studies highlight the
presence of suboptimal testing rates and suggest that the preva-
lence may be much higher that previously considered [20–22].

As HBV, HDV can be transmitted by blood and blood-derived
products and sexual contact. Vertical transmission is however rare.
In highly endemic populations, transmission occurs mainly
through intrafamilial and iatrogenic spread [23] in association with
poor hygiene conditions [24]. In low endemicity regions in the
northern hemisphere, iatrogenic and intrafamilial transmission,
while accounting for infections occurred in the past, are no longer
common and IVDU is now the main transmission route [6]. Sexual
transmission, although less frequent than for HBV or HIV, seems to
be important in regions where HBV infection is endemic, such as
Taiwan [25,26].

Virology

Classification

HDV is the smallest known virus infecting mammals, for which
humans are the only natural reservoir. Other susceptible mam-
malian hosts have been identified as well as used for research pur-
poses; these include chimpanzees, tree shrews (both with HBV as a
helper virus) and woodchucks (in the presence of the woodchuck

hepatitis virus, WHV). Although HBV orthologues have been found
in a variety of non-human mammals and have been shown to have
potential cross-species infectivity [27], no HDV orthologue had
been described until the very recent identification of HDV-like
agents in birds and snakes [28,29].

Due to its distinct characteristics, HDV has been postulated to
originate from plant viroids or cellular circular RNAs and is cur-
rently the sole member of the Deltavirus genus [30–32].

There are eight HDV genotypes, highly heterogeneous, with up
to "40% of sequence divergence [33]. Genotype 1 is present world-
wide and is the predominant virus in Europe and North America.
Genotype 3 is identified in South America, while genotypes 2 and
4 are common in East Asia and genotypes 5–8 are mainly found
in Africa (refer to [34] for a review of genotype distribution).
Although good quality studies are limited, different genotypes
seem to be associated with distinct liver disease severity. In com-
parison with genotype 1, genotypes 2 and 4 seem to cause milder
liver disease. Genotype 2 in particular, has been associated to a
lower incidence of cirrhosis, HCC and decreased mortality than
genotype 1 in a prospective study conducted in Asia [35]. Genotype
3, on the other hand, is associated with a more severe course of
acute infections and a higher risk of acute liver failure [36].

A co-evolution of HBV and HDV genotypes can be suggested by
the frequency of specific genotype pairs, the most commonly
reported being the combination of HDV genotype 3 with HBV
genotype F [37]. However, these associations have been argued
to merely result from geographic distribution, given these are not
strict combinations [36] and HDV virion assembly has been shown
to be possible with several HBV genotypes [38].

Viral structure

HDV circulating virions were firstly characterised in chim-
panzees infected with serum from an Italian chronic carrier [39].
As represented in Fig. 1. These 35–37 nm particles are composed
of an envelope and a ribonucleoprotein (RNP).

Since HDV is a defective virus and does not code for its own sur-
face proteins, it uses the three forms of HBV surface proteins (small
or S-HBsAg, medium or M-HBsAg and large or L-HBsAg) on which
it depends to form its own envelope and egress and re-entry into
hepatocytes. These proteins share a common C-terminus (S
domain, the only constituent of S-HBsAg). M-HBsAg contains an
N-terminal hydrophilic domain named PreS2 and, relative to M-
HBsAg, L-HBsAg N-terminus consists of an additional domain
named PreS1 [40].

The RNP, present both in viral particles and infected cells, con-
tains the viral genome associated with both isoforms of the hepati-
tis delta antigen (HDAg) — small, S-HDAg, and large, L-HDAg —
forming a structure that is essential for the nuclear trafficking of
HDV RNA and for viral assembly [41]. Although debate surrounds
its complete characterisation, its assembly depends on the
oligomerisation of HDAg molecules and the secondary structure
of the HDV genome [42–45].

The HDV genome, whose complete structure was first reported
in 1986, is a circular, covalently closed, single-stranded RNA of
"1680 nucleotides with 74% internal base pairing, allowing the
folding into a partially double-stranded rod-like structure [46].

During HDV replication in the infected cells, two other main
forms of viral RNAs can be found: the antigenome, which is a repli-
cation intermediate and the exact complement of the genome
sequence [47,48], and the HDV mRNA coding for the two isoforms
of the HDAg [49]. Ribozymes (small, self-cleaving RNA sequences)
have been described in both the HDV genome and antigenome and
are responsible for the cleavage of the multimeric linear RNAmole-
cules that arise during replication [50].
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Viral life cycle

The following paragraphs describe the main steps of the HDV
life cycle and Fig. 2. depicts a simplified, schematic version.

Viral entry

HDV is considered to target primarily hepatocytes. Although the
possibility of extra-hepatic replication in a natural infection has

been hypothesised for HBV, namely in lymphocytes [51,52], no
such evidence exists for HDV [53]. However, HDV replication can
take place in a wide range of mammalian cells, if the genome is
experimentally delivered, suggesting that its hepatotropism
depends exclusively on the presence of the receptor [54].

HDV is considered to enter hepatocytes through the same
mechanisms as HBV, given that both viruses share a similar
envelope [2]. Infectivity of both viruses depends on the presence
of L-HBsAg, in particular on the 75 amino acids located at its

Fig. 1. Structure of HBV and HDV virions. Both viruses use HBV surface proteins (S-, M- and L-HBsAg) for their assembly. HBV icosahedral capsid is formed by multimerisation
of its core protein (HBcAg) and contains one copy of the viral partially double-stranded DNA genome (or relaxed circular DNA, rcDNA) and the viral polymerase. HDV virions
contain one copy of the viral circular, single-stranded RNA genome (that has 70% of sequence complementarity, allowing its folding into a rod-like structure), associated with
both forms of its only protein (large and small delta antigen or S- and L-HDAg), forming the viral ribonucleoprotein (RNP).

