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Epstein–Barr virus (EBV) was the first human tumour 
virus identified, after its discovery in tumour cells of 
paediatric Burkitt lymphoma1,2. We now know that EBV is 
ubiquitous, establishing lifelong infection in more than 
90% of adults worldwide3,4. Despite its typically subclin-
ical persistence, EBV is consistently detected in numer-
ous cancers, including nasopharyngeal carcinoma, 
subtypes of Hodgkin and non- Hodgkin lymphomas, 
a subtype of gastric carcinomas (EBV- associated gas-
tric carcinoma), natural killer (NK)/T cell lymphomas 
and leiomyosarcomas. In addition, EBV has a profound 
effect on the immune system, and is the most common 
causal agent of infectious mononucleosis5 as well as fatal 
lymphoproliferative disorders in various immunosup-
pressive conditions6. Increasingly, it is appreciated that 
EBV is also a major risk factor for several autoimmune 
disorders, notably multiple sclerosis (MS)7,8.

MS is the most prevalent chronic inflamma-
tory and neurodegenerative disease of the central 
nervous system (CNS). Approximately 2.8 million 
(35.9/100,000) people have MS worldwide9. MS inci-
dence is also increasing in developing countries9 and 
among children10. The neurological signs and symp-
toms of MS include impaired motor function; visual 
symptoms; fatigue; eye movement disorders; blad-
der symp toms; sensory symptoms; sexual dysfunction; 
ataxia; deafness; spasticity; dementia; and cognitive 
impairment11. The clinical progression of MS is variable 
and unpredictable, with three distinct clinical courses: 
relapsing–remitting MS (RRMS), (2) secondary progressive MS 

(SPMS) and (3) primary progressive MS (PPMS)12,13. In 
addition, clinically isolated syndrome often progresses 
to MS, especially when symptoms are accompanied by 
CNS lesions.

The aetiology of MS is complex and multifactorial, 
involving the interplay of known genetic susceptibility 
factors, predominantly in genes directing the immune 
system, and environmental factors, including infectious 
agents, lack of sun exposure and vitamin D, smoking 
and obesity14. Infectious agents were first suspected 
in the aetiology of MS soon after its classification as a 
discrete clinical entity in the late 1800s15. The hetero-
geneity and the evolution of the disease throughout a 
patient’s lifetime and within the MS lesion itself have 
further obscured the identification of a single infectious 
agent as a consistent disease trigger. Nevertheless, epi-
demiological, serological and virological evidence has 
accumulated to support the role of EBV in the aetiol-
ogy of MS, with recent large population- based studies 
demonstrating that EBV infection is likely a prerequi-
site for disease (reviewed in REFS.7,16–18; TABLE 1). In the 
most definitive epidemiology study on viruses and MS 
to date, more than ten million US army personnel were 
followed up over 20 years, and a 32- fold increased risk 
of MS diagnosis was shown in individuals who con-
verted to EBV seropositivity compared with those who 
remained seronegative; this is the largest and most com-
prehensive study strongly suggesting that EBV infec-
tion is required for subsequent development of MS18,19. 
However, determining the precise mechanisms for EBV 
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in the development of MS remains challenging because 
the virus is not always found in MS lesions. Related 
issues arise in the analysis of some EBV- associated 
cancers, in which EBV is present in only a subtype or 
subpopulation of cancer cells and oncogenesis depends 
on additional mutations or environmental cofactors20. 
Because most EBV infections do not cause disease, 
understanding the role of cofactors and aberrations in 
the normal infection process is key. One common cofac-
tor in EBV disease is the disruption of normal immune 
control of EBV infection. Furthermore, as EBV infects  
and transforms B cells, we consider the intrinsic relation-
ship of EBV with its host cells as a potential source of 
immune dysfunction.

