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Hepatitis C virus (HCV) is a major cause of liver disease includingmetabolic disease, fibrosis,
cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease
progression by perturbing a range of survival, proliferative, and metabolic pathways within
the proinflammatory cellularmicroenvironment. The recent breakthrough in antiviral therapy
using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure
cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or
comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic
hepatic signature, which persists after DAA cure. In this review, we summarize the main
signaling pathways deregulated by HCV infection, with potential impact on liver pathogen-
esis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification
of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways
are potential targets for novel chemopreventive strategies.

Hepatitis C virus (HCV) is a main cause of
chronic liver disease worldwide. Chronic

HCV infection causes chronic hepatic inflam-
mation, steatosis, and fibrosis, which progresses
to cirrhosis and hepatocellular carcinoma
(HCC) (PolarisObservatoryHCVCollaborators
2017). HCC is the most common type of liver
cancer and the second leading cause of cancer-
related death on the globe (Baumert and Ho-
shida 2019). The liver is an extraordinarily resis-
tant organ with a unique regeneration capacity,
but the persistent stress induced by chronic

inflammation and deregulation of signaling and
metabolism culminate in a >10-fold increased
HCC risk in HCV-infected patients compared
with HCV-negative subjects in cross-sectional
and case-control studies (El-Serag 2012). The
rate of HCC among HCV-infected persons
ranges from 1% to 3% and the interval from
infection to HCC has been estimated to be ∼30
years (Thrift et al. 2017). It is believed that a
combination of direct (viral proteins) and indi-
rect (chronic inflammation, deregulated signal-
ing) factors are responsible for HCV-induced
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liver disease development and progression. Be-
cause of the absence of a latent phase in the viral
life cycle or any DNA integration event, HCV
must ensure an optimal condition to maintain
its replication (Lupberger et al. 2019) and to es-
cape from the host innate immune response
(Gale and Foy 2005). In this review, we summa-
rize the main pathways that are deregulated dur-
ing chronic HCV infection, which are relevant
for the development and progression of HCV-
induced liver disease and HCC. Some of these
pathways remain deregulated in HCV-cured pa-
tients, serving as potential biomarkers for the
identification of risk patients and novel drug
targets for chemopreventive clinical strategies.

HCV-INDUCED CHRONIC
INFLAMMATION, FIBROSIS,
AND CIRRHOSIS

Inflammation is a life-preserving process to
maintain cellular homeostasis. It is mostly acti-
vated in response to pathogens or tissue injury
and is part of a physiological recovery response.
The liver harbors a large spectrum of immune
cells distributed within the hepatic compart-
ments (Freitas-Lopes et al. 2017). This organ is
constantly exposed to external signaling from
commensal molecules and produces a series of
neo-antigens derived by its metabolic activities.
This leads to the development of a constant and
physiological immunotolerance state in the or-
gan (Jenne and Kubes 2013), which was first
recognized by Calne and coworkers in 1969
(Calne et al. 1969). The relative immunotoler-
ance in the liver is necessary to avoid overactiva-
tion of the immune system but it also facilitates
the adaptation and persistence of different liver
pathogens, such as malaria, hepatitis B virus
(HBV), and HCV (Horst et al. 2016). HCV has
developed several strategies to evade the innate
and adaptive antiviral responses to infection
(Gale and Foy 2005; Rosen 2013). Consequently,
failure of viral clearance promotes a chronically
inflamed liver that leads to scarification (fibro-
sis), cirrhosis, and ultimately provokes the devel-
opment ofHCC.According to theWorldHealth
Organization (see who.int), most of the HCV-
infected patients do not achieve viral clearance

