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ABSTRACT
Regulation of alternative splicing is one of the most 
efficient mechanisms to enlarge the proteomic diversity 
in eukaryotic organisms. Many viruses hijack the splicing 
machinery following infection to accomplish their 
replication cycle. Regarding the HBV, numerous reports 
have described alternative splicing events of the long 
viral transcript (pregenomic RNA), which also acts as a 
template for viral genome replication. Alternative splicing 
of HBV pregenomic RNAs allows the synthesis of at 
least 20 spliced variants. In addition, almost all these 
spliced forms give rise to defective particles, detected in 
the blood of infected patients. HBV- spliced RNAs have 
long been unconsidered, probably due to their uneasy 
detection in comparison to unspliced forms as well as for 
their dispensable role during viral replication. However, 
recent data highlighted the relevance of these HBV- 
spliced variants through (1) the trans- regulation of the 
alternative splicing of viral transcripts along the course 
of liver disease; (2) the ability to generate defective 
particle formation, putative biomarker of the liver disease 
progression; (3) modulation of viral replication; and 
(4) their intrinsic propensity to encode for novel viral 
proteins involved in liver pathogenesis and immune 
response. Altogether, tricky regulation of HBV alternative 
splicing may contribute to modulate multiple viral and 
cellular processes all along the course of HBV- related 
liver disease.

INTRODUCTION
In eukaryotes, alternative splicing is a trivial event. 
The overall function of alternative splicing is to 
increase the diversity of mRNAs by coordinating 
the generation of isoforms from one single gene. In 
humans, more than 90% of genes are alternatively 
spliced by several mechanisms such as exon skip-
ping or intron retention, leading to the exclusion 
or inclusion of a specific RNA sequence.1 This gives 
rise to mRNA populations that increase by around 
fourfold to fivefold the diversity of proteins, essen-
tial for development, differentiation and organ 
functions.2–4 Furthermore, mis- splicing can trigger 
human diseases including genetic disorders and 
cancers.5 The splicing process is coordinated by the 
spliceosome, a large ribonucleoprotein complex.6 
Alternative splicing is regulated by cis- acting 
domains, located in the intronic or exonic regions 
(silencers and enhancers), and by transacting 
splicing factors (repressors and activators).2 3 7 8

Like in the eukaryotic transcriptome, alterna-
tive splicing is important for the completion of the 
replication cycle of multiple virus families, through 

the expression of proteins contributing to the 
productive infection.9 10 Considering the HIV- 1, an 
unspliced genomic transcript is responsible for the 
generation of Gag and Gag- Pol precursor structural 
proteins. HIV- 1 primary transcripts undergo exten-
sive and complex alternative splicing for the expres-
sion of the regulatory viral proteins. Indeed, most 
HIV- 1 strains use four different splice donor (SD) 
and eight different acceptor sites which produce 
more than 40 different spliced mRNA species for 
Rev, Vpu, Vpr, Vif and Tat expression.11 Like-
wise HIV, the human papilloma DNA virus (HPV) 
also requires constitutive and alternative splicing 
to generate the 20 different mRNAs, encoding 
proteins that are essential to complete its life 
cycle.12 This is driven both by cis- acting regulatory 
sequences present on viral RNA as well as by trans- 
acting splicing factors such as proteins belonging to 
the SR (Serine- Arginine) or hnRNPs (heterogeneous 
nuclear ribonucleoproteins) families. In contrast to 
HIV- 1 or HPV, alternative splicing regulation of 
the HBV transcripts seemed not critical for viral 
replication.

HBV is a hepatotropic DNA virus member of 
the hepadnavirus family.13 Worldwide, more than 
250 million people are living with a chronic HBV 
infection.14 This chronic infection is associated with 
hepatic lesions of variable severity, ranging from a 
practically normal liver to severe lesions of active 
chronic hepatitis that can progress to cirrhosis.13 
HBV chronic infection may also be associated 
with the development of hepatocellular carci-
noma (HCC).15 HBV is not directly cytopathic for 
hepatocytes, the onset of HCC is mainly linked to 
the development of chronic diseases on a cirrhotic 
liver.15 16 There is also evidence for a direct role of 
HBV in HCC development, through integration of 
the viral DNA into the host genome as well as via 
viral protein expression.15 There is no complete 
cure for the majority of chronically infected 
patients, although current lifelong oral treatments 
lead to effective viral suppression.17

