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Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or 
without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase 
of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been 
made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related 
to the host’s immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are 
not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host’s strong 
immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have 
provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV 
cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
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Introduction

OBI is a global public health issue with a higher incidence 
rate [1–3]. The rate of infections due to OBI has increased 
gradually since Hoofnagle first proposed, in 1978 [4], that 
HBV can transmit from anti-HBc-positive blood donors. 
From clinical reports to mechanistic research, the patho-
genesis of occult hepatitis is gradually being explored. 
Some scholars have reported that patients with occult hepa-
titis B are one of the main sources of HBV infection and 
can spread the virus through multiple routes, such as from 

mother-to-child, blood transfusion, organ transplantation, 
and hemodialysis [5, 6]. Various factors are known to con-
tribute to the outbreak of OBI [7–10], although only a few 
are mentioned below: (1) diverse types of OBI outbreaks; 
(2) low levels of HBV DNA content and viral protein; (3) 
HBV DNA sequence variation; (4) HBV virus gene integra-
tion with the host-cell genes; (5) PBMCs and lymphocytes 
and other tissue cells are infected by HBV; (6) abnormal 
host immune response; (7) interference by other viruses; (8) 
the quality of the detection reagents and the lowest detec-
tion limit; (9) HBV immune complex; (10) the inhibition 
of HBsAg expression and secretion; and (11) the regula-
tory effect of HBV cccDNA. The present review extensively 
describes the HBV cell cycle, cccDNA kinetics, current reg-
ulatory mechanisms, and therapeutic methods of cccDNA in 
OBI-related diseases.

HBV cccDNA cell cycle

The early steps of HBV entry

Upon HBV entry into the host, the Dane particles, which 
are one of the particulate forms of HBsAg in the blood 
of patients infected with hepatitis B virus (HBV), are 
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concentrated on the low-affinity glycosaminoglycans 
(GAGS) on the cell surface. The PreS1 domain of the HBV 
large envelope protein (LHBs) and its receptor sodium tauro-
cholate cotransport polypeptide (NTCP) share a high affinity, 
and its auxiliary receptor epidermal growth factor receptor 
(EGFR) is bound [11–15]. This internalization complex is 
linked to N-glycosylated NTCP with E-cadherin [16]. This 
combination allows NTCP to relocate to the plasma mem-
brane. Moreover, a new study revealed that NTCP is needed 
for de novo infection [17]. Whether the coreceptors and host 
cytokines are required for hepatitis B to enter liver cells has 
not been fully elucidated [18].

Steps in the cell where the HBV enters

The HBV-NTCP-EGFR complex enters the cell mainly 
through reticulin-mediated endocytosis [19–21]. After 
virus entry into the host hepatocytes, a loose ring DNA 
(RC-DNA) is delivered to the nucleus. Within the nuclei, 
the formation and assembly of nucleocapsids and the syn-
thesis of HBV cccDNA are conducted through the fol-
lowing steps (Fig. 1): the virus uses the host DNA-Taq 
polymerase along other enzymes to form cccDNA. Once 
formed, cccDNA acts as a template for pregenomic RNA 

Fig. 1  Schematic representation 
of the regulation of cccDNA in 
occult HBV infection. NTCP 
sodium taurocholate cotrans-
porting polypeptide, EGFR 
epidermal growth factor recep-
tor, ZHX2 zinc fingers and 
homeoboxes 2, RxRα retinoic 
acid X receptor α, ER endoplas-
mic reticulum, SVPs subviral-
particles
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(pgRNA) and four different lengths of viral messenger 
RNA (mRNA) synthesis, by the action of host-cell RNA 
polymerase, thereby forming a reverse transcription tem-
plate and a translation template.

① Reverse transcription template: Reverse transcription 
of HBV pregenomic RNA (pgRNA) forms negative single-
stranded HBV DNA and then completes the synthesis of 
positive-stranded DNA. This step provides a template for 
HBV replication.

②Translation template: Four main messenger RNAs 
(MRNAs) encode viral proteins, including hepatitis B sur-
face antigens (HBsAg), e antigen (HBeAg), core antigens 
(HBcAg), HBV polymerase (Pol), and regulatory protein 
X (HBx) [26]. It is important that HBcAg and HBx pro-
teins regulate HBV DNA replication and HBsAg expression 
through HBV cccDNA [22–34].