and 60%–80% develop chronic hepatic inflam-
mation. In these patients, the risk of developing
cirrhosis is ∼15%–35% after 20–30 years of in-
fection (Thrift et al. 2017). The virus directly
accelerates the inflammatory response through
a large range of interconnected mechanisms, in-
cludingpathogenpattern recognition, host–viral
protein interactions, activation of inflamma-
somes, and reactive oxygen species (ROS) pro-
duction (Gale and Foy 2005; Horner and Gale
2013; Negash et al. 2019). Liver diseases and
fibrosis associated with HCV infection evolve
in the context of a strong oxidative microenvi-
ronment. HCV core, E1, E2, NS3, NS4B, and
NS5A are known to encourage the production
of ROS (Bureau et al. 2001; Pal et al. 2010; Ivanov
et al. 2011). The antioxidant defense machine
involves different ROS scavenging enzymes
and their synthesis depends on many genes
commonly regulated by the transcription factor
NF-E2-related factor 2 (Nrf2) (Bureau et al.
2001). Nrf2 expression is inversely correlated
with the severity of liver injury in chronic
HCV patients and is impaired in end-stage liver
disease (Kurzawski et al. 2012; Jiang et al. 2015).
In HCV-positive cells, free Nrf2 is trapped at the
replicon complexes and is therefore prevented
from its entry into the nucleus (Medvedev
et al. 2017). This observation is in line with im-
paired expression levels of antioxidative en-
zymes like catalase (Lupberger et al. 2019) and
superoxide dismutase SOD1 (Levent et al. 2006;
Diamond et al. 2012) in infected hepatocytes,
which further promote oxidative stress damag-
ing host proteins, lipids, and DNA. This co-
incides with a perturbed endogenous DNA re-
pair by HCV infection (Nguyen et al. 2018;
Lupberger et al. 2019) further contributing to
the development of HCC in HCV patients. Be-
cause ROS-induced lipid peroxidation hampers
viral membrane fusion, HCV has developed
strategies to divert oxidative stress, for example,
by themodulation of phospholipid hydroperox-
ide glutathione peroxidase (GPx4) (Brault et al.
2016). Importantly, ROS levels strongly promote
liver fibrosis, characterized by an excessive pro-
duction of extracellular matrix (ECM) and scar-
ring of the tissue (Luangmonkong et al. 2018).At
the same time, ROS stimulates pro-oncogenic
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signaling pathways, promoting cell survival,
proliferation, and angiogenesis (Zhang et al.
2016). Chronic inflammation is accompanied by
elevated plasma levels of proinflammatory cyto-
kines, such as tumor necrosis factor α (TNF-α),
which are further induced byHCVproteins NS3,
NS4, and NS5 (Hosomura et al. 2011; Alhetheel
et al. 2016).The levels of liverandbloodcytokines

are associated with HCVmicroenvironment and
liver fibrosis (de Souza-Cruz et al. 2016). In par-
ticular, interleukin (IL)-1α is increased in HCV
patients and correlates with liver cirrhosis and
HCC (Tawfik et al. 2018). Therefore, HCV-
induced cytokine signaling increases the onco-
genicpressurewithin thehost cell and contributes
to a recalibration of hepatocyte functions (Fig. 1).

HCV infection

PTEN NRF2 GLI2 STAT3 EGFR GSK-3β HIF-1α

PPAR-α TGF-β β-CateninIRS1

VLCFA
accumulation

Lipid droplet
formation

Damage of lipids,
proteins, and DNA

HSC
activation

Steatosis
(55%)

Fibrosis/cirrhosis
(15%–35%)

HCC
(4%–5% per year)

c-Myc
activation

Increased
angiogenesisProfibrotic and proliferative gene expression

MAPK VEGF

ROS Autophagy

ER stress

STAT3

Figure 1. Hepatitis C virus (HCV) infection alters signaling pathways relevant for liver disease. HCV-mediated
activation of signal transducer and activator of transcription 3 (STAT3) causes very long-chain fatty acid
(VLCFA) accumulation in the infected hepatocytes via down-regulation of peroxisome proliferator-activated
receptor α (PPAR-α) expression. STAT3 activation sustains profibrotic gene expression via up-regulation of
transforming growth factor β (TGF-β). Down-regulation of phosphatase and tensin homolog (PTEN) by HCV
decreases insulin receptor substrate 1 (IRS1) expression and the formation of large lipid droplets favoring hepatic
steatosis. HCV impairs NF-E2-related factor 2 (NRF2) activity and enhances the accumulation of reactive oxygen
species (ROS). Activation of the Hedgehog (Hh) pathway via GLI family zinc finger 2 (GLI2) inhibits autophagy
in hepatic stellate cells (HSCs), favoring their conversion into myofibroblasts and the development of fibrosis.
HCV infection induces endoplasmic reticulum (ER) stress triggering TGF-β expression. Epithelial growth factor
receptor (EGFR) is activated by several mechanisms and induces mitogen-activated protein kinase (MAPK)
signaling and the expression of genes related to fibrosis and hepatocyte proliferation. Following HCV infection,
the Wnt pathway is activated and inhibits the β-catenin destruction complex. As a consequence, β-catenin
migrates to the nucleus and activates c-Myc oncogene. HCV sustains vascular endothelial growth factor
(VEGF) via the stabilization of hypoxia inducible factor 1 subunit α (HIF1-α), which consequently up-regulates
VEGF signaling and increases angiogenesis. The percentage of infected patients developing steatosis, cirrhosis, or
the cumulative incidence of hepatocellular carcinoma (HCC) is indicated. GSK-3β, Glycogen synthase kinase 3β.
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HCV Sustains Hedgehog Signaling Pathway
and Promotes Fibrogenesis

