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Human endogenous retroviruses (HERVs) are remnants of retroviral germ line infections

of human ancestors and make up ∼8% of the human genome. Under physiological

conditions, these elements are frequently inactive or non-functional due to deactivating

mutations and epigenetic control. However, they can be reactivated under certain

pathological conditions and produce viral transcripts and proteins. Several disorders,

like multiple sclerosis or amyotrophic lateral sclerosis are associated with increased

HERV expression. Although their detailed contribution to individual diseases has yet to

be elucidated, an increasing number of studies in vitro and in vivo suggest HERVs as

potent modulators of the immune system. They are able to affect the transcription of

other immune-related genes, interact with pattern recognition receptors, and influence

the positive and negative selection of developing thymocytes. Interestingly, HERV

envelope proteins can both stimulate and suppress immune responses based on different

mechanisms. In the light of HERV proteins becoming an emerging drug target for

autoimmune-related disorders and cancer, we will provide an overview on recent findings

of the complex interactions between HERVs and the human immune system with a focus

on autoimmunity.
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INTRODUCTION

Retroelements constitute a large portion (42%) of our genome (Lander et al., 2001; Cho et al.,
2008; Young et al., 2013). These transposable elements, which have RNA intermediates, are often
neglected although their contribution to the human entity is not well-understood.

They are discriminated by the presence of long terminal repeats (LTRs) fundamental for
regulation of retroviral gene expression (Mita and Boeke, 2016). Short interspersed nuclear
elements (SINEs, without reverse transcriptase) and long interspersed nuclear elements (LINEs,
with reverse transcriptase) belong to retroelements that do not possess LTRs (Mita and Boeke,
2016). LTR-positive retroelements encompass 8% of the human genome (Lander et al., 2001;
Balada et al., 2009). They are either called retrotransposons or human endogenous retroviruses
(HERVs) according to the absence or presence of the envelope (env) gene, respectively. Hence,
HERVs represent the most complete form of retroelements. They entered the primate genome
by exogenous retrovirus infections (Belshaw et al., 2004; Young et al., 2013). Retroviruses usually
infect somatic cells, but on occasion germ line cells are also targeted. As a consequence, retroviral
sequences were transmitted vertically to the offspring in a Mendelian manner and became fixed in
the human population (Christensen, 2010).
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HERVs are extensively distributed throughout the human
genome due to amplification and transposition events. Based on
sequence similarities to exogenous retroviruses, HERVs belong to
class I (gamma- and epsilon-like), class II (lenti-, alpha-, beta-,
and delta-like) or class III (spuma-like) retroviruses (Gifford
et al., 2005; Balada et al., 2010). Phylogenetic studies revealed that
at least 30 different HERV families exist in the human genome,
each resulting from a distinct infection of the germ line (Bénit
et al., 2003; Katzourakis et al., 2005; Stoye, 2012). Among them,
HERV-K (HML-2) elements integrated most recently and thus
are the most intact and biologically active forms (Marchi et al.,
2014). Although the number and diversity of HERVs are huge,
nomenclature is still not standardized. While most HERVs are
named after the tRNA species used to prime reverse transcription
(e.g., HERV-W for tryptophan tRNA), some names are still linked
to the approaches applied for their identification. For more
details refer to Vargiu et al. (2016).

In the course of human evolution most HERVs have
accumulated mutations, which rendered a large fraction of their
retroviral sequences non-functional (de Parseval and Heidmann,
2005). There are only two full-length proviruses known from
the most recently integrated HERV-K family (HERV-K113,
HERV-K115), which show complete reading frames for all viral
genes (Turner et al., 2001). However, no infectious endogenous
retrovirus has yet been identified in humans (Balada et al., 2009;
Stoye, 2012). Nevertheless, intact open reading frames of single
retroviral genes persisted in the genome, which gave rise to RNA
transcripts as well as proteins and therefore suggesting functions
in the human body (de Parseval and Heidmann, 2005).