Fig. 2. HDV life cycle. HDV entry (step 1) is mediated by a first attachment step, resulting from viral interaction with HSPGs, and later specific interaction of L-HBsAg with the
viral receptor, NTCP. This step is inhibited by Myrcludex B. The viral RNP is then transported to the nucleus (step 2) where it releases the viral genome that serves as template
to transcription of HDV mRNA (step 3), from which HDAg is translated (step 4). Replication of viral RNA (step 5) is mediated by cellular DNA-dependent RNA polymerases in
the presence of S-HDAg, through a rolling-circle mechanism, with formation of multimeric and antigenomic RNA intermediates. During replication, antigenomic RNA can be
edited by ADAR1 (step 6), leading to the expression of L-HDAg molecules (as detailed in Fig. 3). Farnesylation of L-HDAg (step 7), a step inhibited by lonafarnib, is necessary
for regulation of replication and viral assembly. The newly formed HDV RNPs are assembled in the nucleus (step 8), exported and then enveloped by HBV surface
glycoproteins (step 9) through the interaction of farnesylated L-HDAg with HBsAg. HDV virions are thought to be secreted through the Golgi (step 10) in parallel with HBV
SVPs. Although the precise mechanism of action of REP 2139 is not fully characterized, it has been shown not to interfere with viral entry of HBV or HDV but appears to affect
HDV secretion by inhibiting secretion of HBsAg and also potentially by interacting with HDAg. The exact mechanism of action of interferons (both alpha and lambda) is not
represented, as it is still not fully known (although it is believed to involve an inhibition of viral RNA replication). ADAR1, adenosine deaminase acting on RNA 1; AG,
antigenome; ER, endoplasmic reticulum; G, genome; HBV, hepatitis B virus; HDV, hepatitis B virus; HSPGs, heparan sulfate proteoglycans; NTCP, sodium taurocholate co-
receptor peptide; RNP, ribonucleoprotein; SVPs, subviral particles.
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N-terminal (in the PreS1 domain), where an essential myristoyla-
tion site is located [40], as well as specific amino acid residues of
S-HBsAg. However, M-HBsAg does not seem necessary [55,56].

A first, non-specific step consists in the viral attachment to the
heparin sulfate proteoglycans (HSPGs) exposed on the outer face of
the host cell membrane [57–59]. One particular HSPG, glypican-5,
has been identified as an entry factor that only partially justifies
HDV and HBV dependence on HSPGs, as its abrogation was not suf-
ficient to completely prevent infection [60].

Attachment, although necessary, is not sufficient to allow viral
entry and further interaction of the virus with its specific receptor
is needed. For the first three decades following the identification of
both HBV and HDV, this receptor was unknown. In 2012, the
human sodium taurocholate cotransporting peptide (hNTCP,
encoded by SLC10A1) was convincingly shown to be a functional
receptor to both HBV and HDV in hepatocytes [61]. This molecule
is located at the basolateral membrane of hepatocytes and is
involved in the uptake of bile acids. The interaction of the bile acid
binding domain of NTCP with the myristoylated N-terminal
sequence of the PreS1 region of L-HBsAg was shown to be both
necessary and sufficient for HBV and HDV infection [61,62]. The
post-entry steps involved in the release of the HDV RNP in the
cytoplasm and its transport into the nucleus, where transcription
and replication subsequently occur, are not fully characterised.

Replication
HDV replication occurs in the nucleus and is completely inde-

pendent of HBV. Since HDV does not possess its own RNA-
dependent RNA polymerase or use the polymerase of its helper
virus, the host cell DNA-dependent RNA polymerases likely medi-
ate its replication. Several lines of evidence support the involve-
ment of RNA polymerase II, but a debate is still ongoing
concerning the role of the other cell RNA polymerases in HDV
replication [54,63]. Both RNA polymerases I and III have been
shown to bind HDV RNA. While RNA polymerase I seems impli-
cated in the antigenomic transcription, no precise function has
been reported so far for RNA polymerase III [64].

The mechanisms through which the virus is able to hijack the
cell DNA-dependent RNA polymerase(s) for its RNA replication
are still largely unknown and, although similar mechanisms have
been shown to play a role in plant viroid replication [65], HDV con-
stitutes a unique case in human virology. The secondary structure
of HDV RNA might play a role in the capacity of the host RNA poly-
merase II to use it as template, as the enzyme recognises sites
located at the two poles of the rod-like structure of the genome
[66]. Arguably, S-HDAg would also play an important role in this
process [67]. Indeed, the regulation of viral replication involves
both forms of HDAg: while L-HDAg, which is essential for viral
assembly, has an inhibitory effect on replication [68,69], the tran-
scription of the viral RNAs cannot occur in the absence of S-HDAg
[70,71]. S-HDAg has been shown to interact with several subunits
of both RNA polymerases I and II and the interaction with the latter
may involve the recruitment of chromatin remodelling complexes
onto HDV RNA [67,72]. To account for the need of S-HDAg, the
transcription of the HDV mRNA is believed to precede the HDV
RNA replication. The cellular RNA polymerase II mediates the tran-
scription of this 800 nucleotide-long mRNA, which has the same
characteristics as cellular mRNAs (a 50 cap and a poly-A tail) [54].
This step ensures the availability of S-HDAg, which then favours
the initiation of replication.