The Hedgehog (Hh) pathway regulates liver de-
velopment and differentiation and is a critical
modulator of adult liver repair (Ingham and
McMahon 2001; Machado and Diehl 2018). In-
terestingly, stimulationof theHhpathway results
in increased permissiveness for HCV replication
in cell culture (Choi et al. 2011). HCV activates
Hh signaling during fibrogenic repair of liver
damage and increases the production of Hh li-
gands inHCV-infected cells (deAlmeida Pereira
et al. 2010).Complementary studies confirm that
HCV derived from the sera of HCV-infected pa-
tients stimulatesHh signaling in humanprimary
fibroblasts via activation of zinc finger protein
GLI2 transcription factor. Especially, GLI2 in-
hibits autophagy infibroblasts, thus forcing their
conversion intomyofibroblasts, which promotes
fibrogenesis (Granato et al. 2016). The increase
in Hh ligands may additionally be sustained by
the accumulation of liver damage markers, such
as epithelial growth factor (EGF), transforming
growth factor β (TGF-β), and platelet-derived
growth factor (PDGF) (Stepan et al. 2005; Jung
et al. 2008; Omenetti et al. 2008), creating a per-
sistent proliferative and antiapoptotic environ-
ment in the infected liver.

HCV Modulates Activation of the TGF-β
Pathway

TGF-β has a key role in fibrogenesis and it is
involved in all stages of liver disease progression
(Dooleyand tenDijke 2012; Fabregat et al. 2016).
The TGF-β superfamily includes pleiotropic
growth factors that are essential for embryonic
development and organ homeostasis. TGF-β is
responsible for cell proliferation, differentiation,
and migration during embryogenesis, while it is
involved in tissue regeneration, cell growth con-
trol, and remodeling throughout adulthood.Un-
dercertainconditions,TGF-β1 isalso involved in
the induction of apoptotic cell death in the liver
(Oberhammer et al. 1992). The TGF-β cytokine
is physiologically sequestered in the ECMas part
of latent complexes and it is released in response
to different environmental perturbations (Xu
et al. 2018). This cytokine triggers downstream

signaling through the activationof canonical and
noncanonical pathways. First, TGF-β mediates
the formation of a heterotrimeric complex of
type I and type II serine/threonine kinase recep-
tors, which phosphorylate receptor-associated
SMAD (R-SMADs) proteins. The trimeric com-
plex formed by R-SMADs (Smad2 and Smad3)
and Smad4 enters the nucleus and regulates
gene expression (Miyazawa et al. 2002). Second,
TGF-β triggers other signaling pathways, such as
mitogen-activated protein kinase (MAPK) and
transforming protein RhoA cascades, even in
absence of SMADs activation (Yu et al. 2002;
Derynck and Zhang 2003). In addition, both ca-
nonical and noncanonical signaling pathways
can be modulated by TGF-β to tightly control
epithelial-to-mesenchymal transition (EMT)
(Bhowmick et al. 2001; Katsuno et al. 2019),
which is a physiopathological program implicat-
ed in liver disease progression (Thiery and Slee-
man 2006). TGF-β1 triggers hepatic fibrosis and
cirrhosis in both animal models and human he-
patic disorders (Castilla et al. 1991; Bedossa et al.
1995; Sanderson et al. 1995), and thus most evi-
dently also plays an important role during HCV
pathogenesis. Several studies and clinical obser-
vations highlighted a clear correlation between
TGF-β and chronic HCV infection (Nelson
et al. 1997; Grüngreiff et al. 1999; Ray et al.
2003; Chen et al. 2017). TGF-β plasma levels
are associated with a high degree of hepatic fi-
brosis in patients with chronic HCV (Tsushima
et al. 1999; Flisiaket al. 2002).Notably,HCVcore
protein seems to up-regulate the transcription of
TGF-β (Taniguchi et al. 2004). HCV induces
TGF-β1 via endoplasmic reticulum stress activa-
tion and the unfolded protein response (UPR)
(Chusri et al. 2016). Additionally, in vitro studies
show that HCV-induced oxidative stress indi-
rectly regulates TGF-β1 expression through p38
MAPK, c-jun amino-terminal kinase (JNK), and
extracellular signal-regulated kinase (ERK) via
nuclear factorκ-light-chain-enhancerof activat-
ed B cells (NF-κB) signaling (Erhardt et al. 2002;
Lin et al. 2010). More recent studies observed
decreased TGF-β1 levels in the serum of chronic
HCV-infected patients that achieved sustained
virologic response (SVR) after antiviral treat-
ment (Janczewska-Kazek et al. 2006; Kotsiri
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et al. 2016). Therefore, uncovering the role of
HCV proteins in TGF-β signaling pathways
may contribute to understanding the mecha-
nisms involved in HCV-induced HCC. Indeed,
HCV core and NS3 have been shown to interact
with Smad3 in vitro and in vivo (Cheng et al.
2004). Interestingly, some HCV core variants
isolated from HCC tissue interact with Smad3
and inhibit TGF-β signaling. According to this
study, a possible selection of viral variants dur-
ing chronic HCV infection gradually promotes
antiapoptotic effects in the liver that overcome
the initial antiproliferative functions of TGF-β
(Cheng et al. 2004).Hence, althoughTGF-βmay
have proapoptotic effects during the early stages
of chronic liver disease, it probably acquires pro-
cancerogenic responses after HCV core variants
selection (Pavio et al. 2005; Battaglia et al. 2009).