In this regard, a well-investigated example is syncytin-1, which
is an ancient Env protein from the HERV-W family. It encodes
a 60 kDa large viral glycoprotein with fusogenic properties
and possesses an essential function in placental development in
humans (Dupressoir et al., 2012; Bolze et al., 2017). Independent
integration events of syncytins, which share functional properties
but are derived from multiple ERV lineages, are also important
for placental development of many other mammals (Dupressoir
et al., 2012; Imakawa and Nakagawa, 2017). Furthermore, HERV
transcripts are upregulated during early human embryogenesis
with possible implications in early viral defense pathways (Grow
et al., 2015).

In surveys of the human genome, a limited number of 16
coding env genes were identified (de Parseval et al., 2003; Villesen
et al., 2004). Although it cannot be excluded that shorter ORFs
may play a role in cellular processes, it is more probable for
longORFs to have retained their original function. Consequently,
the human genome bears a number of retroviral proteins with
putative roles in pathophysiological conditions (Hansen et al.,
2017). As an example, in amyotrophic lateral sclerosis (ALS),
recent research suggested a possible involvement of HERVs
(Alfahad and Nath, 2013). It was shown that HERV-K expression
in human neurons causes retraction and beading of neurites
(Li et al., 2015). As the virus was found to be expressed in
neurons of ALS patients but not in neurons of healthy controls
it was concluded that HERV-K expression might contribute to
neurodegeneration (Li et al., 2015). These results are supported
by findings showing increasedHERV-K expression in brain tissue

of ALS patients compared to non-ALS individuals (Douville et al.,
2011).

The focus of the present mini-review is the putative
interaction of HERV proteins with the human immune system.
Different mechanisms have been proposed to explain HERV
interaction with the immune response. With focus on adaptive
immune mechanisms, superantigen motifs, and viral proteins
will be discussed. Concerning innate immunity, interaction of
HERVs with pattern recognition receptors (PRRs) like Toll-like
receptor 4 (TLR4) and cluster of differentiation (CD) 14 are
described. Immunosuppressive function of HERVs will be also
addressed.

INTERACTION OF HERV PROTEINS WITH
THE HUMAN IMMUNE SYSTEM

As part of the human genome, HERV-encoded proteins should
be considered as self-antigens and tolerated by the immune
system. However, they could be perceived as neo-antigens if
not expressed in the thymus during acquisition of immune
tolerance (Balada et al., 2009). Moreover, once descended from
exogenous viruses, HERVs share sequence homologies with their
ancestors, which could provide antigenic epitopes for lymphocyte
recognition (Voisset et al., 2008). The underlying mechanism
is called molecular mimicry. Here, proteins of infectious agents
such as viruses or bacteria and self-derived proteins share
structural, functional or immunological similarities. In this light,
sequence similarities between Env proteins of HERV-W and
myelin are supposed to potentially trigger an immune response
in multiple sclerosis (MS) (Ramasamy et al., 2017). There
are a number of computationally predicted epitopes, which
are shared between retroviruses and host proteins, although
biological significance is not always given (Fujinami et al., 2006).
Nevertheless, molecular mimicry could help to explain how viral
infection leads to autoimmunity.

Retroviral nucleic acids and viral proteins can be sensed by a
variety of PRRs, such as Toll-like receptors (TLRs) or NOD-like
receptors (Thompson et al., 2011). It is conceivable that HERV-
encoded proteins are able to trigger PRRs of the innate immune
system leading to an induction of autoimmunity (Tugnet et al.,
2013). A direct interaction between certain HERV proteins and
TLRs has been shown. As an example, the surface unit of HERV-
WEnv binds to TLR4 and CD14 and stimulates the production of
pro-inflammatory cytokines including IL-1 beta, IL-6, and TNF-
alpha (Rolland et al., 2006). A more detailed description of innate
immune response activation by HERVs has been compiled by
Hurst et al. (Hurst and Magiorkinis, 2015).