The replication of HDV RNA follows a rolling-circle mechanism
starting with the synthesis of multimeric linear transcripts com-
plementary to the genome. HDV RNA antigenomic ribozyme self-
cleavage separates the different monomers from the multimeric
transcripts. Monomers are then ligated into circular antigenomic
molecules, serving as the template for genomic-strand progeny

molecules [66]. The mechanism underlying the circularisation of
the HDV genome, either by ribozyme mediated self-ligation or a
cellular ligase, is still under debate [73].

RNA editing and L-HDAg synthesis
A single open reading frame in the HDV antigenome directs the

synthesis of both isoforms of HDAg (S-HDAg and L-HDAg). These
two isoforms differ by an additional C-terminal stretch of 19 amino
acids in L-HDAg. As described before, the replication of HDV RNA
requires S-HDAg, whereas L-HDAg is essential for virion assembly.
The C-terminal domain of L-HDAg enables the interaction with
HBsAg [74]. The relative ratio between these two HDAg isoforms
regulates the equilibrium between replication and virion assembly.
The editing of the antigenomic RNA by adenosine deaminase acting
on RNA 1 (ADAR1) drives the transition from S-HDAg mRNA to
L-HDAgmRNA transcription [75]. This cellular enzyme has two iso-
forms: the small, which is expressed constitutively and the large,
whose expression is stimulated by type I IFN. Contradictory results
still exist regarding the role of each ADAR-1 isoform in the HDV life
cycle [76,77]. ADAR1 acts on a particular site of the HDV antige-
nome, called the amber/W site. This site is a UAG amber stop
codon, leading to translation termination and consequent S-
HDAg production. ADAR1 deaminates an adenosine (UAG? UIG)
and the resulting inosine is recognised as a guanosine in the next
replication cycle, leading to a ACC triplet on the genome (instead
of the original AUC). Transcription of this triplet generates a
tryptophan-encoding UGG codon in the mRNA that no longer
works as a stop codon. Consequently, translation proceeds for an
additional 19 amino acids, resulting in L-HDAg synthesis [75], as
depicted in Fig. 3.

Post-translational modifications of HDAg proteins
Both HDAg proteins undergo post-translational modifications

critical for their respective functions. Phosphorylation of two ser-
ine residues of S-HDAg allows interactions with the cellular RNA
polymerase II, enabling the replication of HDV RNA [78,79]. A far-
nesylation signal (C211XXQ box) in the additional 19 amino acids of
L-HDAg enables a farnesyl lipid group to be added covalently to the
cysteine at position 211 by a cellular farnesyltransferase. This far-
nesylated form of L-HDAg inhibits the replication of HDV RNA and
is essential for virion assembly [74]. Indeed, agents that inhibit the
addition of the farnesyl lipid group to the C-terminus of L-HDAg
prevent its interaction with HBsAg, consequently inhibiting HDV
virion secretion both in vitro and in vivo [80,81] and constitute a
novel therapeutic approach for HDV infection (see Drugs in Clinical
Development below).

Assembly and release
As mentioned previously, although HDV can replicate and syn-

thesise new RNPs independently of HBV, its release from hepato-
cytes depends on the presence of HBsAg in the same cell. HDV
assembly depends on the specific interaction between the farnesy-
lated N-terminus of L-HDAg and the S region of HBsAg [82], and it
has been shown that, unlike HBV, HDV RNP can efficiently be
assembled with the small form of HBsAg (S-HBsAg) [83]. However,
the large form of HBsAg (L-HBsAg) is needed to form infectious
virions (as mentioned earlier, it mediates the interaction between
the virus and its hepatocyte receptor, NTCP). The relevance of the
non-infectious, S-HBsAg enveloped, HDV particles in a natural
infection is still to be demonstrated.

In the context of a HBV infection, the three forms of HBsAg,
which are produced in much higher amounts than required for
HBV virion production, can self-assemble and be secreted as
‘‘empty” subviral particles (SVPs). These non-infectious SVPs (con-
stituted of an envelope devoid of HBV capsid or nucleic acids) are
secreted in large excess relative to the infectious virions and are
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thought to play a role in HBV escape to the immune response. HBV
SVPs are secreted through the Golgi, while infectious virions follow
the multivesicular body pathway [84]. Given that the composition
of the HDV envelope is close to that of SVPs and that titers of cir-
culating HDV virions are higher than those of HBV virions,
approaching those of HBV SVPs [2,85], it is likely that HDV uses
the SVP secretion pathway for its assembly and release.

Molecular interactions with HBV

Studies conducted in experimental models have shown a
decrease in HBV replication in the context of HDV infection, with
minimal impact on the expression of HBsAg, as demonstrated by
an increased HBsAg/HBV DNA ratio in the HBV-HDV co-infected
cells, in comparison with HBV monoinfected cells [86–88]. This
observation has been confirmed in patients, although the viral
dominance patterns seem to fluctuate over time [89,90].

Several mechanisms may be used by HDV to inhibit its helper
virus replication, while ensuring a constant pool of HBsAg for its
own assembly. Firstly, the possibility of an epigenetic regulation
of cccDNA transcriptional activity by HDAg has been suggested
from both in vitro results and patients samples [91], raising the
possibility of a differential transcription of PreS/S mRNA vs prege-
nomic mRNA. Secondly, both isoforms of HDAg have been shown
to interact with and strongly repress both HBV enhancer
sequences, with a direct impact on HBV replication [92]. Thirdly,
HDAg, being an RNA-binding protein that has recently been shown
to interact with specific cellular RNAs [93–95], may bind to HBV
mRNAs and selectively affect their stability. Finally, accumulating
evidence suggests that, in HBV-infected patients, integrated HBV
DNA is an abundant source of HBsAg, even in the absence of HBV
replication [96–98]. Furthermore, HBsAg derived from integrated
HBV DNA has been shown to support assembly and release of
infectious HDV particles [99]. While the impact of this mechanism
in vivo is still to be demonstrated, it is tempting to hypothesise that
HDV can complete its cycle using HBsAg produced from integrated
HBV DNA, devoid of HBV replication in the same hepatocyte.