EBV biology and life cycle
EBV (human herpesvirus 4) is one of eight known human 
herpesviruses, with a large (173- kb) double- stranded 
DNA genome with approximately 100 protein- coding 
genes and numerous non- coding RNAs and micro-
RNAs (miRNAs)21,22. Like all herpesviruses, EBV has 
both a productive (lytic) cycle and a non- productive 
(latent) phase. EBV establishes long- term latent infec-
tion of B lymphocytes and productive infection in the 
oral mucosal epithelium23. EBV DNA is packaged as a 
linear genome in the infectious viral particle, but per-
sists in the nucleus of latently infected cells as a closed, 
circular chromatinized genome, referred to as an ‘epi-
some’. Although only two distinct EBV strains have 
been delineated, the impact of genetic variation on the 
pathobiology of EBV infection is poorly understood22,24. 

Specific strains of EBV may be associated with MS, but 
conclusive MS genotypes have not been identified25–27.

EBV is typically acquired through oral secretory 
transmission before the age of 5–8 years in resource- poor 
regions, whereas in resource- rich environments, infec-
tion is frequently delayed until adolescence or young 
adulthood5,28,29. During primary infection, the virus 
enters squamous epithelial cells and replicates within 
them, subsequently crossing the mucosal epithelial cell 
barrier via transcytosis and infecting local infiltrating  
B lymphocytes of Waldeyer’s tonsillar ring30. EBV infection 
of naive B lymphocytes initiates a developmental process 
and reprogramming similar to the germinal centre (GC) 
that results in long- lived memory B cells harbouring 
EBV episomes23,31. Lifelong persistence occurs through 
the establishment of latent reservoirs in these cells and 
periodic reactivation primarily in the oropharynx32, but 
other sites of EBV persistence, such as the gut mucosa 
or meninges, have been reported but not extensively 
characterized33,34.

EBV can enter various cell types through differ-
ent mechanisms. The viral proteins gp350/gp220 and 
gp42 are required for EBV entry into B lymphocytes. 
Engagement of gp350 with CD21 (also known as com-
plement receptor type 2) is followed by endocytosis of 
the virus into a low- pH component, where fusion is 
facilitated by the virus’s core fusion machinery (gB, gH  
and gL)35. gp42 subsequently binds to gH and interacts 
with HLA class II, which functions as a co- receptor35. 
Entry into epithelial cells occurs via a CD21- independent  
pathway. The EBV protein BMRF2 interacts with β1 
integrin to trigger fusion and subsequent interactions 
between EBV gH/gL and αVβ6/8 integrins, thereby 
mediating endothelial cell fusion and entry36,37. More 
recently, ephrin receptor A2 (EphA2) was identified as 
an important entry factor for EBV in epithelial cells38. 
EphA2 genetic knockouts and inhibitors reduce infec-
tion of endothelial cells, and EphA2 interacts with gH/gL  
and gB38. In addition to B cells and epithelial cells, EBV 
can infect T cells, smooth muscle cells and NK cells, 
where the mechanism of entry is unclear39. EBV infec-
tion of T cells and NK cells is thought to be a rare event 
that can lead to the development of highly aggressive 
NK/T cell lymphomas and chronic active EBV infection40. 
EBV can also infect neuroblastoma cell lines and pri-
mary fetal astrocytes in vitro, although latent infection 
of neurons has not been unequivocally demonstrated in 
clinical specimens41,42.

EBV latent infection and B cell reprogramming. EBV 
infection efficiently reprogrammes naive B cells towards 
a developmental path recapitulating GC reaction, clonal 
expansion and differentiation towards a memory B cell 
phenotype23,31. These developmental stages correspond 
to different viral gene programmes termed ‘latency 
types’. During the hyperproliferative phase, EBV adopts 
a type III latency in which most latency- associated 
genes (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, 
EBNA- LP, LMP1, LMP2 and multiple non- coding RNAs) 
are expressed43. Five latent genes (EBNA1, EBNA2, 
EBNA3A, EBNA3C and LMP1) are required for effi-
cient B cell immortalization in vitro44. Different degrees 

Table 1 | Selected studies providing evidence for a role of EBV in MS

Evidence Result Study Refs.