The kinetics of cccDNA loss

HBV cccDNA is surrounded by several nucleosomes, which 
consists of histones H3, H4, H2A, H2B, H1, and HBcAg, 
forming a strong minichromosome [35, 36]. In addition, 
HBV cccDNA is related to HBx, hepatitis B core protein 
(HBc), and to some host transcription and epigenetic regu-
lation factors. The viral cccDNA plays the key role in the 
de novo infection and maintenance of HBV infection. The 
turnover time of cccDNA pools is necessary to achieve the 
goal of a “complete” or “virological” cure strategy. Since the 
kinetics of cccDNA in patients is not completely known, the 
goal of completely curing HBV is difficult. Therefore, there 
is a need for cell-based models or animal models as well as 
clinical trials that illustrate the pathway of HBV cccDNA 
into cells and the intracellular regulation for developing 
novel antiviral therapies for “virological” cures of HBV 
infection.

In a unique hepatocellular culture system, a HepG2-
NTCP-K7-cell model was used to research the entire HBV 
life cycle, which included the replication and decay dynam-
ics. After infection, HBV maintained a steady cccDNA level, 
with a 40-day half-life [37]. Similarly, in animal models, 
researchers have attempted to determine an accurate half-
life model. However, owing to the differences between indi-
viduals and species, the half-life varies. In animal models, 
surprisingly, ducks, woodchucks, or infected chimpanzees 
have half-lives of no more than 2 months [38–40]. These 
data suggest that the half-life of hepatocytes can be deter-
mined by the size of PCNA-positive nuclei (proliferating 
cell nuclear antigen) [39]. Notably, a mouse model with 
AAV-rcccDNA has been developed, and rcccDNA has been 
reported to persistently exists in mouse hepatic tissues. Thus, 
it is a favorable platform for studying cccDNA persistence 

and for developing new drugs and treatments to completely 
clear HBV [41].

NAs can inhibit rcDNA synthesis and are the most com-
monly used anti-HBV treatment in clinical trials. Interest-
ingly, during LAM or LdT antiviral therapies, the serum 
HBV RNA mutant rtM204I/V kinetics in patients were 
well related to HBV replication and HBsAg expression. 
It has been demonstrated that the cccDNA half-life time 
was 6.9–21.7  weeks, and the patients were studied for 
5.6–11.1 weeks for their OBI-related illnesses [42] (Table 1). 
These evidence suggests that the prestored cccDNA pool 
may decline faster than that forecasted previously. The cur-
rent data indicated that, with the research and development 
of powerful antiviral drugs, eliminating cccDNA is a prom-
ising future approach.

HBV cccDNA dynamics of different treatment 
stages in OBI‑related patients

HBV cccDNA plays an important role in HBsAg expression 
and DNA replication. The correlations were evident among 
HBV cccDNA and the HBsAg levels and DNA loads in dif-
ferent treatment stages. In CHB patients who never received 
antiviral therapy, HBV cccDNA was found to be positively 
correlated with HBsAg in HBeAg-positive and HBeAg-neg-
ative patients. However, HBV cccDNA was not correlated 
with DNA replication in HBeAg-negative patients [43]. 
When the antiviral therapy was applied to CHB patients, 
HBV cccDNA was found to be positively correlated with the 
serum HBsAg levels in HBeAg-negative and lower serum 
levels of HBeAg CHB patients [44]. In addition, in some 
nucleos(t)ide analog patients, the range of HBsAg decline 
was not relevant to cccDNA reduction. However, among the 
hospitalized CHB patients, intrahepatic different cccDNA 
levels were not significantly correlated with the quantity of 
intrahepatic HBsAg expression. In contrast, there was a posi-
tive correlation between intrahepatic cccDNA and serum 
HBV DNA levels [45]. For CHB patients, after 48 weeks 
of treatment or in treatment-naïve patients, the relationship 
remains controversial among HBV cccDNA, HBsAg, and 
HBV DNA [46–52]. These phenomena may be relevant 

Table 1  Kinetics models of cccDNA loss with a half-life time

Source Models Half-life time

Cell HepG2-NTCP-K7 40-day
Animal Ducks No more than 2 months

Woodchucks
Infected chimpanzees

Patient RNA mutant-rtM204v 6.9–21.7 weeks
OBI-related illnesses 5.6–11.1 weeks
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to the cccDNA half-life time and regulation mechanisms 
among cccDNA, DNA loads, and HBsAg expression (Fig. 2; 
Table 2).