HCV-Induced IL-6/STAT3 Signaling

Signal transducer and activator of transcription
3 (STAT3) is involved in tissue repair mecha-
nisms by the regulation of proliferative and pro-
survival cellular programs. In this context, acti-
vation of STAT3 can be induced by a vast
number of different cytokines, including IL-6,
which sensitizes hepatocytes to regenerative
signals (Michalopoulos 2007). Beyond its phys-
iological role, persistent activation of STAT3
induces chronic inflammation and fibrosis, in-
creasing the risk to develop severe pathological
conditions (Yu et al. 2014; Kasembeli et al.
2018). HCV requires IL-6/STAT3 signaling to
maintain infection (Lupberger et al. 2013;
McCartney et al. 2013); therefore, it induces its
activation by several mechanisms. HCV core
directly binds and sustains STAT3 activation
(Yoshida et al. 2002), whereas the expression
of NS5A, E1, and NS3 promotes STAT3 signal-
ing indirectly via ROS production (Gong et al.
2001; Machida et al. 2006). The activation of
STAT3 is not limited to HCV-infected hepato-
cytes. miR19a secreted in endosomes from
HCV-infected hepatocytes impairs suppressor
of cytokine signaling 3 (SOCS3) in hepatic stel-
late cells (HSCs). As a negative regulator of
STAT3, impaired SOCS3 levels cause a subse-
quent activation of TGF-β in HSCs (Devhare

et al. 2017). Therefore, considering the profi-
brotic role of STAT3 signaling and its strong
cooperation with the TGF-β pathway, it has
been suggested as a potential target for antifi-
brotic therapies (Chakraborty et al. 2017).

HCV INCREASES CANCER RISK BY
DEREGULATION OF ONCOGENIC
SIGNALING PATHWAYS

The liver is a key organ for the detoxification and
metabolism of awide range of potentially harm-
ful substances. Therefore, liver regeneration is a
tightly controlled process (Cordero-Espinoza
and Huch 2018) that converges in the recon-
struction of hepatocyte parenchyma in response
to damage. The replacement of the damaged
tissue occurs mainly through hepatocyte prolif-
eration and to a lesser extent via an activation of
ductal progenitor cells. During regeneration, the
HSCs differentiate in myofibroblasts that release
ECM within the space of Disse. Under normal
conditions, the excess of ECM is promptly de-
graded by matrix metalloproteinases (MMPs),
which restore the original architecture and func-
tion of the tissue without scar formation (Kho-
lodenko and Yarygin 2017). During chronic in-
flammation this balance is perturbed, which
leads to a progressive deposition of ECM and
the development of liver fibrosis. HCV infection
causes oxidative stress, steatohepatitis, and fi-
brosis, which create a hepatic pro-oncogenic
environment. The oncogenic pressure on the
diseased liver is further promoted by virus-in-
duced growth factors and signaling pathways
such as EGF, vascular endothelial growth factor
(VEGF), Wnt/β-catenin, which are strongly im-
plicated in the cirrhotic remodeling of the tissue
and hepatocarcinogenesis (Fuchs et al. 2014;
Wang et al. 2018a; Moon et al. 2019). As a con-
sequence, patients affected with HCV-associat-
ed cirrhosis present a 4% to 5% cumulative
annual incidence of HCC (El-Serag 2012).