Epidemiological Low rates of MS in areas with more 
childhood infections

Review 230

Increased risk of MS with a history  
of infectious mononucleosis

Review 231

Increased risk of MS with EBV 
seroconversion

Human serum 18

Decreased risk of MS in seronegative 
individuals

Human serum 7,18

Immunological Increased levels of EBV- specific 
antibodies in MS

Review 121,122

MS- risk alleles enriched for transcription 
control by EBNA2

Computational 
GWAS

176,178

Deficient cytotoxic T lymphocyte control 
of EBV in MS

MS CD8+ 
T cells

216

EBV- reactive OCBs MS CSF 85

Molecular mimicry between EBNA1  
and CNS antigens

MS B cells 17,116

Virological Increased shedding of EBV in saliva  
of paediatric patients with MS

Paediatric MS 55

EBV BZLF1 in MS lesions MS brain 166

Prosurvival influence of EBV latency 
genes on memory B cells

In vitro 232

EBV loads correlate with T- bet+CXCR3+ 
memory cells and IFNγ production

MS B cells 171

CNS, central nervous system; CSF, cerebrospinal fluid; EBV, Epstein–Barr virus; GWAS, genome- wide 
association study; IFNγ, interferon- γ; MS, multiple sclerosis; OCBs, oligoclonal bands.

Clinically isolated syndrome
An initial episode of neurologi-
cal symptoms associated with 
inflammation and demyelina-
tion with symptoms character-
istic of multiple sclerosis that 
frequently, although not 
always, progresses to multiple 
sclerosis.

Waldeyer’s tonsillar ring
A ring of lymphoid tissue 
surrounding the nasopharynx 
and oropharynx that includes 
the tonsils and adenoids.

Germinal centre
(GC). An area within lymph 
nodes and other secondary  
lymphoid organs, including the 
spleen, where T cell- dependent 
B cell activation, differentiation 
and proliferation occur. Germinal 
centres are concentrated areas 
of B cell somatic mutation and 
selection.
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of transcriptional silencing result in latency types II, I  
and 0, in which few or no viral genes are expressed. 
Importantly, all EBV- related cancers are associated with 
latent infection, and the different latency types correlate 
with different EBV- associated malignancies45. However, 
there can be considerable variation in viral gene expres-
sion among tumour cells and stages, including sporadic 
and abortive lytic reactivation. At present, it is unclear 
whether any specific latency type or lytic infection is 
associated with MS pathogenesis.

Viral reactivation and lytic gene expression. EBV lytic 
cycle reactivation occurs in healthy individuals, and is 
required for transmission and potentially for replen-
ishing the latent reservoir. However, aberrant lytic 
activity is associated with several diseases, including 
oral hairy leukoplakia46 and chronic active EBV infection. 
EBV reactivation occurs through regulated stages with 
immediate- early genes controlling the expression of 
late genes and viral DNA replication, followed by virus 
assembly and egress22. Numerous cell signalling path-
ways can trigger the switch to lytic infection, depending 
on the host cell type. Many of these pathways are related 
to immune cell signalling, such as activation of B cell 
receptor (BCR) signalling with anti- immunoglobulin or 
activation of protein kinase C by phorbol esters47,48. In 
latently infected memory B cells, the switch requires two 
EBV- encoded transcription factors, BZLF1 (also known 
as ZTA, ZEBRA and Z) and BRLF1 (also known as RTA 

and R), which coordinately activate many of the EBV 
lytic genes22. Although EBV- related malignancies are 
associated with specific latency types, lytic gene expres-
sion has been shown in some tumour cells, and serol-
ogy studies suggest that lytic antigen immunity precedes 
EBV- associated malignancies, particularly nasopharyn-
geal carcinoma, non- Hodgkin lymphoma and post- 
transplant lymphoproliferative disease49,50. In addition, 
highly sensitive genome- wide RNA sequencing methods 
have demonstrated expression of a subset of lytic genes 
in EBV- positive tumour cells51, suggesting that aberrant 
lytic gene expression and abortive lytic replication may 
occur more frequently in EBV- associated cancers and 
autoimmune disorders52. Defects in the control of EBV 
lytic reactivation have been suggested for MS, but the 
findings remain controversial53–55.