Regulation mechanisms of HBV cccDNA 
in OBI‑related diseases

The research on the regulation of HBV cccDNA epigenetic 
factors mostly employ transfection, immunohistochemis-
try, chromatin immunoprecipitation (ChIP), and chromatin 
immunoprecipitation sequencing (ChIP-Seq)techniques to 
analyze in vitro hepatocyte model transfection, chimeric 

mice with human liver models, CHB models, and other mod-
els to simulate the interaction in vivo so as to draw conclu-
sions. However, due to the lack of sufficient animal-based 
studies or extracorporeal models for OBI research, some of 
the current HBV cccDNA regulation data are based on the 
comparison of patients as the research objects with CHB to 
obtain some macroscopic conclusions. However, most of 
them were based on the CHB research model for OBI. Pres-
ently, there are only a few direct reports that describe the 
role of HBV cccDNA epigenetic factors in the pathogenesis 
of OBI.

It is well-known that cccDNA is in a low replicative state 
in OBI-related diseases. HBV cccDNA is a foundation for 

Fig. 2  The cccDNA dynamics 
of different treatment stages in 
OBI-related diseases

Table 2  The correlation 
among HBV cccDNA, HBsAg, 
and HBV DNA in different 
treatment stages of OBI-related 
diseases

“↑”, positive correlation; “↓”,negative correlation; “–”, no relation among HBV cccDNA, HBsAg, and 
HBV DNA in OBI-related diseases

Stages HBeAg HBV 
cccDNA

HBVDNA HBsAg References

No-treatment Positive ↑ ↑ ↑ [43]
Negative ↑ – ↑ [43]

During antiviral therapy L-positive ↑ ↑ [44]
Negative ↑ ↑ [44]

↑ – [45]
After treatment Positive ↑ ↑ [47]

Positive ↑ ↑ [50]
Negative ↑ – – [47, 48]

Positive ↑ ↑ [49]
Naïve-treatment Negative ↑ ↑ – [51]

↑ ↑ ↑ [52]
↑ ↑ ↑ [46]
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the transcription and replication of HBV. It accumulates 
in the infected intrahepatic nucleus in the form of a stable 
episome, which constitutes minichromosomes through his-
tones, nonhistone proteins, and cellular proteins. A recent 
study revealed that the content of replicated viral templates 
(cccDNA) in OBI patients is extremely low, which, in 
turn, lowers the viral transcription activity [53]. When the 
body's immunity is low, the risk of HBV reactivation in OBI 
patients increases due to of the presence of latent cccDNA 
[54]. This increases the risk of acute hepatitis and liver fail-
ure. The expression of viral genes is under HBV transcrip-
tional regulation. Several studies have demonstrated that 
other related antigens and post-translational modifications 
with histones, non-histones, methylation, host transcription 
factors, ubiquitination, and others affect the transcription and 
replication of cccDNA. Together, they regulate the progres-
sion of occult hepatitis B (Fig. 1; Table 3).

HBV cccDNA regulates the OBI viral load

Histone acetylation, ubiquitination regulation, and protein 
methylation

The acetylation state of histones bound by cccDNA regu-
lates HBV replication and transcription activities. SIRT3 
is a host factor that restricts HBV replication, involving a 

reduction in the binding of YY1, which is a host transcrip-
tion factor and RNA polymerase II, to cccDNA [55]. How-
ever, SIRT1, the TIP60 complex, HDAC11, and HAT1 
promote OBI activation. Among them, sirtuin 1 is a class 
III histone deacetylase that may promote the replication of 
HBV in liver cells [56]. In addition, the TIP60 complex is 
bound to the HBV promoter and inhibits HBV transcrip-
tion driven by the precore/core promoter [57]. In addition, 
histone deacetylase 11 (HDAC11) affects the specificity 
of DAC11 and reduces the acetylation level of histone H3 
bound by cccDNA [58]. Moreover, protein acetyltrans-
ferase 1 (HAT1) plays key roles in host chromatin assem-
bly, reducing HBV replication and cccDNA accumulation 
and modulating the acetylation of histones H3K27/H4K5/
H4K12 of cccDNA minichromosomes [59–61].