The viral genome of HBV consists of a partially 
double- stranded, circular molecule of 3.2 kb. There 
are 10 genotypes of HBV (A–J), presenting DNA 
sequence divergence of about 8%. HBV geno-
types are differentially distributed worldwide and 
this geographical repartition might be associated 
with different outcomes in disease progression 
and responses to treatment.13 16 The circulating 
HBV particle comprises an outer lipid viral enve-
lope and an icosahedral nucleocapsid that contains 
a relaxed circular DNA associated with viral 
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polymerase.13 16 Internalisation of the HBV particle is driven by 
the sodium taurocholate cotransporting polypeptide receptor, a 
transmembrane transporter mainly expressed on hepatocytes.18 
After entry into the hepatocyte, the partially double‐stranded, 
relaxed, circular DNA is repaired in the nucleus, to form the 
covalently closed circular DNA (cccDNA), matrix of the viral 
transcription.13 14 16 19 Four unspliced transcripts of 3.5, 2.4, 2.1 
and 0.8 kb are synthesised from the HBV genome and encode for 
three surface proteins (large PreS1/S2/S, middle PreS2/S, small 
S), core protein (forming viral capsid), HBe protein (translated 
from the 3.5 kb preC RNA, marker of viral replication), DNA 
polymerase protein and HBx transactivator protein (involved 
in viral replication and carcinogenesis).15 16 Among the viral 
transcripts, the 3.5 kb pregenomic mRNA (pgRNA) is packaged 
through its ε-stem- loop structure with the viral polymerase into 
the nucleocapsid, where its reverse transcription occurs.13 Then, 
the nucleocapsid is enveloped and secreted or recycled from the 
cytoplasm back into the nucleus, leading to cccDNA amplifica-
tion.13 14 16

In addition to unspliced HBV mRNAs, accumulation of 
evidence has demonstrated that the pgRNA and, more recently, 
the PreS2/S surface mRNA may undergo single or multiple 
splicing events. The existence of alternative spliced viral RNAs 
has also been reported in other members of the Hepadnaviridae 
such as the woodchuck and duck hepatitis viruses.20 21 Although 
the existence of HBV- spliced RNAs has been known for decades, 
their importance in viral biology is not clearly understood. This 
review will update the knowledge on the mechanism by which 
HBV- spliced viral RNAs are generated and their biological 
impact on the course of HBV infection and during liver disease.

Alternative splicing of HBV RNAs and formation of defective 
HBV particles
The first identification of a spliced HBV RNA processed from the 
viral pgRNA was made in 1989 in the liver of infected patients.22 
Two spliced pgRNA isoforms, resulting from single splicing (sp1) 
or double splicing (sp10) excision, were detected by northern 
blot.22–24 The preservation of the ε-stem- loop structure at the 
5′-terminal region of spliced isoforms argues for their probable 
packaging and reverse transcription ability. This was confirmed 
by the detection of HBV- defective DNA generated from sp1 or 
sp10 RNAs in circulating particles.25–33 These circulating viral 
particles are defective considering their failure to self- replicate 
in the absence of trans- complementation with a wild- type virus.

Nowadays, 20 HBV- spliced variants (sp1 to sp20) derived from 
the pgRNA and expressed at different amounts are reported, 
suggesting a sharp regulation of splicing machinery (figure 1). 
Among them, seven spliced variants were detected, mainly by 
real- time (RT)qPCR, in infected liver of patients with either 
chronic active infection or HCC (figure 1).22 34–36 Twelve splicing 
isoforms were indirectly observed as circulating defective parti-
cles in blood samples as well as in supernatants of HBV trans-
fected human hepatoma cells.26 27 30 31 33 36–42 At last, the isoform 
derived from sp18 was identified in HBV DNA- transfected cell 
(figure 1).43 44 Recently, several new putative spliced isoforms 
were reported by RNA- seq analysis in transfected Huh7 cells 
or liver biopsy samples.35 However, these new spliced isoforms 
need further confirmation using direct identification methods.

Computational analysis identified numerous splice sites 
throughout the HBV pgRNA. Only some of these predicted 
splice sites have been attributed a role in the synthesis of the 20 
HBV alternative splicing variants.45 This observation highlighted 
that usage of splice sites also depends on a dynamic secondary 

structure of the HBV pgRNA.46–48 The splice donor (SD) and 
splice acceptor (SA) sites involved in the generation of the 20 
variants are located at positions 2067, 2087, 2447, 2471 and 
2985 for SD or at positions 2236, 2350, 2902, 3169, 282 and 
489 for SA (HBV genotype D nucleotides numbering). Combina-
tions between donor/acceptor sites generating single and multiple 
splicing variants are illustrated in figure 1. The sp1 isoform is 
the main splicing variant (2447SD/489SA), accounting for up to 
30% of total pgRNA and generated up to 70% of whole HBV 
DNA circulating particles.25 29–33 35 38 40 43 49–52 Regarding the 
other spliced HBV RNA variants and related defective particles, 
their amount was less frequently studied and quantified and may 
vary from 0% to 15% of total circulating particles.30 31 43 52 Alto-
gether, the SD 2447 and SA 489 sites are frequently recognised, 
contributing to the synthesis of 32% and 43% of HBV RNA- 
spliced variants, respectively (figure 2A).