Retroviral envelope proteins are hypothesized to both
trigger and suppress an immune response. In this context, a
peptide of 14 amino acids (LQARILAVERYLKD) located in
the transmembrane (TM) glycoprotein gp41 of HIV-1 inhibits
mitogen-induced and lymphokine-dependent T-lymphocyte
proliferation (Denner et al., 1994; Mühle et al., 2017). It is also
able to modulate cytokine levels as it increases IL-6 and IL-10
and decreases IL-2 and CXCL9 expression in human peripheral
bloodmononuclear cells (PBMCs) (Denner et al., 2013). Thereby,
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it allows the virus to persist and replicate in host cells (Blinov
et al., 2013; Denner, 2014). This short sequence, called the
immunosuppressive domain (ISD), is highly conserved among
retroviruses. It was first described for murine and feline C-
type retroviruses and later extended to human T-lymphotropic
virus (HTLV) and HIV (Haraguchi et al., 1997). A similar but
not identical sequence N-terminally to the immunodominant
Cys–Cys loop can be found in some HERV families including
HERV-W, HERV-FRD, and HERV-K (Morozov et al., 2013). A
recombinant TM protein and a peptide corresponding to the
ISD in HERV-K were shown to inhibit proliferation of human
immune cells and to modulate cytokine release similar to the
ISD of HIV-1 (Morozov et al., 2013), although corroboration of
these findings by other groups is pending.Moreover, the envelope
protein Env59 of HERV-H shows anti-inflammatory effects in an
experimental arthritis model (Laska et al., 2016). In contrast to
a study by Tolosa et al. showing reduced immune response of
PBMCs to treatment with LPS and syncytin-1 (HERV-W) (Tolosa
et al., 2012), Mangeney et al. described immunomodulatory
properties for syncytin-2 (HERV-FRD) but not for syncytin-1
(Mangeney et al., 2007). However, the replacement of two amino
acids in the ISD of syncytin-1 with those of syncytin-2 was able
to restore the immunosuppressive function (Mangeney et al.,
2007). Therefore, syncytins may help to protect the fetus from
the mother’s immune system (Blaise et al., 2003; Mangeney et al.,
2007). HERVs might also help tumor growth by shielding it
from the host immune system (Kudo-Saito et al., 2014). This
was shown for a synthetic peptide corresponding to the ISD of
HERV-H as it causes CCL19-mediated CD271+ cell-governing
immunosuppression in stimulated human tumor cells (Kudo-
Saito et al., 2014). HERV-H could also be an important factor for
immune defense in cancer. Although the association of HERVs
with cancerous tissues is beyond the scope of this review, it has
been hypothesized that immune suppression by HERVs could
contribute to tumor immune evasion.

REGULATION OF HERV EXPRESSION

HERV expression is tightly regulated by the host through
epigenetic mechanisms, which results in varying expression from
tissue to tissue (Hurst and Magiorkinis, 2017). Control of HERV
expression depends upon regulation of the LTRs, which are able
to bind nuclear transcription factors and function as promoters
(Hurst and Magiorkinis, 2017). Both CpG methylation of DNA
and histone deacetylation keepHERVs silenced, although histone
modifications alone were shown to be insufficient for efficient
transcription suppression (Hurst et al., 2016). Retroviral genes
are heavily methylated in normal tissues, whereas tumors show
increased levels of HERV transcripts due to hypomethylation
(Cegolon et al., 2013). In addition to epigenetic regulation,
other factors including hormones, microorganisms, and the
environment were shown to modulate HERV expression (Balada
et al., 2009; Emmer et al., 2014).