HCV Up-Regulates EGFR and Stimulates
MAPK Signaling

The growing knowledge on the interplay
between HCV and epithelial growth factor re-
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ceptor (EGFR) cascade has markedly contrib-
uted to explain the pathologic consequences of
the viral infection, such as fibrosis development
and HCC (Lupberger et al. 2011, 2013; Fuchs
et al. 2014; Roca Suarez et al. 2018). It has
been shown that EGFR signaling promotes the
formation of the cluster of differentiation 81
(CD81)/claudin1 (CLDN1) coreceptor com-
plex, which is required for HCV entry (Harris
et al. 2010; Krieger et al. 2010; Lupberger et al.
2011; Zona et al. 2013). Inhibition of EGFR
kinase hampers the CD81/CLDN1 coreceptor
association and thus prevents HCV particle en-
try (Lupberger et al. 2011). The physical link
between EGFR kinase and CD81/CLDN1 inter-
action is mediated by GTPase HRas, activated
downstream from the EGFR signaling (Zona
et al. 2013). HCV has an interest in maintaining
EGFR signaling and elevated EGFR signaling is
observed in liver biopsies of HCV patients
(Mailly et al. 2015). EGFR signaling is further
prolonged by a NS5A-induced retention of
activated EGFR in the early endosomal com-
partment (Mankouri et al. 2008) and by an in-
creasing level of Netrin-1 that impedes EGFR
recycling (Plissonnier et al. 2016). Furthermore,
NS3/4A protease mediates the down-regulation
of T-cell protein tyrosine phosphatase (TC-
PTP), which is negative regulator of EGFR and
MAPK signaling (Brenndörfer et al. 2009; Stan-
ford et al. 2012). The activation of EGFR during
HCV infection induces MAPK signaling (Ha-
yashi et al. 2000; Bürckstümmer et al. 2006;
Mankouri et al. 2008; Diao et al. 2012), an evo-
lutionarily conserved mechanism of cellular
transduction that regulates many vital cellular
functions, such as proliferation, differentiation,
survival, and apoptosis (Zhang and Liu 2002;
Dhillon et al. 2007). EGFR is overexpressed in
∼50% of patients with chronicHCVand inmost
patients with cirrhosis and HCC. The extent of
EGFR expression is even higher in the advanced
stages of HCV-related fibrosis (Badawy et al.
2015). These observations have a potential clin-
ical application because EGF is a major driver of
liverdiseaseprogression, and inhibitionofEGFR
signaling using clinical compounds in animal
models attenuates the development of liver fi-
brosis and HCC nodules (Fuchs et al. 2014).

HCV Up-Regulates VEGF and Promotes
Angiogenesis

Angiogenesis is a growth factor-dependent pro-
gram responsible of the formation of new vessels
from preexisting ones. It is commonly induced
in response to hypoxia-related and inflammato-
ry mechanisms (Paternostro et al. 2010). Hepat-
ic angiogenesis is triggered by HCV via the
deregulation of multiple pathways (Hassan et al.
2009). Several studies have shown an up-regula-
tion of VEGF in HCV-related HCC patient tis-
sues (Llovet et al. 2012; Mukozu et al. 2013). The
HCV core protein seems to sustain VEGF sig-
naling by several mechanisms. It can lead to
hypoxia inducible factor 1 (HIF-1α) stabiliza-
tion, which consequently up-regulates VEGF
expression (Shimoda et al. 1999; Abe et al.
2012; Zhu et al. 2014). Additionally, HCV-me-
diated VEGF expression seems to also engage
Janus kinase (JAK)/STAT signaling. Indeed,
the inhibition of the JAK/STAT pathway in cell
culture blocks the HCV core protein-mediated
activation of the androgen receptor (AR), caus-
ing a down-regulation of VEGF (Kanda et al.
2008). HCV core protein potentiates VEGF ex-
pression by the activation of activator protein 1
(AP-1) transcription factor, which is binding to
the VEGF promoter region (Shao et al. 2017).

HCV Induces β-Catenin Accumulation
and Wnt Pathway Activation

Wnt pathway is crucial for embryonic develop-
ment and cellular differentiation (Kielman et al.
2002; Reya and Clevers 2005; Grigoryan et al.
2008; Bone et al. 2011). When Wnt signaling is
active, β-catenin phosphorylation is reduced via
the inhibition of the β-catenin destruction com-
plex (Behrens et al. 1998; Amit et al. 2002; Liu
et al. 2002). The augmented unphosphorylated
β-catenin migrates from the cytoplasm to the
nucleus, where it binds to T-cell factor (TCF)
and promotes transcription of genes such as
Cyclin D1 (Tetsu and McCormick 1999),
c-MYC (He et al. 1998), Axin-2 (Jho et al.
2002), and c-Jun (Mann et al. 1999). In cell cul-
ture, NS5A triggers the serine/threonine-protein
kinase Akt, by interacting with phosphoinositide

A. Virzì et al.

6 Cite this article as Cold Spring Harb Perspect Med 2020;10:a037366

w
w

w
.p

er
sp

ec
ti

ve
si

nm
ed

ic
in

e.
or

g

Laboratory Press 
 at ARCURI BCS on April 11, 2022 - Published by Cold Spring Harborhttp://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