Np95/ICBP90-like RING Finger Protein (NIRF) is a 
new E3 ubiquitin ligase that can negatively regulate HBV 
transcription and/or replication. Recent studies have sug-
gested that it affects polyubiquitinated protein degrada-
tion, carcinogenesis, cell proliferation, cell cycle, and 
epigenetic modification [62]. The research demonstrated 
that NIRF not only inhibits HBV replication through 
interaction with HBcAg but also reduces acetylation of 
H3 histones combined with HBV cccDNA. This observa-
tion helps prepare a new guide for studying the epigenetic 

Table 3  HBV DNA response and HBsAg expression with cccDNA epigenetic regulation in OBI-related diseases

“↑”, positive correlation; “↓”, negative correlation; “–”, no relation among HBV cccDNA, HBsAg, and HBV DNA in OBI-related diseases;
Sirtuin 1 SIRT1, Sirt2 isoform 5 Sirt2.5, Sirtuin 3 SIRT3, Histone Deacetylase 11 HDAC11, Histone Acetyltransferase 1 HAT1, Np95/ICBP90-
like RING Finger Protein NIRF, Protein arginine methyltransferase 5 PRMT5, Zinc Fingers And Homeoboxes 2 ZHX2, retinoic acid X receptor 
α RxRα, OBI Occult hepatitis B virus infection, CHB Chronic Hepatitis B

Classification Examples  Models HBV cccDNA HBV DNA HBsAg References

Histone acetylation, regulation ①SIRT3
②SIRT1
③TIP60 complex
④HDAC11
⑤HAT1

Cell
Cell/human liver-

chimeric mouse
Cell
Cell
Cell

↑
↓

↓
↑
↓
↓
↓

↓
↓
↓

[55]
[56]
[57]
[58]
[59]

Histone
Ubiquitination
Regulation

①NIRF Cell ↓ ↓ [62]

CpG Islands/Histone-methylation status ①LSD1
②PRMT5
③Sirt2.5
③CpGII
④CpGIII

OBI
Cell
Cell
CHB
CHB

↓
↓
↓

↓
↓

↓
↓
↓
↓

[63]
[64]
[65]
[70]
[70]

Regulatory protein and core protein regulation ①HBx
②HBx mutations
(HBxStop, MT16-

19,21–23,25–30)
HBx MT3,20,24
③HBc

Cell
Cell
Cell

↑
↑
↓

↑
↓

↓
↓
↓

[23–28]
[72]
[72]
[31]

Host transcription factor regulation ①ZHX2, Spindlin1
②RXRα

Cell/Mouse
Cell

↑
↑

↓
↑

[66, 67]
[68]
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modification of HBV cccDNA and lays foundation for the 
establishment of new anti-HBV therapeutic strategies.

Some enzymes regulate the histone methylation sta-
tus and affect the replication and transcription of HBV 
cccDNA, including LSD1, PRMT5, and Sirt2.5. Past stud-
ies have demonstrated that inhibiting or reducing the level 
of LSD1 restricts the viral gene expression. This observa-
tion is related to the transcriptional repression marker H3K9 
methylation and the reduction of the activation markers H3 
and H3K4 modifications on the viral promoter [63]. Protein 
arginine methyltransferase 5 (PRMT5) plays a negative role 
in HBV replication, which inhibits cccDNA transcription 
and disrupts pregenomic RNA evolution [64]. Sirt2 isoform 
5 (Sirt2.5) is a non-nuclear protein export signal that has 
a catalytic-splicing effect that reduces the output of HBV 
mRNA and cccDNA. This phenomenon is caused by stor-
ing the transcription repression markers directly and/or indi-
rectly [65].