Besides pgRNA, it should be noticed that alternative splicing 
regulation of the subgenomic RNA encoding HBV envelope 
proteins was also reported (figure 1). Alternative splicing of the 
PreS/S mRNA relies on the splicing donor and acceptor sites at 
positions 458 and 1305 (sp21) or 1385 (sp22), respectively.53 54

Detection of HBV RNA splicing and related defective particles
As previously mentioned, the first identification of an alterna-
tive splicing regulation of HBV pgRNA was performed in 1989 
by northern blot analysis.22–24 55 Two years later, Terre et al, 
reported the detection of HBV- defective particles containing 
DNA derived from spliced RNA by PCR in the blood of infected 
patients.33 41 Then, amplification of the full- length HBV genome 
by PCR highlighted the occurrence of various defective parti-
cles generated from pgRNA- spliced forms.26 Development of 
(RT)qPCR approaches using specific primers of spliced RNAs 
and related defective genomes has largely contributed to better 
characterise the amount of circulating defective particles in 
vitro as well as in vivo.32 38 Thereby, clinical studies established 
a correlation between circulating defective HBV particles from 
sp1RNA and their wild- type viral counterpart.25 32 38 39 49 Yet, 
some variations of the proportion of circulating defective parti-
cles revealed a modulation of HBV alternative splicing during 
liver disease progression.39 49 50 However, the complete pattern 
of HBV- spliced isoforms and related defective particles remain 
hardly assessable by (RT)qPCR. Only semiquantitative universal 
approaches such as Rapid Amplification of cDNA Ends (RACE 
PCR), or next- generation sequencing (NGS) after amplification 
of every single viral genome, allowed to define this pattern.35 56 
Second- generation NGS, which relies on short read sequences, 
may show limitations in characterising the splice junctions. 
Nevertheless, such approach has consolidated the diversity of 
HBV- spliced isoforms expression.35 In contrast, recently devel-
oped third- generation NGS, whose method achieves full- length 
sequencing in one single read of HBV genomes (both wild- type 
and splice- derived), would provide the proportion of each viral 
form in biological samples.57–59

Cis-regulation and trans-regulation of HBV RNA splicing
Numerous studies have reported that the isoforms and amount 
of HBV RNA- spliced variants as well as related defective parti-
cles may differ between patients.25 26 29 32 38–40 49–51 Regulation 
of pgRNA splicing is contingent on either cis- regulation, which 
depends on viral genetic variability, or trans- regulation, through 
the regulation of the spliceosome machinery activity.26 31 52 60

Regarding HBV cis- acting sequences, splicing sites (SD and SA) 
were described in HBV consensus sequences of genotypes A to 
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D but their intra- genotypic conservation remains poorly studied. 
Furthermore, several reports suggested a relationship between 
HBV genotype and the regulation of alternative splicing through 
an unknown mechanism.25 31 44 60 Thus, to precise the influence 
of HBV genetic variability on alternative splicing regulation, we 
compared the sequence of the 11 SD and SA sites of the pgRNA 
across HBV genotype A, B, C, D and E from 5962 sequences 

extracted from the HBV databank.61 As expected, the eukaryotic 
consensus sequences of splice sites (GT for SD and AG for SA) 
were preferentially identified in HBV (table 1).

Conservation of consensus splice site sequences was higher 
than 95% across all genotypes, except for SD 2067 and 2087 
(table 1). The main sequence of the donor site 2067 (GC), 
detected in over than 99% of the genotypes, might be also 

Figure 1 Splicing variants generated from alternative splicing regulation of HBV RNAs. Upper panel HBV pregenomic RNA sequence (genotype 
D numbering from nucleotide 1–3181)which includes the open reading frames (boxes) of PreC- C (yellow), PreS1/PreS2/S (green), HBx (blue) and 
polymerase (pink, dotted lines delimitate terminal protein, spacer, reverse transcriptase and RNAseH subdomains) genes. Splice donor (square) and 
acceptor (diamond) sites are indicated all along the sequence of the pgRNA. Middle panel 20 spliced pgRNA isoforms can be generated by alternative 
splicing of HBV pgRNA. Due to the lack of a consensus nomenclature in the naming of the different spliced isoforms, we propose the following labels: 
sp1–sp20. Detection of each splicing- generated isoform in biological samples (L, B, C, S) either under RNA (spliced transcripts) or DNA (defective 
particles) forms was indicated in the right size. Lower panel alternative splicing regulation of the subgenomic HBV envelope RNA leads to the sp21 
and sp22 variants. Bibliographic references associated: sp1RNA22–24 26 31–35 39 40 43 44 49 50 52 55 68 90 118 119; sp2RNA25 26 44 113; sp3RNA25 26 31 43 44 113 119; 
sp4RNA25 26 35; sp5RNA25 26 35; sp6RNA25 26 31 33 35 41 43 44; sp7RNA25 26 35 36 44 85 94 116; sp8RNA26 113; sp9RNA26 35 44; sp10RNA25 26 34 44 52 88; sp11RNA26 35; 
sp12RNA25 35; sp13RNA35 43 55 119; sp14RNA33 35 41 94 116; sp15RNA25 31 44; sp16RNA25; sp17RNA25 44; sp18RNA35 43 44; sp19RNA28; sp20RNA35; 
sp21RNA53 54; sp22RNA.53 54 L B C S: liver, blood, cell and supernatant of cells.
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recognised by the spliceosome machinery.62 63 Regarding the site 
2087, a consensus GT sequence was predominantly observed in 
the genotypes B and C, while a GG sequence was mainly found in 
the genotypes A, D and E. Although the GG sequence could also 
be considered as a SD site,4 62 63 splicing forms generated from 
the SD 2087 (sp4 and sp5) were only detected in genotype B and 
C.25 26 64 Altogether, the robust level of conservation of the splice 
sites highlights a critical role of alternative splicing during HBV 
infection. Additional nucleotide sequence elements located close 
to the splice sites may also contribute to the splicing regulation. 
Like splice sites, these surrounding regions may be affected by 
the viral genetic variability. Alignment of these HBV nucleotide 

sequences, including the splicing branch point, also revealed 
a remarkable conservation across genotypes (figure 2B). One 
exception was detected in the genotype D, where SD 2350 does 
not seem recognised in splicing regulation (ie, no synthesis of 
sp10RNA), probably due to a nucleotide substitution (G2335A) 
in an adjacent regulatory sequence.44 The clinical relevance of 
this apparent genotype- specific splicing regulation of HBV needs 
further investigation.