3-kinases (PI3K). Consequently, this leads to an
inhibition of glycogen synthase kinase (GSK)-
3β, which is a key component of the destruction
complex (Street et al. 2005). Moreover, NS5A
stabilizes β-catenin in the cytoplasm and there-
fore promotes β-catenin signaling, which is also
reflected in elevated β-catenin levels in livers of
HCV patients (Park et al. 2009). This is very
relevant for liver pathogenesis because β-catenin
is most frequently activated in HCC pathogene-
sis (Khalaf et al. 2018). NS5A-induced stabiliza-
tion of β-catenin transcription factor stimulates
c-Myc expression in cell lines, human liver tis-
sues, and livers from FL-N/35 transgenic mice
(Colman et al. 2013; Higgs et al. 2013). c-Myc is
an essential regulator of liver regeneration and
its perturbation is considered as an early event
during HCC development (Colman et al. 2013).
Moreover, HCV-induced c-Myc expression
drives the metabolic shift from glucose to gluta-
mine dependence, which is a hallmark of cancer
cells (Lévy et al. 2017).

HCV INFECTION ALTERS LIVER
METABOLISM

The liver plays an essential role in the metabolic
regulation during both the postprandial period
and fasting state. The energetic balance of the
organism is finely maintained by a series of
biochemical reactions involved in metabolism,
storing, and redistribution of carbohydrates,
proteins, and lipids (Bechmann et al. 2012).
HCV circulates in the serum of patients as
lipo-viro-particles and interacts with very low-
density lipoprotein (VLDL) components of the
host. The striking association between the HCV
life cycle and the VLDL pathway is not only
crucial for HCV entry, maturation, and mor-
phogenesis, but has also an impact on the im-
mune escape capacity of the virus (Miyanari
et al. 2007; Gondar et al. 2015). Importantly,
the interplay between the virus and metabolic
pathways contributes to the pathogenesis of liver
disease via deregulation of the host lipid metab-
olism (Syed et al. 2010). HCV infection is
strongly associated with hepatic steatosis and
dysmetabolic syndromes, such as hypocholes-
terolemia, altered body fat distribution, insulin

resistance (IR), and hyperuricemia (Kralj et al.
2016). Estimates suggest that ∼55% of HCV-
infected patients develop hepatic steatosis,
which is defined as an excessive accumulation
of triglycerides (TGs) within the hepatocyte cy-
toplasm (Lonardo et al. 2006; Vilgrain et al.
2013). Although this has been observed for sev-
eral HCV genotypes, steatosis is most frequent
and severe in patients infected with genotype 3
(Leandro et al. 2006), which correlates with the
viral load (Rubbia-Brandt et al. 2001). HCV-in-
duced steatosis is triggered by the interaction
between HCV proteins and host factors and its
development does not require the presence of
visceral obesity (Adinolfi et al. 2001). HCV in-
fection deregulates metabolic pathways via
miR146a5p expression, probably dependent on
NF-κB signaling (Bandiera et al. 2016). In addi-
tion, it has been suggested that HCV core pro-
tein expression may be sufficient to induce liver
fat accumulation and steatosis (Moriya et al.
1997). In particular, core protein 3a induces
the activation of miR-21-5p, thereby promoting
HCV replication and steatosis (Clément et al.
2019). An important factor in lipid homeostasis
is the β-oxidation of fatty acids in mitochondria
and the peroxisomal compartment. HCV infec-
tion suppresses peroxisomal β-oxidation, which
leads to the accumulation of very long-chain
fatty acids (VLCFAs) in the infected hepatocytes
(Lupberger et al. 2019). This is partially mediat-
ed by HCV-induced STAT3 signaling (Van
Renne et al. 2018), suppressing the peroxisome
proliferator-activated receptor α (PPAR-α) ex-
pression (Lupberger et al. 2019). These results
are consistent with decreased hepatic PPAR-α
levels in HCV-infected patients (Dharancy
et al. 2005). Importantly, HCV antiviral therapy
can restore lipidic levels in serum (Batsaikhan
et al. 2018; Doyle et al. 2019) and attenuate he-
patic steatosis after viral clearance (Shimizu et al.
2018).However,many genes relevant formetab-
olism remain deregulated even after viral cure
(Hamdane et al. 2019), including peroxisomal
genes. Restoration of peroxisomal function
may be therefore a clinical strategy to improve
liver function in HCC risk patients. Notably,
HCV genotype 3 infection is associated with
the down-regulation of phosphatase and tensin
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homolog deleted on chromosome 10 (PTEN)
leading to decreased levels of insulin receptor
substrate 1 (IRS1) and the formation of large
lipid droplets (Clément et al. 2011). This is rel-
evant for the viral life cycle and liver disease
progression because PTEN overexpression has
been shown to reduce HCV viral particle secre-
tion (Peyrou et al. 2013), and it is one of themost
important tumor suppressors frequently mutat-
ed in many tumors, including HCC (Schulze
et al. 2015). PTEN is also an important regulator
of the insulin pathway and HCV infection per-
turbs the glucose homeostasis in the liver. Epi-
demiological studies suggest a link between
chronic HCV infection and diabetes type 2
(Shintani et al. 2004; Gastaldi et al. 2017) and
HCV core transgenic mice develop IR (Shintani
et al. 2004). This is accompanied by a marked
reduction in insulin-stimulated Akt phosphory-
lation without any alterations in MAPK activity
in HCV-infected subjects (Aytug et al. 2003).
HCV proteins up-regulate the protein phospha-
tase 2α (PP2A) catalytic subunit and alter
signaling pathways controlling hepatic glucose
homeostasis by inhibiting Akt and dephosphor-
ylation of FoxO1 (Bernsmeier et al. 2008, 2014).
Importantly, DAA treatment improves glycemic
control and IR in livers, muscles, and adipose
tissues of HCV cured patients (Adinolfi et al.
2018; Lim et al. 2019).