Indirect mechanisms of interference through a deregulation of
the hepatocyte innate immune response are also possible. HBV
has classically been considered not to be recognised by the innate
immune system [100]. While this notion has been challenged by
evidence suggesting that the virus may in fact actively counteract
the interferon response [101,102], two recent studies support the
concept of HBV as a ‘‘stealth virus” [103,104]. HDV, on the other
hand, has been shown to induce a strong type I IFN response
[86,105] as a result of the recognition of viral RNAs by melanoma
differentiation antigen 5 (MDA5) [106]. The consequent increased
expression of antiviral IFN-stimulated genes (ISGs), such as MxA,
may contribute to the inhibition of HBV replication [92].

The interplay between HDV and the host cell IFN response is
however far from being clarified. HDV replication is itself inhibited
by the administration of exogenous IFN-alpha [86,107]. The mech-
anisms could involve, among others, the increased synthesis of L-
HDAg as a consequence of the stimulation of ADAR1 expression
[108]. Furthermore, IFN-alpha has been shown to inhibit HDV
propagation during cell division, suggesting yet another antiviral
mechanism [109] [Zeng Z et al, 2018 International HBV Meeting].
It is tempting to hypothesise that the virus may have developed
mechanisms to resist the strong IFN response induced by its own
replication, and HDV has indeed been shown to interfere with
the JAK/STAT signalling pathway, a mechanism that might play a
role in viral persistence [110].

Clinical presentation and natural history of the disease

Two modalities of HDV infection exist: simultaneous coinfec-
tion with HBV and HDV superinfection of a person chronically car-
rying HBV. Coinfection translates into acute hepatitis, during
which aminotransferase levels can follow a typical biphasic course,
corresponding to an initial HBV spread followed by HDV propaga-
tion. As for HBV monoinfection, in most immunocompetent adult
patients (90–95%), it progresses to resolution of both HBV and
HDV infections. The risk of acute liver failure is however much
higher than that during acute HBV monoinfection [111,112]. Acute

Fig. 3. Differential expression of S- and L-HDAg as a consequence of antigenome RNA editing by ADAR-1. The HDV antigenomic RNA has one single open reading frame from
which the two isoforms of HDAg are expressed. Adenosine deaminase acting on RNA-1 (ADAR1) catalyses editing of the amber/W site on the antigenomic HDV RNA and
adenosine 1012 is converted to inosine. After replication and mRNA transcription, the original stop codon (AUG, terminating the synthesis of S-HDAg) is converted into UGG,
coding for a tryptophan (Trp) residue and allowing translation to proceed until the next stop codon, which results in the addition of 19 amino acids (L-HDAg).
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HDV superinfection of a patient chronically infected with HBV is
associated with an episode of acute hepatitis that can be mistaken
for a HBV flare. In this setting, the risk of acute liver failure is par-
ticularly high [111]. More than 90% of HBV carriers superinfected
with HDV progress to chronic dual infection [111,112].

CHD is considered the most severe form of chronic viral hepati-
tis, with a faster progression towards cirrhosis and a higher risk of
decompensation and mortality [113]. Indeed, 10–15% of chroni-
cally infected patients might develop cirrhosis within 5 years from
infection and up to 80% after 30 years [114].

The association between HDV and HCC is still debated. On the
one hand, decompensation of chronic liver disease, and not HCC,
has been shown to be the most common complication of CHD
[115,116]. On the other hand, despite the long-standing belief that
HDV-infected patients do not present an increased risk of HCC, sev-
eral cohort studies have recently found that this risk may indeed be
as much as nine times higher than in HBV monoinfected patients
[20,113,117,118]. Furthermore, persisting HDV replication was
shown to be a risk factor for liver disease progression and HCC
[119]. Other factors of disease progression are male sex, cirrhosis
at presentation and lack of antiviral therapy [116].

Diagnosis of HDV infection

Recommendations of the major societies currently differ in the
screening strategy for HDV diagnosis. European guidelines advise
for HDV screening of all HBV-infected patients [120]. In the United
States, and despite increasing evidence pointing to a suboptimal
diagnosis of HDV infection [20,21], screening is only advised in
patients with specific risk factors (including migrants from regions
with high HDV endemicity, a history of IVDU or high-risk sexual
behaviour, individuals infected with HCV or HIV and patients with
elevated aminotransferases with low or undetectable HBV DNA)
[19]. Given the recent evidence suggesting that the global burden
of disease may be higher than previously estimated, screening of
all HBsAg-positive patients may be considered. Such a strategy
would not only allow a more accurate determination of the preva-
lence of HDV infection, but it would also lead to wider and earlier
therapeutic interventions, decreasing the burden of disease com-
plications. Furthermore, access to care would be significantly
strengthened by the implementation of point of care diagnosis.