Reports have demonstrated, by analogy with the Rev response 
element of HIV- 1, the existence of a post- transcriptional regu-
latory element (PRE) located at the 3′ end of HBV transcripts. 
The PRE sequence (nucleotides 1151–1684 in genotype D) was 

Figure 2 Splice sites commitment in pgRNA: frequency of use and nucleotide sequences environment in genotypes A, B, C, D and E. (A) Frequency 
of use of the donor (left panel) and acceptor (right panel) splice sites in the synthesis of the different spRNAs. (B) Genetic variability of HBV sequence 
surrounding splice sites in 5962 whole HBV sequences extracted from HBVdb.57 The nucleotide variability is illustrated between −3 and +6 for donor 
sites and −12 and +3 for acceptor sites. The predictive splice branch point sequence of pgRNA alternative splicing, located between −40 and −200 
nucleotides, is indicated downstream of each acceptor site.59 These data were generated using the weblogo V.3 software. pgRNA, pregenomic RNA.

Table 1 Genetic variability of splice donor and acceptor sites used in HBV pgRNA for genotypes A, B, C, D and E

Splice sites
Genotype D numbering

Genotype
(sequence number)

A
(n=850)

B
(n=1718)

C
(n=2079)

D
(n=1028)

E
(n=287)

  Splice donor 2067 GC
99.9%

GC
99.7%

GC
99.5%

GC
99.9%

GC
100%

2087 GG / GT
92.4 %/0.2%

GT / GG
89 %/6%

GT / GG
93.6 %/0%

GG / GT
94.3 %/0.2%

GG / GT
87.8 %/0%

2447 GT
100%

GT
99.7%

GT
99.8%

GT
99.5%

GT
99.7%

2471 GT
99.6%

GT
100%

GT
99.9%

GT
99.6%

GT
100%

2985 GT
99.8%

GT
99.7%

GT
99.9%

GT
99.7%

GT
100%

  Splice acceptor 2236 AG
99.6%

AG
98.5%

AG
98.8%

AG
99.0%

AG
99.3%

2350 AG
100%

AG
100%

AG
99.9%

AG
99.9%

AG
100%

2902 AG
98.6%

AG
99.8%

AG
99.7%

AG
99.7%

AG
100%

3169 AG
99.3%

AG
95.1%

AG
99.5%

AG
96.9%

AG
99.0%

282 AG
99.8%

AG
99.9%

AG
99.7%

AG
99.3%

AG
100%

489 AG
99.9%

AG
99.9%

AG
99.9%

AG
99.4%

AG
99.0%
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first attributed a role in the nuclear export of unspliced viral 
subgenomic RNAs through CRIM1- independent pathways.65–67 
However, the PRE is a multifunctional highly structured cis- 
element with silencer and enhancer regions controlling viral 
splicing in a cell type- dependent manner.46 47 68 69 Indeed, by 
using gene reporter approaches, some regions with positive or 
negative regulation of the splicing of the pgRNA have been 
described within the PRE.47 70

A second regulatory region, located in the intronic fragment of 
the pgRNA (nucleotides 2951–3163 in genotype D), was iden-
tified as a long intronic splicing silencer (ISSL). This sequence 
which covers silencer and enhancers sites, suppresses the alter-
native splicing of sp1RNA.46 Notably, like for the PRE, modifi-
cation of the ISSL sequence altered splicing efficiency but also 
affected the nuclear export of HBV transcripts (and in a lesser 
extent their stability), highlighting a close relationship between 
both mechanisms.46 47 68 70

A third region regulating the splicing of the pgRNA encom-
passes the HBV enhancer II and the basal core promoter (EN- II/
BCP). These latter sequences have pivotal roles in HBV replica-
tion and possibly in viral pathogenesis.71 72 In a previous report, 
it was found that LUC7 like 3 (LUC7L3), an RNA splicing 
factor belonging to the SR family, is a negative regulator of the 
HBV replication process, through the downregulation of the 
EN- II/BCP activity.73 Furthermore, overexpression of LUC7L3 
increased the ratio of spliced over unspliced pgRNA.73 Thus, it 
could be hypothesised that negative regulation of the ENII/BCP 
activity is associated with the promotion of the pgRNA alterna-
tive splicing. In line with this hypothesis, it was recently demon-
strated, in vitro, that another splicing factor, PUF60, suppresses 
the splicing of the pgRNA and promotes its degradation by 
enhancing the activity of the HBV core promoter.74