HCV-INDUCED LIVER DISEASE—IS THERE
A POINT OF NO RETURN?

Since the discovery of HCV in 1989, there has
been a remarkable breakthrough in antiviral
therapy using DAAs. Meanwhile, >90% of pa-
tients can be cured by interferon-free treatments
(Chung and Baumert 2014; Arends et al. 2016).
However, in patients with advanced liver disease
the risk ofmortality andHCCdevelopment can-
not be fully eliminated (Carrat et al. 2019). It has
been estimated that HCV-induced HCC will re-
main one of the major health burdens for the
next decades (Harris et al. 2014; Sievert et al.
2014; Petrick et al. 2016; Baumert et al. 2017).
This also raises the question of whether some
of the HCV-induced pro-oncogenic signaling
pathways remain deregulated after viral cure.

Indeed, HCV infection causes epigenetic alter-
ations, which act as genetic circuits that influence
gene expression patterns in the long term. DNA
hypermethylation has been observed in livers of
patients with chronic HCV infection, leading to
a silencing of tumor suppressor gene expression
(Wijetunga et al. 2017). In addition, HCV in-
duces histone modifications, which also result
in persistently altered gene expression patterns
(Hamdane et al. 2019; Perez and Gal-Tanamy
2019). Importantly, this epigenetic footprint is
still detectable in livers of HCV-cured chimeric
mice and patients (Hamdane et al. 2019; Perez
and Gal-Tanamy 2019). Associated with this
viral footprint, the transcriptional signature re-
flecting many of the earlier mentioned HCV-
induced pro-oncogenic signaling pathways
remains deregulated after viral cure (Hamdane
et al. 2019). This may partially account for
the observed elevated HCC risk. Therefore, a
detailed knowledge of these pathways will be
potentially useful as biomarkers to identify pa-
tients at risk and highlight potential targets for
future chemopreventive strategies.

Clinical methods to predict HCV-related fi-
brosis and cirrhosis and its associated HCC risk
are still limited. The clinical outcome also very
much depends on comorbidities like human im-
munodeficiency virus (HIV)/HBV coinfection
or alcohol. Hoshida et al. (2008) developed a
prognostic liver signature (PLS) from genome-
wide transcriptomics of nontumor liver tissues
adjacent from HCCs, which correlates to the
clinical outcome of the patients. This has been
later extended to a composite prognostic model
for HCC recurrence (Villanueva et al. 2011).
The PLS consists of 186 genes representing a
powerful tool to predict the risk for patients to
progress to cirrhosis and HCC and help priori-
tizing those for regular follow-up and HCC sur-
veillance. Importantly, the PLS is induced also
by HCV infection (Hoshida et al. 2013; King
et al. 2015). PLS components are cytokines
and signaling mediators that may be useful as
targets for chemoprevention of their biological
impact on liver disease development.