In this regard, the Epstein-Barr virus (EBV) is able to
transactivate the expression of the normally inactive HERV-K18
Env protein, e.g., in resting B lymphocytes via CD21 receptor
interaction (Sutkowski et al., 2001; Hsiao et al., 2006; Balada
et al., 2009). The mechanism of transactivation was further

shown to depend on the expression of the major EBV late gene
transactivator EBNA-2 (Sutkowski et al., 2004). In-depth analysis
identified the EBV latent membrane protein LMP-2A as a strong
candidate for the transactivation of HERV-K18 (Sutkowski et al.,
2004). Furthermore, Stauffer et al. showed that interferon-α
upregulates transcription of the HERV-K18 env gene, suggesting
an indirect connection between viral infections and autoimmune
disorders (Stauffer et al., 2001). This is of great interest since
HERV-K18 has been reported to have superantigen activity
(Sutkowski et al., 2001; Tai et al., 2006), although conflicting data
are also published (Lapatschek et al., 2000; Azar and Thibodeau,
2002).

Superantigens activate B- and T-lymphocytes regardless of
the specificity of their antigen receptor. They are produced
by bacteria and viruses and do not need to be processed
as conventional antigens for antigen presentation (Solanki
et al., 2008). They bind to conserved regions of major
histocompatibility complex (MHC) class II molecules outside of
the classical peptide-binding groove and connect them with a
subset of T-cells expressing particular T cell receptor (TCR) β

chain variable region genes (Solanki et al., 2008). This is different
from conventional T-cell activation where highly variable TCR α

and β chains CDR3 regions are bound (Sutkowski et al., 2001).
Therefore, superantigens can stimulate many subsets of T-cells
expressing the same Vβ genes, followed by massive cytokine
secretion (Solanki et al., 2008).

In this context, the first HERV superantigen was isolated
by Conrad et al. from pancreatic islets of patients with type
I diabetes (T1D) (Conrad et al., 1997). They showed that the
Env protein of this new HERV initially named IDDMK1,222
has properties of a Vβ7-specific superantigen. Sequence analysis
revealed that IDDMK1,222 corresponds to one allele of the
polymorphic HERV-K18 env (Stauffer et al., 2001). Sutkowski
et al. further showed an activation of TCR Vβ13 T cells in
response to murine B cells transfected with HERV-K18 env
gene (Sutkowski et al., 2001). Tai and colleagues found similar
results for K18 Env in mice as it expands Vβ7 and Vβ13 T
cells (Tai et al., 2006; Emmer et al., 2014). Although HERV-K18
Env seems to possess superantigenic properties, its contribution
to pathogenesis of T1D remains unclear. Contrary to studies
supporting the initial association of the putative superantigen
with T1D (Kinjo et al., 2001; Marguerat et al., 2004), four
independent studies challenged this hypothesis (Badenhoop
et al., 1999; Jaeckel et al., 1999; Knerr et al., 1999; Muir et al.,
1999). In summary, the expression of HERVs in the human body
is subject to strict regulation, which can lead to an increase in
HERV transcripts and proteins due to pathological alterations.

IMPLICATIONS FOR AUTOIMMUNE
DISORDERS

The diversity of as many as 80 different types of autoimmune
disorders as well as their clinical resemblance often makes
diagnosis difficult. It is known that many different genetic
loci with small effect sizes predispose individuals to develop
autoimmunity, but in addition, environmental factors play a role
in triggering the immune response (Ercolini and Miller, 2009).
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Here, HERVs might play an important role in the homeostasis of
the immune system and could be key players when it comes to
development of autoimmunity.

Studies that show an association between HERVs and
autoimmune diseases either rely on retroviral antigens at the site
of disease or the presence of antiretroviral antibodies in the sera
of patients (Herve et al., 2002; Mameli et al., 2007; Laska et al.,

2012; Alfahad and Nath, 2013). It has been hypothesized that
HERVs are involved in the pathogenesis of diseases characterized
by dysregulated immune response, such as autoimmune diseases
(Table 1). However, whether HERVs are causative or only a
consequence of disease is still under debate, as the expression
of HERV mRNA or proteins at the site of tissue injury alone is
insufficient to prove a pathogenic role of HERVs.

TABLE 1 | Summary of HERVs associated with inflammatory diseases mainly through genetic, serological, and molecular studies.