As reported, the alternate splicing activity of these regions 
also depends on numerous trans- acting splicing factors. In 
order to identify the mechanisms of HBV alternative splicing 
trans- regulation, nuclear proteins interacting with the HBV 
pgRNA were explored by RNA pull- down assay.50 Among the 
389 proteins interacting with HBV pgRNA, 15% were directly 
related to the splicing machinery.50 These factors act as splicing 
inhibitors or activators and in addition, contribute to the nuclear 
export of unspliced HBV RNAs, as it was recently reported for 
the SRSF10.75 Moreover, it was demonstrated that the amount 
of spliced HBV RNAs was higher in cells derived from human 
HCC than in non- hepatic cancer cells, suggesting tissue speci-
ficity of HBV splicing related to the expression of trans- acting 
factors.60 A modulation of expression of trans- regulating splicing 
factors was also reported during liver disease progression 
towards HCC.76–78 In the case of HBV, the proportion of defec-
tive particles containing spliced RNA- derived genomes increases 
with the course of liver disease.21 32 38 39 49 51 Thus, we used an 
appropriate transgenic mouse model expressing the whole HBV 
genome (unconcerned by a cis- regulation impact) to explore the 
trans- regulation of HBV alternative splicing events according to 
liver damage. We took advantage of this model to demonstrate 
that the modulation of some trans- regulatory splicing proteins 
such as SF1, PSF, SRSF1 and La was related to liver injuries and 
subsequently increased the level of HBV- spliced sp1RNA.50 This 
upregulation of HBV alternative splicing contributed to liver 
disease and may participate to the viral persistence.50

Besides RNA- interacting splicing factors, other host proteins, 
known to interact in trans with DNA, may also participate in HBV 
alternative splicing regulation. For instance, histone deacetylase 
5, which removes acetyl groups from histone and non- histone 
proteins, has been shown to enhance splicing of HBV RNAs.79 

By contrast, the trans- active response DNA- binding protein has 
been speculated to downregulate the splicing of pgRNA by acti-
vation of the core promoter of HBV DNA as well as in a post- 
transcriptional level during nuclear export.80

In summary, HBV alternative splicing events depend on multi-
factorial mechanisms. Despite the involvement of cis- regulation 
and its modulation according to the viral genetic variability, 
trans- acting splicing factors play a major role in HBV alternative 
splicing regulation during liver disease.

HBV RNA-spliced variants in viral life cycle
In contrast to other viruses, generation of HBV RNAs from 
alternative splicing seems dispensable for viral replication.23 
However, the multiplicity of spliced transcript forms raised the 
question of their impact on the viral life cycle. Despite similar-
ities between the outcome of unspliced and spliced pgRNAs 
(packaging, reverse transcription and secretion as Dane wild- 
type or defective particles, respectively), several studies have 
emphasised differences in the behaviour of both RNA isoforms 
(figure 3). Indeed in nucleocapsids, HBV pgRNA is reverse tran-
scribed and generates double- strand DNA either under linear 
(dslDNA) or relaxed circular (rcDNA) forms. rcDNA viral parti-
cles were largely involved in the cccDNA formation either after 
repooling from the cytoplasm towards the nucleus or after de 
novo infection.13 By contrast, dslDNA cannot contribute to the 
formation of cccDNA. Nevertheless, this dslDNA is the main 
integrative form into host genome.13 19

In contrast, spliced RNAs are probably unable to generate 
defective cccDNA. Indeed, it was shown that encapsidated HBV- 
spliced RNAs mainly supported the synthesis of minus- strand 
DNA and duplex linear DNA but not relaxed circular defective 
DNA (rcdDNA).43 This is probably associated with the excision 
of a cis- acting sequence, required for the synthesis of relaxed 
circular HBV DNA, after splicing (figure 3).37 Subsequently, the 
absence of rcdDNA impaired the possibility to generate defec-
tive cccDNA. Additionally, taking into account that duplex linear 
DNA is the main HBV integrated form into the host genome, 
defective DNA genomes derived from alternative splicing of 
pgRNAs should be easily detected in the chromosomal sequence 
of infected hepatocytes. Yet, HBV- defective sequences have never 
been reported into the human genome to date.81 Taken together, 
the failure of HBV nucleocapsids containing spliced RNA to 
produce on one hand rcdDNA, and to generate on the other 
hand integrative defective DNA forms may support a deficient 
mechanism of nuclear readdressing. In line with this hypothesis, 
an accumulation of nucleocapsids containing genome derived 
from spliced RNAs might be observed in the cytoplasm of 
infected cells.43 In addition, it was established that the propor-
tion of intracellular spliced RNAs was significantly higher than 
related defective particles released in the blood or cell super-
natant.25 31 39 43 Such higher ratio of spliced RNAs in the intra-
cellular compartment could be explained by a lower efficiency 
of the reverse transcription process than for unspliced pgRNA. 
However, these results could also be attributed to a defect of 
viral maturation or secretion of HBV- defective particles.