Small molecule inhibitors targeting signal-
ing pathways arrived in clinical practice a long
time ago, especially in cancer therapy. Some of
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these inhibitors target pathways that are poten-
tially involved in an HCV-induced signaling
pattern and have been tested or are currently
in clinical trials for the treatment of liver disease
progression.Humanfibrosis andHSC activation
are regulated by Wnt/β-catenin signaling (Berg
et al. 2010; Ye et al. 2013; Lam et al. 2014), which
therefore represents a promising target for the
treatment of liver fibrosis (Cheng et al. 2008).
Proof-of-concept has been provided targeting
the interaction of CREB-binding protein (CBP)
and β-catenin using the smallmolecule inhibitor
PRI-724. This compound hampers HSC activa-
tion and accelerated fibrosis resolution, which
seems to be accompanied by an increased
expression of MMP2, MMP8, and MMP9 in
intrahepatic leukocytes (Osawa et al. 2015). Cur-
rently, the safety and tolerability of PRI724 is
being evaluated in patients with HCV or HBV-
associated cirrhosis (NCT03620474). The Hh
pathway is involved in the development of cirrho-
sis and HCC. Sonidegib (LDE225), a specific in-
hibitor of Hh is currently being tested in a phase I
clinical trial for toxicity in patients with cirrhosis
and advanced/metastatic HCC, who are intoler-
ant to sorafenib (NCT02151864). In the last
few years, a large number of nonspecific and
specific TGF-β inhibitors have been developed
(Giannelli et al. 2011; de Gramont et al. 2017).
Despite that, galunisertib (LY2157299), a selec-
tive ATP-mimetic inhibitor of TGFβRI/ALK5, is
the only inhibitor of TGF-β signaling currently
under clinical trials in HCC patients (NCT012
46986). Moreover, it seems to down-regulate the
expression of stemness-related genes (such as
CD44 and THY1) in HCC patients (Rani et al.
2018). Receptor tyrosine kinases (RTKs), such as
EGFR and vascular endothelial growth factor
receptor (VEGFR), have been shown to play cru-
cial roles in fibrogenesis, cirrhosis, and HCC de-
velopment, highlighting the importance of their
therapeutic inhibition (Kömüves et al. 2000;
Yoshiji et al. 2003; Fuchs et al. 2014; Badawy
et al. 2015). Ramucirumab, a VEGFR-2 in-
hibitor, was recently evaluated as a second-line
treatment for HCC patients previously treated
with sorafenib, showing an improvedoverall sur-
vival compared with placebo (Zhu et al. 2019)
(NCT02435433). STAT3 signaling pathway has

shown to be up-regulated during HCV infection
(Yoshida et al. 2002; McCartney et al. 2013; Van
Renne et al. 2018) and strong data reveal its role
in fibrosis development (Chakraborty et al.
2017). A large spectrum of clinical and preclin-
ical data supports STAT3 as a pharmacological
target for different typologies of cancers (Laudisi
et al. 2018). This has prompted substantial ef-
forts to design and test different types of STAT3
inhibitors. Some of the potential therapeutic op-
portunities to target STAT3 pathway are to be
found upstream of its activation, at STAT3 SH2
domain and at STAT3 DNA-binding domain
levels. AZD1480 (NCT01219543) and AG490
inhibitors belong to the first category and inhibit
JAK2 kinase (Meydan et al. 1996; Hedvat et al.
2009). The safety and tolerability of AZD1480
have been tested in a phase I study in patients
with solid tumors (including HCC). However,
the unusual dose limit toxicity and the lack of
clinical activity brought its discontinuation in
clinical development (Plimack et al. 2013).
OPB-31121, a potent SH2 domain inhibitor ex-
erting also JAK inhibitory activity (Kim et al.
2013; Brambilla et al. 2015), has shown insuffi-
cient antitumoral activity and toxicity in patients
with advanced HCC (Okusaka et al. 2015). S3I-
201 (NSC 74859), discovered by structure-based
virtual screening (Siddiquee et al. 2007), seems
to suppress HSC activation and proliferation, as
well as angiogenesis and fibrogenesis in fibrotic
livers (Wang et al. 2018b). A promising thera-
peutic agent for liver fibrosis can be represented
by HJC0123, which inhibits human HSC prolif-
eration and STAT3 dimerization (Chen et al.
2013; Nunez Lopez et al. 2016). Recently, OPB-
111077 (NCT01942083) has been shown to be
well tolerated in patients with advanced HCC
after failure of sorafenib therapy (Yoo et al.
2019). However, the preliminary outcomes of
OPB-111077 treatment are still very limited
(Yoo et al. 2019), and further investigation of
the role of the STAT3 signaling pathway in fibro-
sis and HCC are required.

CONCLUSION

Studying HCV–host interactions is not only im-
portant for the understanding of the viral life
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cycle but also to answer how the virus manages
to tweak its host cell to ensure persistence with
all its consequences for liver pathogenesis. The
molecular circuits exploited and triggered by
HCV strikingly resemble other liver disease eti-
ologies like nonalcoholic fatty liver disease
(NAFLD) following a very similar path of dis-
ease progression. Studying HCV with all the
experimental tools that have been developed
during the last 30 years serves here as a powerful
model to understand the specific and common
mechanisms of liver disease development. This
is essential to develop new diagnostic biomark-
ers and chemopreventive strategies to help HCV
cured patients with advanced liver disease to
tackle the epigenetic turnouts set by decades of
chronic HCV infection. These tools will be po-
tentially very useful also for other liver disease
etiologies.
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