Immune control of EBV. Immune responses to EBV 
infection differ widely and are influenced by genet-
ics, the environment and age56 (FIG. 1). While primary 
infection before the age of 5 years is often asympto-
matic, primary infection in adolescence can result in 
infectious mononucleosis. During mononucleosis, CD8+ 
T cells and NK cells rapidly expand in number. Most 
individuals maintain lifelong, effective immune con-
trol of the virus, where reactivation occasionally occurs 
but is quickly suppressed. This effective immune con-
trol is dominated by CD8+ T cells that target latently 
infected cells and early lytic replication57. Various EBV 

Chronic active EBV infection
A rare condition marked by 
poor control of Epstein–Barr 
virus (EBV) infection, resulting 
in high EBV plasma viral loads 
and systemic infiltration by EBV- 
 positive B cells or EBV- positive 
T cells.

Oral hairy leukoplakia
A white lesion on the tongue 
with a ‘hairy’ appearance that 
is caused by Epstein–Barr virus 
lytic infection and that can 
occur in immunocompromised 
individuals, especially those 
with HIV/AIDS.

Infectious mononucleosis
A self- limiting disorder 
characterized by fever, extreme 
fatigue, sore throat and highly 
swollen lymph nodes; most 
frequently caused by immune 
response to primary Epstein–
Barr virus infection, although 
milder forms are associated 
with cytomegalovirus infection.

Average age at MS onset (years after 
elevated EBV antibody reponses)

Risk of infectious mononucleosis 
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Fig. 1 | The maturation of the immune system, EBV infection and the development of MS. The consequences of 
Epstein–Barr virus (EBV) infection are influenced by the age and genetic background of an individual. The risk of both infec-
tious mononucleosis and multiple sclerosis (MS) increases when primary EBV infection occurs after the age of 10 years, when 
thymic negative selection of autoreactive T cells slows and T helper 1 (TH1) cell- mediated responses approach their peak. 
Most individuals receive a diagnosis of MS between the ages of 20 years and 50 years, years after EBV exposure. EBV infec-
tion increases the survival of memory B cells and causes lasting changes in the host cytokine response. There are many gaps  
in our understanding of how the maturation of the immune system triggers an evolving process of EBV- driven autoimmune 
reactivity leading to the development of MS. CMV, cytomegalovirus.
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latency proteins, including EBNA2, EBNA3A, EBNA3B, 
EBNA3C and LMP2, are recognized by CD8+ T cells 
through major histocompatibility complex (MHC)  
class I presentation58. By contrast, immune response to 
EBNA1 peptides is mediated predominantly by T helper 1  
(TH1)- polarized CD4+ T cells59,60. In addition, NK cells 
play a supportive role in controlling primary and lytic 
infection, while NK T cells and γδ T cells restrict latency 
types I and II (REFS.5,61–63). These cytotoxic lymphocytes 
also successfully restrict EBV in preclinical models, indi-
cating that the cytolytic arm of the immune system must 
be engaged for efficient control of EBV infection45,64–66. 
Study of primary genetic immunodeficiencies that are 
associated with an increased risk of EBV- associated dis-
ease has identified key immunoregulatory factors for 
controlling infection, such as the co- stimulatory proteins 
CD27, SLAM family members, magnesium transporter 
and the co- inhibitory CTLA-4 receptor67,68.