Another question raised by the alternative splicing regu-
lation of HBV is that viral proteins encoded by spliced RNAs 
may contribute to modulate the replication of HBV. The HBV 
core is a structural protein of 21 kDa that self- assembles to form 
the viral nucleocapsid, supporting the reverse transcription 
step of viral replication.82 83 Spliced RNAs, and particularly the 
sp1RNA, contain an open reading frame encoding a precore/
core protein deleted of its last C- terminal amino- acid (ΔC183). 

 on M
arch 15, 2023 at D

ipartim
ento di G

enetica. Protected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2021-324554 on 17 Septem

ber 2021. D
ow

nloaded from
 

http://gut.bmj.com/


2378 Kremsdorf D, et al. Gut 2021;70:2373–2382. doi:10.1136/gutjnl-2021-324554

Recent advances in basic science

On one side, the truncated precore protein interferes with the 
assembly of the nucleocapsid, which may inhibit HBV replica-
tion.82 Intriguingly, this report suggests that HBV preC RNA 
(encoding precore protein) undergoes similar alternative splicing 
regulations than pgRNA. On the other side, the truncated core 
protein remains either fully replication competent82 or produces 
nucleocapsids containing preferentially spliced RNA isoforms.84 
It was also reported that a viral protein, generated by the doubly 
spliced sp7RNA, enhances the replicative competency of full- 
length HBV genome. This is probably through activation of HBV 
regulatory elements including viral promoters, Enhancer I and 
core upstream regulatory sequences.36 85 Cotransfection studies 
have reported that the spliced RNA variants (sp1, sp8, sp10 and 
sp16) modulated HBV replication.36 42 86 Mechanisms implicated 
in this modulation remain to be characterised, although in vitro 
studies have already shown that sp10 RNA reduces the transcrip-
tion level of pgRNA.87 88 Finally, it was also suggested that an 
increased level of HBx protein, which may be translated from all 
HBV RNA- spliced variants, might contribute to the viral repli-
cation.36 Altogether, these data support that spliced RNA may 
interfere with HBV replication.

Viral interference was largely reported in the field of virology 
but not for HBV, to date.89 Viral interference is an asynchro-
nous cycle event where one virus inhibits the replication of other 
forms of virus, contributing to viral persistence.89 For HBV, we 
could hypothesise that defective particles generated from spliced 
RNA may interfere with wild- type virus particles. However, 
viral quantification of both wild- type and defective particles, 
in clinical samples, did not support an interfering influence on 
replication. Indeed, defective particles derived from sp1RNA 
were almost detected in highly replicative patients and despite 
variations of their proportion (from undetectable to more 
than 70% of the whole circulating viruses), their mean ratio 
remained consistent and weak (3% to 4%) across all clinical 
studies.21 25 26 29–33 38 39 49–51

Collectively, these data suggest a specific outcome of spliced 
RNAs compared with pgRNA and a putative role on HBV life 
cycle. Nevertheless, to date, these reports did not support a 
significant interference mechanism of the spliced RNAs (and the 
related defective particles) on viral replication.

Alternative splicing of HBV and liver pathogenesis
Whereas spliced RNAs do not seem essential to viral replication, 
accumulated evidence suggests a role during liver pathogenesis. 
Therefore, two questions may arise: (1) can HBV- spliced RNAs 
be useful biomarkers for the clinical management of HBV liver 
disease? (2) can HBV- spliced RNAs encode unconventional viral 
proteins which play a role in liver injury?

HBV-spliced variants as biomarkers of liver disease?
The frequent detection of spliced forms in HBV infected patients 
(as well as in woodchuck or duck hepatitis samples) presumed for 
their impact on the course of liver disease. Clinical studies rein-
forced this hypothesis by positively correlating the proportion of 
circulating defective particles, mainly generated from sp1RNA, 
with the severity of liver inflammation and fibrosis.32 50 51 90 In 
line with this result, a longitudinal retrospective study revealed 
an increased proportion of sp1- derived defective particles prior 
to the development of HCC.49 Additionally, the production of 
sp1RNA- derived defective particles is altered in presence of 
HBV mutation associated with the lamivudine- drug resistance.38 
Altogether, these clinical studies stressed on the relationship 
between spliced RNAs and liver disease progression, although 
all these findings were almost obtained from quantification of 
sp1RNA and its related defective particles.

Up to date, only a few studies have focused on the whole 
pattern of spliced RNA isoforms and their associated defective 
particles. As previously reported in studies on sp1RNA,39 49 a 
deep sequencing analysis highlighted a fluctuation of circulating 

Figure 3 Outcome of pregenomic and spliced HBV RNAs during viral cycle.The outcome of pgRNA and spRNA was illustrated in left and right 
panel, respectively. Unspliced and spliced viral RNAs may be packaged, reverse transcribed and secreted as wild- type or defective DNA particles, 
respectively. Viral DNA genome in wild- type particles contains partial dslDNA or rcDNA forms. Focus on rcDNA showed its implication in the cccDNA 
formation after either readdressing from the cytoplasm towards the nucleus or de novo infection. Double–strand linear DNA is the main integrative 
form into host genome. Translation of pg and subgenomic RNAs led to the conventional HBc, HBe, HBx, Pol and envelops proteins expression (blue 
dot). Alternative splicing of pgRNA depends on cis- regulation elements (pre, ISSL and EnhII/BCP) and trans- regulatory factors including SF1, PSF, SRSF1 
and La proteins (yellow dot). Spliced RNA generates dsl- defective DNA, which does not contribute to the cccDNA formation or host integration form. 
Spliced RNAs may be translated in splice- derived truncated or original viral proteins (brown dot) termed as HBc ΔC183, RT′-RH/HpZ/P′, HBSP, PS, 
HBDSP, spPS1. dslDNA, double- strand DNA under linear form; pgRNA, pregenomic RNA; rcDNA, relaxed circular DNA.
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defective viruses derived from multiple spliced isoforms along 
the course of infection.91 Furthermore, the level but not the 
pattern of total circulating defective HBV DNA negatively 
correlated with the response to interferon-α therapy.25 Finally, 
the expression profile of RNA- spliced variants differed in HCC 
samples from patients infected with two different HBV geno-
types.35 However, the viral diversity, related to the whole HBV- 
spliced RNAs and related defective particles, needs to be better 
investigated.