HBx and HBc regulation

The regulatory protein HBx can enhance the replication or 
transcription of HBV cccDNA in recurring OBI patients 
with a low viral load, resulting in abnormal liver functions. 
HBx is composed of 154 amino acid proteins with an N-ter-
minus and a C-terminus, which can be tested in infected 
hepatocytes [23]. Past research has demonstrated that HBx 
activates host gene transcription and the cccDNA expres-
sion. HBX can also increase DLEU2 in infected hepato-
cytes. However, after HBV infection, HBx can increase HBV 
cccDNA transcription by inhibiting SETDB1 and allowing 
the establishment of active chromatin. In addition, HBX 
can activate the HBV cccDNA core promoter by closing 
the C-1619 methylation in cccDNA so as to stimulate viral 
replication [22, 24–28].

HBc has a positive effect on HBV replication. It has been 
shown to interact with cccDNA and regulate the transcrip-
tion of HBV [31]. HBc forms an important part of HBV 
cccDNA minichromosomes, which combine early with HBV 
double-stranded DNA [32, 33]. Their binding occurs pref-
erentially in the CpG island 2. In addition, its function is 
related to the proportion of HBc, the combination of CREB-
binding protein (CBP), and the hypomethylated state of CpG 
island 2 in HBV cccDNA small chromosome [34].

Host transcription factors

The role of host transcription factors in the epigenetic 
modification of cccDNA is unclear. cccDNA and host-cell 
histones assemble into chromatin. However, only little is 
known about the relationship between histone post-transla-
tional modification and the regulation of HBV chromatin. 
Relevant studies have demonstrated that ZHX2 is expressed 

in large amounts in adult hepatocytes. It can be combined 
with cccDNA to decrease the HBV promoter activity. In 
addition, ZHX2 inhibits the output of histone regulatory 
genes containing p300/CBP that bind to cccDNA and leads 
to epigenetic suppression of cccDNA [66]. In addition, 
Spindlin1 was identified as an HBx interaction partner and 
binds to cccDNA. Interestingly, it plays a negative role in 
HBV transcription during infection. In addition, Spindlin1 
decreases the level of histone H4K4 trimethylation, which 
indicates that Spindlin1 affects the epigenetic regulation 
[67]. The transcription factors ZHX2 and Spindlin1 inhibit 
HBV cccDNA replication and transcription.

Some host transcription factors regulate and promote 
HBV cccDNA replication and transcription, such as reti-
noic acid X receptor α (RxRα). On the other hand, RxRα 
is a nuclear receptor rich in the liver, and it regulates the 
replication and transcription of HBV through the activity 
of HBV enhancer 1, the core promoter, and the acetyltrans-
ferase on viral minichromosomes. The recruitment to trigger 
epigenetic changes in cccDNA [68].

Furthermore, The CpG island methylation pattern of OBI 
is different from that of other diseases. Past studies have 
demonstrated that there are different CpG methylation pat-
terns between the OBI and CHB. The OBI and non-OBI 
patients exhibited methylation of the HBV CpG islands 1 
and 2. Among them, the occult HBV sequence contains 
island 2 with a higher degree of methylation. In contrast, 
the non-occult HBV sequence contains a higher degree of 
methylation in island 1. This observation suggests that OBI 
and CHB may have diverse methylation-modification styles. 
It also suggests that, in several cases, although the immune 
system is suppressed, the virus retains significant genetic 
changes, which limits its replicating abilities [69]. Further-
more, high levels of CpG island II methylation were present 
in low HBV DNA patients. In addition, past in vitro studies 
verified that CpG island II methylation drastically inhibited 
cccDNA transcription such that DNA replication was lower 
in OBI-related diseases [70]. The relationship between a 
variety of models of nonexclusive genetic and epigenetic 
changes in the HBV DNA sequence of occult hepatitis B 
remains unclear.

HBV cccDNA regulates the expression level of HBsAg

CpG island methylation patterns

HBV infection is preserved by the existence of HBV cccDNA. 
There exists a relationship between CpG islands and viral 
HBsAg expression. Furthermore, host DNA methyltransferase 
causes viral methylation, resulting in less viral expression 
[70, 71]. A past study revealed that the methylation density 
of HBV cccDNA CpG islands may induce negative correla-
tion between the HBsAg expression and CpG island III in 
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OBI-related diseases. However, the CpG islands I and II had 
no effects on the HBsAg levels in the same patients. CpG III is 
situated upstream of the HBV large-surface protein promoter 
(LHBs-SP1); therefore, the methylation of CpG III decreased 
the transcription of surface mRNA. Therefore, it is suggested 
that the viral gene expression is regulated by the level of CpG 
island III methylation [70].