Several markers can be used for the diagnosis of HDV infection.
Anti-HDV antibodies can be detected by enzyme-linked
immunosorbent assay (ELISA) or radioimmunoassay (RIA). Anti-
HDV total antibody is currently used as a first screening approach
for the detection of HDV infection. However, two main limitations
should be borne in mind, justifying the need for complementary
approaches for diagnosis confirmation. Firstly, total anti-HDV anti-
body can be undetectable in the early weeks of acute infection. Sec-
ondly, anti-HDV IgG may persist after HDV infection, not allowing
the distinction between active and resolved infection. A quantita-
tive microarray antibody capture (QMAC) assay for the quantifica-
tion of anti-HDV IgG has been recently validated for HDV
diagnosis in Mongolia and the United States and was shown to cor-
relate with detection of HDV RNA [8,121]. Anti-HDV IgM appears
earlier during the acute infection and has been shown to correlate
with disease activity during chronic infection [122]; however, it is
frequently undetectable in this setting and hence does not allow
diagnosis confirmation nor distinction between acute and chronic
infection. Serum HDAg is only transiently detected in the acute
phase of HDV infection and its measurement is of limited utility.

Infection confirmation relies on the detection of HDV RNA by
quantitative RT-PCR, which, together with a positive anti-HDV
antibody, allows to distinguish between chronic and past infec-
tions and to follow response to treatment [123]. However, unlike

for other viruses, lack of standardisation is still problematic for
HDV and PCR results are often not comparable between laborato-
ries [124]. Recent steps have been taken towards standardisation,
with the availability of a World Health Organization standard,
allowing result reporting in international units (IU) and new
pangenotypic commercial assays [125]. In cases where a liver
biopsy sample is obtained, intrahepatic HDAg may be detected
by immunohistochemistry and HDV RNA by in situ hybridisation.
Although determination of HDV genotype is possible by PCR, its
use is limited to research settings.

Management of HDV-infected patients

The management of acute hepatitis D relies on general support
measures or referral for liver transplantation if acute liver failure
develops. No antiviral treatment has proven useful [126]. There
are currently no specific direct-acting antiviral treatments for
HDV and, although several host-targeting molecules are under
development, current recommendations for CHD treatment are
limited to a prolonged course of pegylated IFN-alpha.

Patient follow-up and treatment outcomes

The ideal endpoint for CHD treatment would be the clearance of
both HBV and HDV infections from the liver, translating into anti-
HBs seroconversion, to prevent liver disease progression. Although
on-treatment and post-treatment kinetics of serum HDV RNA have
been used to monitor treatment response, cumulative evidence
exists that, unlike HCV infection, they fail to predict long-term viro-
logical outcome. Indeed, although undetectable HDV viremia is
expected to be a marker of on-treatment response, a classical defi-
nition of sustained virological response (persistently undetectable
viral RNA for 24 weeks after treatment) should be used with cau-
tion in CHD, as later relapses have been shown to occur in more
than 50% of the patients treated with pegylated IFN-alpha [127].

Currently available antiviral treatments

Pegylated IFN-alpha
Although, as described above, its precise mechanism of action

still needs to be clarified, IFN-alpha remains the only recom-
mended treatment for CHD [19,120]. Pegylated IFN-alpha, having
a prolonged plasma half-life, allows a once-a-week administration,
with better efficiency and compliance than standard IFN-alpha
[123,128]. Indeed, in a meta-analysis performed in 2011, standard
IFN-alpha treatment was associated with a 17% sustained suppres-
sion of HDV RNA at six months follow-up (compared to 25% in
pegylated IFN-alpha) and with more frequent and severe adverse
events (e.g. anorexia, nausea, weight loss, alopecia, leukopenia
and thrombocytopenia) [129]. Results are comparable for pegy-
lated IFN-alpha 2a and 2b [130].

Data from clinical trials do not allow an accurate prediction of
response and no robust stopping rules exist. However, HDV RNA
negativity at 24 weeks of treatment has been identified as a predic-
tor of sustained HDV RNA suppression during follow-up [131].
Nevertheless, optimal treatment duration has not been estab-
lished. In most studies, pegylated IFN-alpha was used for 48 weeks
and this is now the recommended treatment duration. As shown in
Table 1, results diverge among studies and considering the vari-
ability of PCR performances recently demonstrated [124,132], the
reported sustained responses at 24 weeks of post-treatment
follow-up may have been overestimated in earlier studies. In one
large randomised clinical trial, a 48-week course of pegylated
IFN-alpha led to a persistently undetectable HDV RNA 24 weeks
after treatment in 25%–30% of patients [133]. Shorter treatment
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durations (three to six months) have been evaluated in preliminary
studies, resulting in suppression of HDV replication and improve-
ment of liver disease in some patients but universal relapse after
treatment discontinuation [134,135]. Prolonging the duration
beyond 48 weeks has not shown any additional benefit in a large
cohort [136], although particular patients have been suggested to
benefit from prolonged courses of treatment [131].

A summary of the main studies evaluating the efficiency of IFN-
based regimens in HDV infection is provided in Table 1.

Nucleoside/nucleotide analogues
Nucleoside/nucleotide analogues (NUCs) act on the HBV reverse

transcriptase, and efficiently inhibit HBV replication, with little
effect on HBsAg expression. Although in theory inhibiting the
helper virus is expected to affect HDV life cycle, in reality, NUCs
are not effective against HDV. Molecules tested in HDV infection
include famciclovir [141], ribavirin (in combination with pegylated
IFN-alpha [142]), lamivudine [143] and entecavir [144], but none
demonstrated effectiveness.