Unfortunately, these circulating defective DNA forms will not 
be helpful as biomarkers for the clinical management of HBV 
infection, considering their sensitivity to nucleos(t)ide analogues 
therapy.

HBV-spliced variants as a source of pathogenic 
unconventional viral proteins?
It is tempting to speculate that enrichment of spliced transcripts, 
which initiate defective particles, might contribute to liver 
pathogenesis through their ability to encode new viral proteins. 
Numerous potential truncated or original proteins could derive 
from HBV- spliced RNAs. However, only few studies, reported 
below, focused on this feature. Besides being the main spliced 
viral transcript, sp1RNA encodes for original and truncated 
splicing- derived proteins detected in vitro and in vivo.40 92 
Additionally, three other splicing- generated proteins have been 
reported, mainly in vitro, namely: (1) the 43 kDa polymerase- 
surface (PS) protein which derives from a spliced pgRNA lacking 
intron 2447/2902 (sp14RNA), (2) the hepatitis B doubly spliced 
protein (HBDSP) which derives from a spliced pgRNA lacking 
intron 2447/2902 and 2985/489 (sp7RNA) and (3) the splicing 
PreS1 deletion protein (spPS1) which is translated from a spliced 
RNA lacking intron 2985/3169 (sp19RNA).87 93–95

Viral protein generated from sp1RNA
The sp1RNA encodes for the eighth HBV protein named 
HBSP.40 The HBSP sequence shares its N- terminal amino acids 
with the N- terminal part of the viral polymerase (47 aa), while, 
due to the splicing event, its C- terminal moiety (64 aa) consists 
of an original sequence. In vivo, HBSP has been detected in the 
liver of patients with chronic HBV infection and anti- HBSP anti-
bodies have been detected in 30%–50% of sera of HBV chronic 
carriers.40 51 Detection of these antibodies is significantly asso-
ciated with severe liver fibrosis.51 In addition, the relationship 
between HBSP and the progression towards advanced stages of 
the liver disease were also suggested by the ability of HBSP to 
activate T- cell responses in HBV- infected patients96; this without 
a major contribution to the hepatic inflammatory process.97 
However, our group reported on an attenuation of liver damage 
in HBSP transgenic mice following the induction of local inflam-
mation and fibrosis through the stimulation of the TNF-α-reg-
ulated signalling pathways.50 90 The protective effect of HBSP 
on the liver resulted from a downregulated expression of C–C 
motif chemokine ligand 2 (CCL2) by hepatocytes and a subse-
quent decreased recruitment of inflammatory monocyte/macro-
phages.50 Furthermore, such reduced expression of CCL2 in the 
liver of HBV chronic carriers was associated with upregulation 
of HBV pgRNA splicing.50 These findings argue for mechanisms 
whereby a viral protein hacks some signalling pathways involved 
in innate immunity and limits the extent of liver inflammation 
and fibrosis, which may contribute to viral persistence. In agree-
ment with a role of HBSP to modulate liver disease, a recent 
report demonstrated that HBSP suppresses Fas- mediated hepato-
cyte apoptosis by enhancing the activity of PI3K/Akt signalling.98

In the opposite way, in vitro studies have shown that HBSP 
induces several hallmarks of cell apoptosis through a putative 
BH3 homology domain in its N- terminal region.99 100 It was 
proposed that HBSP, by interacting with the fibrinogen γ chain 
or with microsomal epoxide hydrolase, may interfere with cell 
homeostasis and may participate to hepatic metabolic perturba-
tion during HBV infection.101 102 In addition, it was shown that 
HBSP can interact with the cathepsin B and eventually contribute 
to cell migration and invasion during cancer.103 Nevertheless, 
these investigations were most of the time performed in a situ-
ation where HBSP was expressed outside of the whole HBV 
genome context. The study of HBSP function in the HBV context 
remains complex considering the liver disease- dependence of its 
expression through HBV alternative splicing regulation, particu-
larly during liver carcinogenesis.