HBX mutation and histone‑methylation status

HBx plays the key role in HBV replication through the 
H-box motif and CUL4-DDB1 ubiquitin ligase [29]. For 
example, HBV regulatory protein X targets the protein 
structure of chromosome 5/6 (Smc5/6), thus leading to the 
degradation and ubiquitination by DDB1-CUL4-ROC1 E3 
ligase to reinforce viral transcription of cccDNA [20]. Fur-
thermore, HBx mutations made a strong correlation between 
cccDNA and HDAC1 to regulate the HBV viral load [72].

Therapeutic methods regulating cccDNA 
in OBI‑related diseases

HBV is the main cause of liver diseases. HBV cccDNA 
elimination is the key part of the complete cure for HBV-
infected patients. The clinical application of HBV cccDNA 
mainly includes monitoring HBV infection in organ trans-
plant recipients and other immunosuppressive patients [73]. 
In addition, evaluating the effect of antiviral treatment and 
relapsing after stopping the drug and adjusting the treatment 
plan in time are some other alternatives to improve treat-
ment efficacy [74]. To evaluate the risk of OBI associated 
with other liver diseases [75, 76], we have compared the 
similarities and differences between OBI and other liver dis-
eases and conducted mechanistic researches [34]. Presently, 
most of the current treatment methods are "functional cure". 
Although some antiviral drugs have been used clinically, 
there is still a long way to go before "complete cure" could 
be achieved. The reason why OBI cannot be completely 
eliminated is that the pre-existing antiviral drugs are rela-
tively insensitive for targeting HBV cccDNA, which results 
in persistent HBV infection [70]. At present, it is necessary 
and desirable to develop a new method that directly targets 
HBV cccDNA. Through recent studies on the apparent regu-
lation of HBV cccDNA, silencing cccDNA may be a feasi-
ble treatment method. The current approach to treatment 
research in this field is summarized below:

Histones and immunomodulators maintain a low 
level of HBV DNA replication in OBI patients

Class I histone deacetylase inhibitors can induce increased 
acetylated H4 and HBV replication bound by cccDNA. 
Finally, in OBI-related diseases, histone hypoacetylation 

in the liver tissues and histone deacetylase 1 recruitment 
bound to cccDNA have been associated with the occurrence 
of diseases [77].

The application of the immunomodulator IFN-α not 
only reduces the apparent modification of cccDNA but 
also reduces the cccDNA activity by reducing the bind-
ing of STAT1 and STAT2 [78]. In addition, interferon-α 
can eliminate HBV cccDNA by regulating histone H3K79 
succinylation, thereby allowing the epigenetic regulation 
of HBV cccDNA [79]. Furthermore, alcohol intake can 
strengthen intracellular HBV transcription, while recombi-
nant human interferon IFN-α2b can inhibit ethanol-enriched 
HBV cccDNA by blocking the HBx/MSL2/cccDNA/HBV/
HBx-positive feedback loop [80]. Furthermore, IFN-α2b can 
cause histone H4K8 de2-hydroxyisobutyrylation in cccDNA 
minichromosomes to inhibit HBV transcription and replica-
tion by increasing histone H4K8 de2-hydroxyisobutyrylation 
[81].

Although α-IFN is an extremely useful treatment 
approach for HBV infection, it has major side effects. 
Therefore, the regulation of cccDNA and the study of host 
cofactors are expected to have significant clinical value for 
researches on anti-hepatitis B therapeutic drugs [55].

Treatment with interleukin-6 (IL6), sharply reduces the 
level of cccDNA-bound histone acetylation and the 3.5-kb/
pgRNA. In addition, IL6 has a certain inhibitory effect on 
HBV replication [82]. Moreover, curcumin has certain anti-
inflammatory properties. Past studies have demonstrated that 
it can inhibit HBV replication by downregulating cccDNA-
bound histone acetylation and may be developed as a viral 
drug for targeting cccDNA [83].