EBV deregulation of immune control. Despite a robust 
immune response to primary infection, EBV estab-
lishes a long- term latent infection in B lymphocytes, 
through a combination of viral reprogramming of  
B lymphocytes and disarming many innate and adaptive 
immune responses. EBV encodes numerous proteins 
that modulate the immune response. Some of these 
are expressed during the lytic or prelatent phase, while 
others are more consistently expressed during the latent 
infection. For example, EBNA1 can induce CXCL12 
to recruit regulatory T cells69 and suppress NK cell 
responses by downregulating NKG2D ligands70. EBNA2 
transcriptionally activates numerous genes involved in 
immune regulation, such as those encoding tumour 
necrosis factor (TNF)71, lymphotoxin- α72, IL-18R73 and 
PDL1 (REFS.74,75). EBNA2 also suppresses interferon 
responses76 and HLA class II gene expression77. Virally 
encoded IL-10 (also known as BCRF1) suppresses pro- 
inflammatory cytokine secretion, such as secretion 
of IL-2 and interferon- γ (IFNγ), while viral BNLF2a 
inhibits the transporter associated with antigen process-
ing (TAP)78. Multiple viral miRNAs target type I inter-
feron pathways, such as IRF9, JAK1, JAK2 and RIG- I 
(REF.79). Functionally, EBV miRNAs suppress CD8+ T cell 
response and are required for the establishment of latent 
infection in humanized mice80. Thus, EBV encodes 
numerous genes that deregulate innate and adaptive 
immunity, and it is not yet clear which, if any, of these 
pathways are most involved in the pathobiology of MS.

Pathobiology of MS
The pathobiology of MS is notable for several immune 
abnormalities, which have been described extensively 
elsewhere. Briefly, oligoclonal bands in the cerebrospi-
nal fluid (CSF) and elevated IgG concentrations in the 
CNS are hallmarks of MS, and can be used for diagnosis. 
Notably, oligoclonal bands are found in several neuroin-
flammatory disorders, and are typically directed against 
the pathogen implicated in the disease. By contrast, the 
oligoclonal bands in MS are reactive against multiple 
antigens, including viral antigens, bacterial antigens 
and self- antigens81–86. Several studies have provided evi-
dence of EBV infection or elevated immune responses 

to EBV within the CNS, while others have not replicated 
these findings. The presence of EBV- reactive and human 
herpesvirus 6- reactive oligoclonal bands and antibody 
reactivity to EBNA1 and EBNA2 epitopes have been 
reported in MS CSF85,87. In addition, cytotoxic T lym-
phocytes (CTLs) reactive to EBV lytic proteins have been 
detected in the CSF of patients with MS88. The presence 
of serum antibodies to EBNA1 has been correlated with 
elevated intrathecal IgG levels in patients with early MS, 
suggesting a role for EBV at the onset of MS symptoms.

Cytokine production is highly perturbed in MS, with a 
characteristic upregulation of several pro- inflammatory 
cytokines, including IL-12, TNF, IFNγ, lymphotoxin- α 
and osteopontin89. Before disease relapse, IL-10 secre-
tion is downregulated and both IL-10 and TGFβ levels 
increase with disease remission89. Inflammatory B cells 
secreting higher levels of IL-10 and GM- CSF have also 
been identified in peripheral blood from patients with 
MS90–92. The effects of immunomodulatory therapies  
in MS further underscore the role of the immune control.  
For example, IFNβ (type I interferon) treatment is thera-
peutic, while IFNγ (type II interferon) treatment exacer-
bates disease progression93, and functional studies have 
confirmed that the IFNα/β pathway is downregulated 
in the peripheral blood mononuclear cells of untreated 
patients with MS94. More recently, the important role of 
B cells in MS pathogenesis was revealed by the success 
of B cell depletion therapy targeting B cells, including 
anti- CD20 (see later)90.