A clinical trial tested adefovir as monotherapy or in combina-
tion with pegylated IFN-alpha, but none of these treatments
showed a better efficacy than pegylated IFN-alpha alone, and ade-
fovir treatment alone had no effect on HDV viremia [133]. The
same result was later observed with tenofovir [136]. However, a
prospective South American study reported encouraging results
with the combination of entecavir and pegylated IFN-alpha for
48 weeks in patients infected with HDV genotype 3, as 21 of the
22 patients included had an undetectable HDV RNA level at the
end of treatment and at the six months follow-up, and 20 of 22
had undetectable level of HBV DNA at the six months follow-up,
suggesting that genotype 3 might react differently to these mole-
cules, potentially being easier to treat [145]. Finally, a study con-
ducted with HIV co-infected patients treated with tenofovir for
58 weeks showed a good response with no detectable levels of
HBV DNA in all patients and with no detectable levels of HDV
RNA in 53% of them. Furthermore, an improvement in liver fibrosis
severity was observed in 60% of patients who achieved unde-
tectable HDV RNA levels [146]. Although this improvement may
be a mere consequence of the immune reconstitution resulting
from antiretroviral treatment, a benefit of prolonged therapy with
NUCs in CHD cannot be excluded.

Drugs in clinical development

As HDV depends on the host cell RNA polymerases for its repli-
cation, and even though alternative viral targets as the ribozyme

could eventually be inhibited [147], the development of antiviral
molecules that directly and specifically target this step has not
been successful. The alternative strategies currently being devel-
oped are based either on the indirect stimulation of the innate
immune system (as is the case of IFN-lambda) or of cell targets
involved in other steps of the viral life cycle as entry (Myrcludex
B) and viral assembly and release (lonafarnib and REP 2139). A
summary of the most relevant results obtained in recent clinical
trial results is presented in Table 2.

Pegylated IFN-lambda
IFN-lambda is a type III IFN with structural features, receptor

characteristics and biological activities that are distinct from IFN-
alpha, while sharing common ISG induction pathways associated
with its antiviral activity. It has been shown to have an antiviral
effect against HDV comparable with IFN-alpha in humanised mice
[107]. In patients with chronic hepatitis B, the administration of
IFN-lambda in a pegylated formulation led to virological outcomes
equivalent to those of pegylated IFN-alpha, but with a better toler-
ability, which makes it a potentially attractive option for the treat-
ment of CHD [159]. It is currently being evaluated in phase II
clinical trials both in monotherapy (NCT02765802) and in combi-
nation with lonafarnib and ritonavir (NCT03600714).

Myrcludex B
Myrcludex B, a myristoylated lipopeptide, inhibits the entry of

HBV and HDV in hepatocytes. Its sequence corresponds to the N-
terminal amino acids (2–48) of L-HBsAg and inhibits viral entry
by binding to its natural receptor, NTCP, at the basolateral mem-
brane of hepatocytes (Fig. 2). Data from preclinical studies indicate
that the antiviral effect can occur without interference with the
bile acid transport function of NTCP. Indeed, while bile acid trans-
port can be affected by high doses of Myrcludex B (IC50 47 nmol/L),
effective viral entry inhibition can be achieved at much lower
doses (IC50 80 pmol/L) [40].

In a phase Ib/IIa trial, 24 patients with CHD received standard
pegylated IFN-alpha monotherapy or 24 weeks of Myrcludex B as
monotherapy or in combination with pegylated IFN-alpha.
Although no changes in HBsAg levels (the primary endpoint) were
observed, the serum HDV RNA levels were significantly reduced
(1.67 log10 in the Myrcludex B group, 2.6 log10 in the Myrcludex
B plus pegylated IFN-alpha and 2.2 log10 in the pegylated IFN-
alpha monotherapy arm) [149]. While some patients achieved
undetectable HDV RNA levels at the end of treatment, viral
rebound was universal after treatment cessation.

Table 1
Summary of studies evaluating IFN-alpha treatment of chronic hepatitis D.

Treatment Treatment modalities Number of patients Sustained suppression of
HDV RNA at 24-weeks of
follow-up

References

IFN-alpha: 3–18 Mio units 3x/week 3–12 months 201 17% [129]

Pegylated IFN-alpha 2b: 1.5 mg/kg qw 18 months 16 25% [137]
18 months + Ribavirin (1–1.2 g qd
for 12 months)

22 18% [137]

12 months 14 43% [123]
12 months 12 17% [138]
12 months 48 25% [139]

Pegylated IFN-alpha 2a: 180 mg/kg qw 12 months 29 26% [133]
12 months + adefovir (10 mg qd
for 12 months)

31 31% [133]

Pegylated IFN-alpha 2b: 1.5 mg/kg qw or
Pegylated IFN-alpha 2a: 180 mg/kg qw

12 months 104 23% [140]

Abbreviations: qw, weekly; qd, daily.
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Table 2
Summary of the studies evaluating molecules in clinical development.