Drugs regulated by HBV cccDNA were related to HBV 
replication and HBsAg production

The NTCP inhibitor myrcludex B, which competitively 
blocks virus invasion of the hepatocyte-specific receptor 
NTCP, is in phase-III clinical trials, which imply a complete 
cure for de novo infection [84]. Flavocoxid is composed of 
catechin, baicalein, and two flavonoids, and past evidence 
has demonstrated that flavocoxid alone or in combination 
with entecavir may reduce cccDNA, such that it inhib-
its HBV DNA and the HBsAg expression in OBI-related 
illnesses [85]. In addition, 6-aminonicotinamide, a new 
inhibitor, reduces in vitro HBV DNA replication and the 
HBsAg levels by decreasing the transcription factor PPARα 
[86]. Finally, Junceellolide B significantly decreases HBV 
cccDNA-transcribed products [87]. On the other hand, the 
present evidence suggests that DIC, an NQO1 inhibitor, can 
silence cccDNA transcription by accelerating the degrada-
tion of HBx [88]. This evidence may provide a new thera-
peutic schedule for "virological" cure strategies.
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Furthermore, some reports have demonstrated that 
lymphotoxin-β-receptor activation promotes HBV cccDNA 
decay. This observation may provide new headways in pre-
venting the re-occurrence of HBV infection [89, 90].

CRISPR/Cas9 editing and the employment 
of transcription inhibitors provide new directions 
for OBI treatment

Past recent studies have demonstrated that clustered and 
regularly spaced short palindrome repeats (CRISPR)/
CRISPR-related Cas9 nuclease (CRISPR/Cas9) may be the 
most promising choice for target and subsequently deplete 
the cccDNA storage [91]. The Cas9II system is one of the 
most studied systems in mammals and humans. CRISPR/
Cas9 nuclease can effectively target HBV cccDNA to reduce 
its expression. Deep sequencing has demonstrated that the St 
CRISPR/Cas9 system is the safest anti-HBV active system 
that can provide a new possibility in the targeted therapy of 
HBV cccDNA.

The use of transcription inhibitors targeting viral DNA 
inhibits the replication of HBV [92]. These repressors 
(TALEs) target the open reading frame on the surface of 
the virus and are placed under the transcriptional control 
of a constitutively active promoter or a liver-specific pro-
moter. This is a new and effective method for the epigenetic 
modification of HBV DNA to inactivate the virus in vivo. 
This method has therapeutic value and can prevent the devel-
opment of potential problems associated with accidental 
mutagenesis of gene editing.

Conclusions and perspectives

Although it is known that HBV enters hepatocytes by endo-
cytosis, the relationship between HBV entry into hepato-
cytes and the host cofactors remains to be fully understood. 
HBV forms HBV cccDNA under the action of host enzymes 
in the nucleus. Due to the peculiar nature of its gene struc-
ture, the regulatory effects of histones, non-histones, and 
host factors on HBV cccDNA are not yet clear, which makes 
the complete elimination of HBV cccDNA a problem in OBI 
patients. Currently, the focus of the occult HBV infection 
research remains mainly on HBV cccDNA gene mutation, 
immune regulation, the increasing apparent regulation of 
HBV cccDNA, HBV immune complex and detection limita-
tion. Since, increased focus of the research remains on his-
tone acetylation, methylation, transcription factors, and tran-
scription inhibitors, it is possible to reduce HBV cccDNA 
replication or even transcription such that these situations 
make HBV DNA replication and HBsAg lower. In addition, 
in recent years, with the rapid development of CRISPR/Cas9 
gene editing technology, new insight has been provided for 

the complete HBV cccDNA clearance. Presently, the drugs 
that have an effect on HBV cccDNA mainly include immu-
nomodulators, histone modulators, and targeted transcription 
inhibitors. In addition, some known treatment methods are 
not in practice. Currently, most research models of occult 
hepatitis are based on chronic hepatitis and liver cancer, and 
there are only a few direct reports on the molecular levels 
of HBV cccDNA on occult hepatitis. The differences and 
association studies of HBV cccDNA in the pathogenesis of 
occult hepatitis, hepatic hepatitis, and liver cancer are also 
not yet clear. Therefore, researchers need to deeply consider 
the establishment of occult hepatitis models. On one hand, 
we may have established a new indicator or detection method 
to diagnose OBI using a specific model. On the other hand, 
this model can be used to analyze the epigenetic regulation 
pathogenesis of HBV cccDNA to search for a new therapy.
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