Additionally, sp1RNA may also encode for a truncated poly-
merase protein of 42,3 kDa, initiated from the start codon 
A2446T2447G489 generated by the splicing junction and named 
either RT′-RH or HpZ/P′.25 92 Expression of this truncated 
protein is depending on the splicing factor SRSF2 and impaired 
HBV replication through an interaction either with the RNA 
helicase SUPV3L1 or with proteins involved in chromatin and 
histone functions.92

Finally, in vitro expression of sp1RNA also leads to the intra-
cellular accumulation of ‘conventional’ HBV core proteins, 
which are able to inhibit interferon- mediated induction of the 
antiviral protein MxA.29 86

Viral protein generated from sp14RNA
The PreS1 domain of the 43 kDa PS protein, which is encoded by 
the sp14RNA has only been detected in vitro. It was suggested 
that this fusion protein might be a substitute for the HBV large 
surface protein during viral maturation.87 94 In cotransfection 
experiments, this protein, which is localised in the perinuclear 
region, inhibited HBV replication through a mechanism that 
remains to be characterised. Its biological implication in HBV 
pathogenesis was evoked through inhibition of HBs secretion 
(mediated by ER retention) which contributes to viral immune 
escape.87

Viral protein generated from sp7RNA
The doubly spliced variant lacking ‘introns’ 2447/2902 and 
2985/489, initially isolated from HCC tissue sample, encodes 
for HBDSP.36 85 The HBDSP protein was predicted to begin 
at the start codon of the polymerase and to share its 47 N- ter 
amino acids with the latter as a consequence of the first splicing. 
The C- ter domain of HBDSP consists of 27 amino acids shared 
with the PreS1 protein as a result of the second splicing.85 The 
chimeric 74 amino acids HBDSP was detected in hepatoma cell 
lines transfected with the sequence of a defective HBV genome 
resulting from the 2.2 kb doubly spliced transcript. This protein 
shows weak transactivating properties and pleiotropic effects 
mediated through the activator protein- 1- binding and CCAAT/
enhancer- binding sites.85 However, precise mechanisms associ-
ated with the regulatory functions of HBDSP and its biological 
implication in HBV pathogenesis needs further investigation.

Viral protein generated from sp19RNA
Deletions in the PreS region have recurrently been asso-
ciated with the development of liver diseases and particu-
larly HCC.93 104–109 Intriguingly, spliced RNAs lacking intron 
2985/3169 generates an in- frame deletion in the 3′ end of the 
PreS1 region.28 95 This variant encodes for the splicing PreS1 
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deletion protein (183- nucleotide deletion in the C- ter) named 
spPS1. In vitro, immunofluorescence staining showed that spPS1 
protein accumulated within the endoplasmic reticulum (ER).95 
This observation probably results from abnormal transmembrane 
topologies of the spPS1 protein in the ER. It was hypothesised 
that the truncated protein may induce oxidative stress, through 
enhanced production of reactive oxygen species, contributing 
to inflammation.95 However, understanding the role of the ER 
and oxidative stresses in HBV spPS1- related liver disease will 
require further investigation. Clinical study concluded that sp19 
detection, in combination with BCP and Pre- C mutations, was 
associated with the development of liver cirrhosis.28

CONCLUDING REMARKS
The role of alternative splicing in HBV infection and patho-
genesis is slowly but steadily getting recognised. Accumulated 
data clearly demonstrate that HBV splicing is a common event 
during HBV chronic infection and liver diseases. Regarding virus 
replication, regulation of alternative splicing of HBV transcripts 
contributes to the diversity of circulating viral particles in the 
blood of infected patients. Furthermore, recent studies report 
on the existence of HBV particles containing RNA, including 
spliced RNA, in sera of chronically infected patients with HBV. 
The role of these unspliced or spliced RNA particles remains 
to be clarified although current study suggests their failure to 
generate a productive HBV infection.110 Already, their titre in 
the bloodstream may show a predictive value of response to anti-
viral therapy.56 111–116 In contrast to numerous viruses, splicing 
of viral RNAs does not seem essential for the life cycle of HBV. 
However, the faculty of these HBV- spliced transcripts to encode 
original proteins that are able to interfere with viral replication 
and the outcome of the nucleocaspids highlight the requirement 
of further studies to better define the biological meaning of these 
features.

In human cancers, dysregulation of alternative RNA splicing 
contributes to disease progression by modulating RNA isoforms 
encoding for proteins involved in cell proliferative pathways.117 
Furthermore, the nature of the liver microenvironment can also 
influence which isoforms are expressed in a given cell type. 
A better understanding of HBV alternative splicing accurate 
control (ratio spliced over unspliced isoforms) will enlarge our 
knowledge on direct role of splicing in HBV liver pathogenesis. 
In this context, is the regulation of HBV alternative splicing a 
hallmark of changes in the liver microenvironment or does it 
contribute to enhance or control liver disease development? 
The described correlation between an increased proportion of 
splicing variants in the blood and the severity of liver fibrosis 
or HCC argues for a significant role of the HBV splicing vari-
ants in liver pathogenesis. In this line, the microenvironment, 
modified by liver injury, tends to promote the sp1RNA synthesis 
and subsequently the expression of the HBSP protein. In turn, 
HBSP interferes with the hepatocyte production of chemokines, 
which may contribute to viral persistence by favouring immune 
escape.

To date, tricky regulation of HBV alternative splicing may 
impact on many processes all along the course of HBV liver 
disease. Further studies are necessary to better decipher its 
contribution to viral persistence and liver pathogenesis.
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