Diagnosis HERV Main results References

MS HERV-W Meta-analysis of HERV-W viral protein and/or mRNA expression in peripheral blood, CSF, and brain

of MS patients reveals an association between HERV-W and MS

Morandi et al., 2017

Accumulated HERV-W Gag expression in axonal structures and endothelial cells of active MS

lesions, HERV-W Env expression in macrophages is restricted to early MS lesions

Perron et al., 2005

HERV-W Env is upregulated within MS plaques and correlated with the extent of active

demyelination and inflammation, significantly greater accumulation of HERV-W-specific RNAs in MS

brains vs. controls

Mameli et al., 2007

HERV-W Env is dominantly expressed in macrophages and microglia in areas of active

demyelination

van Horssen et al., 2016

MSRV env is significantly increased in PBMC of MS patients Perron et al., 2012;

Garcia-Montojo et al., 2013

HERV-W Env is present in macrophages within MS brain lesions with particular concentrations

around vascular elements, elevated DNA copy numbers in MS patients vs. controls

Perron et al., 2012

HERV-H Higher antibody reactivity toward HERV-H Env and significantly higher expression of HERV-H Env

epitopes on B cells and monocytes in patients with active MS

Brudek et al., 2009

HERV-K18 Increase in MS risk among homozygous carriers of the K18.3 allele in an US American cohort Tai et al., 2008

HERV-K18.3 haplotype is associated with MS susceptibility in a Spanish cohort de la Hera et al., 2013

HERV-Fc1 Significant increase of HERV-Fc1 RNA in plasma, and HERV-H/F Gag in T cells and monocytes of

patients with active MS compared to controls

Laska et al., 2012

Association of the HERV-Fc1 polymorphism rs391745 with bout-onset MS susceptibility in

Southern European cohorts

Hansen et al., 2011; de la

Hera et al., 2014

HERF-Fc1 SNP rs391745 and HERV-K113 SNP rs2435031 synergize in influencing the risk of MS Nexø et al., 2015; Nexø

et al., 2016

ALS HERV-K Increased HERV-K pol transcripts in brain tissue of ALS patients, HERV-K expression correlates

with TDP-43

Douville et al., 2011

HERV-K is expressed in neurons of ALS patients, HERV-K expression is regulated by TDP-43 and

causes retraction and beading of neurites in human neurons

Li et al., 2015

SLE HERV-E HERV-E mRNA expression is higher in lupus CD4+ T-cells vs. healthy controls, and positively

correlated with SLE disease activity

Wu et al., 2015

HRES-1 Small GTPase encoded by HRES-1 is overexpressed in lupus T-cells and contributes to

mitochondrial dysfunction involved in SLE

Caza et al., 2014

HRES-1 locus at the 1q42 chromosomal region influences development and manifestations of SLE Pullmann et al., 2008

RA HERV-K Significantly higher serum autoantibodies against a peptide of HERV-K Env in RA patients vs.

healthy controls

Mameli et al., 2017

Significantly higher HERV-K viral loads in plasma samples from RA patients vs. healthy controls Reynier et al., 2009

HERV-K10 Enhanced expression of HERV-K10 mRNA in RA Ejtehadi et al., 2006

RA patients show significantly elevated levels of HERV-K Gag activity compared to controls Freimanis et al., 2010

Significantly elevated IgG antibody response to an HERV-K10 Gag peptide in patients with RA vs.

controls

Nelson et al., 2014

SS HERV-K113 HERV-K113 is found in 15.6% of 96 patients with SS Moyes et al., 2005

HIAP Majority of patients with SS have serum antibodies to proteins of HIAP Sander et al., 2005

JIA HERV-K18 HERV-K18 transcript expression significantly elevated in JIA patients vs. controls Sicat et al., 2005