Treatment Treatment
duration

Number
of
patients

Virological outcome Development
stage and
References

Pegylated IFN-lambda
120 or 180 mg qw sc

48 weeks 33 At week 24 of treatment:
4/10 patients are HDV PCR-negative

Phase 2
[148]

Myrcludex B 2 mg/Kg qd sc, 24 weeks
followed by pegylated IFN-alpha
monotherapy, 48 weeks

72 weeks 24 Decline in HDV RNA at week 24 of treatment:
1.67 log10 decrease in HDV RNA

Phase 2
[149]

Myrcludex B 2 mg/Kg qd sc + pegylated
IFN 24 weeks followed by Pegylated
IFN-alpha monotherapy, 24 weeks

48 weeks Decline in HDV RNA at week 24 of treatment:
2.59 log10 decrease in HDV RNA

Pegylated IFN-alpha monotherapy 48 weeks Decline in HDV RNA at week 24 of treatment:
2.17 log10

Myrcludex B 2, 5 or 10 mg qd sc 24 weeks 120 Decline in HDV RNA at week 24 of treatment:
2 mg: 1.75 log10
5 mg: 1.6 log10
10 mg: 2.7 log10

Phase 2b
[150]

Tenofovir 245 mg qd po 24 weeks Decline in HDV RNA at week 24 of treatment:
0.18 log10

Myrcludex B 2 or 5 mg qd sc +
pegylated IFN-alpha sc

48 weeks 30 Decline in HDV RNA at week 48 of treatment:
2 mg: 3.62 log10
5 mg: 4.48 log10

Phase 2
[151]

Myrcludex B 2 mg qd sc 48 weeks 15 Decline in HDV RNA at week 48 of treatment:
2.84 log10

Pegylated IFN-alpha sc 48 weeks 15 Decline in HDV RNA at week 48 of treatment:
1.14 log10

Lonafarnib 100 or 200 mg bid iv 4 weeks 14 Decline in HDV RNA at day 28 of treatment:
100 mg: 0.73 log10
200 mg: 1.54 log10

Phase 2A
[152]

Lonafarnib 200 mg bid po 12 weeks 3 Variation in HDV RNA at week 12 of treatment:
0.03 log10

Phase 2
[153]

Lonafarnib 300 mg bid po 12 weeks 3 Decrease in HDV RNA at week 12 of treatment:
1.78 log10

Lonafarnib 100 mg tid po 5 weeks 3 Decrease in HDV RNA at week 4 of treatment:
1.31 log10

Lonafarnib 100 mg bid po + pegylated
IFN-alpha) qw sc

8 weeks 3 Decrease in HDV RNA at week 8 of treatment:
2.19 log10

LNF 100 mg po bid + ritonavir 100 mg qd po 8 weeks 3 Decrease in HDV RNA at week 8 of treatment:
2.97 log10

Lonafarnib 50 mg bid po (increased at
4 week intervals to
75 mg and then 100 mg) + ritonavir
100 mg bid po

24 weeks 15 Dose escalation possible in 10 patients
At the end of treatment, mean HDV RNA decline
was 1.58 ± 1.38 log10 IU/mL

Phase 2
[154]

Lonafarnib 50, 75 or 100 mg qd + ritonavir
100 mg qd po

12 or 24 weeks 21 Decrease in HDV RNA at week 12 of treatment:
50 mg: 1.6 log10
75 mg: 1.3 log10
100 mg: 0.83 log10
Decrease in HDV RNA up to 3.7 log10 at week 24 of treatment

Phase 2
[155]

Lonafarnib 50 mg bid po + ritonavir 100 mg bid po
or
Lonafarnib 25 mg bid po + Ritonavir 100 mg bid po
or
Lonafarnib 50 mg bid po + ritonavir 100 mg bid po +
pegylated IFN-alpha qw sc
or
Lonafarnib 25 mg bid + Ritonavir 100 mg bid +
pegylated IFN-alpha qw sc
or
Lonafarnib 50 mg bid po + ritonavir 100 mg bid po +
addition of pegylated IFN-alpha
qw for weeks 12–24

24 weeks 33 Decrease in HDV RNA at week 24 of treatment:
21 of 33 patients had a > 2 log10 decrease in HDV RNA

Phase 2
[156]

REP 2139-Ca 500 mg qw iv 15 weeks followed by
REP 2139-Ca qw + pegylated IFN-alpha
15 weeks followed by pegylated IFN-alpha 33 weeks

63 weeks 12 - At week 30 of treatment:
>5log decline in HDV RNA in 11 patients
Undetectable HDV RNA in 10 patients
- At the end of treatment:
HBs seroconversion in 5 patients;
Undetectable HDV RNA in 9 patients;
#18 months after treatment:
4 patients HBsAg negative
7 patients maintain undetectable HDV RNA

Phase 2
[157,158]

Abbreviations: bid, twice a day; iv, intravenous; po, per os; qw, weekly; qd, daily; sc, subcutaneous, tid, three times per day.
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A more recent phase II study on a larger group of 120 subjects
aimed to determine the optimal dose and potential serious adverse
effects of Myrcludex B. Randomised into four arms, patients first
received tenofovir for 12 weeks, followed by tenofovir alone or
combined with different doss of Myrcludex B for 24 weeks, and
finally tenofovir alone again for 24 weeks [150]. The primary end-
point was a 2 log10 reduction in HDV RNA from baseline and was
achieved by 77% of the patients in the arm receiving the highest
dose of Myrcludex B (10 mg). During treatment with Myrcludex
B, the serum HDV RNA levels decreased in a dose-dependent man-
ner (1.75 log, 1.6 log and 2.7 log decrease in the 2, 5 and 10 mg
arms, respectively) and ALT improved in 50% of the patients. How-
ever, at the end of 12 weeks of follow-up, only "10% of patients in
each of the three arms treated with Myrcludex B had maintained a
virological response (i.e. 2 log10 reduction in HDV RNA) and no
response was reported in the arm receiving tenofovir alone, sup-
porting the need for longer-term treatment with Myrcludex B.
The treatment seems to be well tolerated with no serious adverse
events, despite a slight, asymptomatic increase of bile acids [150].
Interestingly, an encouraging linear decline in intrahepatic HDV
RNA levels was demonstrated overtime, suggesting that Myrcludex
B monotherapy is associated with a decrease in the number of
HDV-infected hepatocytes [160].

End of treatment results of a subsequent multicentre trial eval-
uating a 48-week course of Myrcludex B (2 or 5 mg) in combina-
tion with pegylated IFN-alpha, compared with each therapy
alone were presented at AASLD 2018. Fifty percent of the patients
in the combination arms had undetectable HDV RNA at the end of
treatment (compared to 13% in the monotherapy groups), with
median declines compared to baseline of 4.48 log in the high-
dose combination group (compared to 1.14 log in the pegylated
IFN-alpha monotherapy arm) [131,151]. Daily subcutaneous injec-
tions are currently needed, although an oral formulation is under
development. A phase III clinical trial is expected to start early
2019.

Lonafarnib
As mentioned before, farnesylation of L-HDAg is an important

post-translational modification, as it enables the interaction of
HDV RNP with the HBV envelope. Lonafarnib is a farnesyl-
transferase inhibitor preventing the farnesylation of L-HDAg and
consequently its interaction with HBsAg (Fig. 2) and has been
shown to abrogate the secretion of HDV viral particles both
in vitro and in vivo [80,81]. A 2015 phase IIa clinical study showed
that HDV RNA levels were significantly reduced in patients treated
with lonafarnib for 28 days, in comparison to placebo (0.73
log10 IU/ml and 1.54 log10 IU/ml in the 100 mg and 200 mg group,
respectively) and these reductions were proportional to the circu-
lating drug levels [152]. However, lonafarnib has significant
adverse effects, such as nausea, diarrhoea, abdominal bloating
and weight loss.

A more recent study combined a low dosage of lonafarnib with
ritonavir, a cytochrome P450 3A4 inhibitor [153]. Ritonavir allows
the administration of smaller doses of lonafarnib to achieve suffi-
cient serum levels, leading to a better tolerability than the equiva-
lent dose without ritonavir. Four weeks of treatment with
lonafarnib 100 mg thrice daily led to a 1.2 log decrease in HDV
RNA, whereas a 2.4 log decline was observed with a treatment of
100 mg of lonafarnib twice daily combined with ritonavir. More-
over, lonafarnib added to pegylated IFN-alpha showed a decrease
of 1.8 log of HDV RNA after four weeks. However, after 8 weeks
of treatment with either lonafarnib + ritonavir or lonafarnib
+ pegylated IFN-alpha, almost all patients returned to the pre-
treatment HDV RNA levels within 4–24 weeks post-treatment
[153]. A new phase III study has recently been announced.

REP 2139
Nucleic acid polymers (NAPs) are amphipathic molecules with a

broad antiviral spectrum. Although their precise mechanisms of
action are still debated, their anti-HBV action seems to result from
an inhibition HBsAg release from hepatocytes [161]. As for HDV, an
additional interaction with HDAg has been described and may
account for the observed antiviral effect (current evidence on the
mechanisms of action of NAPs has been recently reviewed in
[162]). Furthermore, the drastic reduction of circulating HBAg
levels shown in patients is thought to promote a normalisation
of the humoral immune response [157].

A recent uncontrolled trial included 12 patients that were trea-
ted with REP 2139-Ca in combination with pegylated IFN-alpha
(patients received REP 2139-Ca only for 15 weeks, followed by a
combination of REP 2139-Ca and pegylated IFN-alpha for 15 weeks
and finally pegylated IFN-alpha only for 33 weeks) [157]. At the
end of combination therapy (week 30), 10/12 patients had unde-
tectable HDV RNA and 9/12 patients had HBsAg declines > 2log10
from baseline, 6 of whom had HBsAg seroconversion. At the end
of treatment 9 patients remained HDV RNA negative with 6 still
having HBsAg seroconversion. Eighteen months after removal of
treatment, HDV RNA was still negative in 7 patients and HBs sero-
conversion was still present in 4 patients [158].

Elevations of aminotransferases were documented in nearly
50% of patients [157]. However, aminotransferases normalized in
these patients during follow-up and no other alterations in liver
function were documented (with the exception of one patient with
bilirubin elevation). Although the results are overall promising, lar-
ger phase III trials are required before establishing the efficacy and
safety of this treatment.

A long-term follow-up study in CHB is currently under way
(with encouraging results presented in 2018 [158]) and a clinical
trial is planned to evaluate REP 2139-Mg (once-a-week subcuta-
neous administration) in combination with tenofovir and pegy-
lated IFN-alpha.

Vaccination/ prevention

HBV vaccination protects effectively against both HBV and HDV
infection. Vaccination campaigns have indeed reduced the reser-
voir of HBV patients that can be potentially infected by HDV. A
study published in 2007 [163] showed a clear correlation between
the introduction of vaccination for HBV and the decrease in HDV
incidence particularly among those 15–24 years old, probably also
because of reduced iatrogenic transmission. Countries with high
HDV endemicity, such as Brazil and Mongolia, have adopted uni-
versal HBV vaccination programmes, with an expected impact on
the absolute number of new infections. No perspectives for a vac-
cination strategy to prevent HDV infection in HBV-infected
patients currently exist, as results in animal models have been dis-
couraging [164].

Conclusions and future perspectives

Hepatitis D is considered the most severe form of chronic viral
hepatitis. It currently has no satisfactory treatment and a better
understanding of its pathogenesis is warranted. HDV infection is
highly endemic in resource-limited countries, where clinical trials
are difficult to conduct and, while it is considered infrequent in
developed countries, its real prevalence may be underestimated.
Thanks to significant advances in the characterisation of the viral
life cycle, several host-targeting molecules are currently in clinical
evaluation with promising results.
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