MS, Multiple sclerosis; ALS, Amyotrophic lateral sclerosis; SLE, Systemic lupus erythematosus; RA, Rheumatoid arthritis; SS, Sjögren’s syndrome; JIA, Juvenile idiopathic arthritis.
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As a prominent example, the association of HERVs with MS
is extensively discussed (Morandi et al., 2017). The multiple
sclerosis associated retrovirus (MSRV) has been observed in
leptomeningeal cells shed into cerebrospinal fluid of a patient
with progressive MS (Perron et al., 1991). MSRV belongs to a
then unknown HERV-W family and encodes a viral envelope
protein that is physiologically expressed in microglia cells of
normal brain (Perron et al., 2005). It becomes deregulated and
is highly expressed in macrophages of active lesions in MS
patients (Perron et al., 2005). In rat and human oligodendroglial
precursor cells, HERV-W/TLR4 interaction causes both an
increase in pro-inflammatory cytokines and nitrosative stress
through increased release of inducible nitric oxide synthase.
As a result, oligodendroglial differentiation is reduced, which
might be the cause of impaired myelin repair observed in MS
(Kremer et al., 2013). Antony and colleagues reported similar
results for HERV-W Env expression in astrocytes as it leads
to neuroinflammation and death of oligodendrocytes (Antony
et al., 2004). Interestingly, treatment with specific antibodies
against MSRV Env could prevent MS symptoms in a mouse
model of experimental autoimmune encephalomyelitis (Perron
et al., 2013). Clinical phase 2b studies with the same humanized
antibody are currently under way in 12 European countries
(CHANGE-MS study) with the possibility of an extension
(ANGEL-MS study) for patients that have been enrolled in
the CHANGE-MS study (Curtin et al., 2015; GeNeuro, 2017).
These studies appear promising in terms of the development of
potential novel therapies for MS.

HERV-Fc1, which has the potential to express a full-length
Env product of 584 aa, and a Gag product of 470 aa might also be
involved in the pathogenesis ofMS (Nexø et al., 2015). Laska et al.
could show an increased expression of HERV-Fc1 Gag in PBMCs
and four times higher RNA levels in plasma of patients suffering
from active MS compared to healthy controls (Laska et al., 2012).
HERV-Fc1 is unusual among human proviruses in having only a
single known integration in the genome (on the X chromosome;
Nissen et al., 2012). This locus seems to be genetically associated
with MS (Hansen et al., 2011; Nexø et al., 2016). Similarly,
homozygous carriers of K18.3, which is one of three allelic forms
of HERV-K18 Env and displaying superantigenic properties,
show an increased risk for MS compared to individuals carrying
two K18.2 alleles (Tai et al., 2008).

A possible mechanism of HERV action in MS is inferred
from the findings of pre-active plaques in MS patients. These
are clusters of activated microglia present in the absence of
demyelination and infiltrating leukocytes (van der Valk and
Amor, 2009). They can be detected by magnetic resonance

imaging (MRI) several months before the appearance of an active
lesion (Fazekas et al., 2002). Oligodendrocyte abnormalities and
primary damage to myelin appear to be crucially involved (van
der Valk and Amor, 2009). Based on these results and HERV
expression in active MS lesions (Mameli et al., 2007; Perron et al.,
2012; van Horssen et al., 2016), it is tempting to speculate that
pathological alterations in MS are supported by HERV protein
expression contributing to plaque formation. Further evidence
for the role of HERVs in MS would improve our understanding
of the etiology and provide new therapeutic insights
into MS.

CONCLUSION

The findings described here suggest that HERV elements may
play a role in the pathogenesis of human diseases such as MS or
ALS. Particularly in MS, it is conceivable that the formation of
HERV Env proteins trigger a damaging cascade that eventually
leads to the symptoms of the disease. This assumption could
help to integrate unexpected findings, such as pre-active plaques,
into the sequence of pathological events (Christensen, 2017). A
deeper understanding of HERV expression under physiological
and pathophysiological conditions and their interaction with the
immune systemmight help to better explain and combine several
factors that contribute to MS. In this regard, the first studies
targeting a specific HERV-W Env protein are currently in clinical
trials and may provide further evidence of the validity of this
novel approach in the near future.
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