Ultimately, the immune abnormalities in MS are 
associated with the development of focal demyelinat-
ing lesions (also known as plaques) in CNS white and 
grey matter and can be visualized by MRI. These lesions 
differ in size, distribution and cellular composition95. 
The neuropathological findings suggest that within the 
active lesion, inflammatory T cells, B cells, plasma cells, 
activated microglia and macrophages are associated 
with oligodendrocyte loss, demyelination and astrocyte 
activation as the lesion forms around veins and venules, 
expands into normal- appearing white matter and leads 
to the formation of gliotic scars96–99. Within the active 
lesion, macrophages contain both early and late mye-
lin degradation products. Inflammation is greatest in 
active lesions, but is also observed in other stages of 
MS plaques. Interestingly, relatively little inflammation 
is observed in the initial stages of white matter lesions, 
leading to debate as to whether lesions are initiated by a 
neurodegenerative or an inflammatory process and rais-
ing the possibility that initial tissue injury is initiated by 
lymphocyte- derived soluble factors that induce damage 
directly or via activation of microglia97. Inactive MS 
lesions are hypocellular, with loss of oligodendrocytes 
and myelin, astrocytosis, fewer myelin degradation pro-
ducts within macrophages and loss of axonal density96. 
In addition to demyelination, axonal loss occurs in both 
white matter and grey matter and, over time, there is 
atrophy of the brain100. Remyelination may occur as new 
oligodendrocytes regenerate; the extent of remyelination 
depends on many factors, including the location in the 
brain. Circumstances that determine whether inflam-
mation within a lesion resolves and remyelinates or if it 
‘smoulders’ are incompletely understood.
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Immune cell composition within the lesion differs 
with respect to the type of MS and the stage of the lesion. 
T cell and B cell infiltration is greatest in active lesions 
in patients with RRMS. CD8+ T cells consistently out-
number CD4+ T cells in all sites of the MS lesion except 
for the perivascular and meningeal cuffs, where CD4+ 
T cells, CD20+ B cells and plasma cells predominate98,99, 
suggesting that CD8+ T cells are more important effec-
tors in the immunopathogenesis of MS than previously 
appreciated. Notably, fewer brain lesions, fewer inflam-
matory cells and more spinal cord lesions are found in 
PPMS than in RRMS.

Immunogenetics of MS
The genetic contribution to MS susceptibility is complex 
and is extensively reviewed elsewhere101,102. The strongest 
genetic risk factor for MS is a specific haplotype of the 
highly polymorphic MHC103. Specifically, an increased 
risk of MS exists in individuals with the MHC class II 
alleles HLA- DR2 and HLA- DQw1 (REF.104), with the pri-
mary risk allele being HLA- DRB1*1501. Genome- wide 
studies have identified more than 200 MS- associated 
loci across the human genome, and approximately 30 
are associated with the MHC locus105–109. Most of these 
loci have well- ascribed functions in the immune system, 
while some are associated with myelin structure or mito-
chondrial function110–113. Importantly, these studies also 
reveal shared genetic risk factors with other autoimmune 
conditions.

How does EBV increase the risk of MS?
MS has a complex aetiology, with multiple causative 
factors that can be further defined as either drivers or 
triggers114. EBV is a trigger (that is, it must be acquired 
before the onset of disease); however, its role as puta-
tive ‘driver’ of disease progression is poorly defined.  

Ongoing clinical studies using antivirals, vaccines and 
cell- based approaches targeting EBV in patients with 
MS (discussed later) are likely to elucidate the role 
of EBV as a driver of disease activity. The risk of MS 
increases approximately 32- fold with EBV infection, 
and more with symptomatic to severe infectious mon-
onucleosis and HLA- DR2b (HLA- DRB1*1501b and 
HLA- DRA1*0101a)18. How these genetic and environ-
mental factors compound risk in MS is not fully under-
stood, and there remain many plausible mechanisms. 
Determining which of these are the most frequent driv-
ers and how best to therapeutically intervene remain 
challenges. In this section, we discuss the evidence for 
EBV as a trigger and/or a driver in MS pathogenesis, and 
highlight critical questions that may elucidate the role 
of EBV as a trigger and potential driver of MS (BOX 1).

Molecular mimicry and mistaken self. Latent and per-
sistent infection is a chronic source of viral antigenic 
stimulation. Several EBV antigens are the target of 
cross- reactive autoantibodies found in MS. This cross- 
reactivity between self- antigens and EBV antigens 
involves both cellular and humoral immune responses. 
Early studies found that patient- derived T cells autore-
active to myelin basic protein (MBP) were also cross- 
reactive to a wide range of viral peptides, including 
peptides from EBV115. Subsequent studies identified 
MBP- reactive T cells in patients with MS that cross- 
react with EBNA1 (REF.116). Similar cross- reactivities with 
EBNA1 were found for T cells autoreactive to anoctamin 2  
(REF.117), α- crystallin B chain (CRYAB)88,118 and most 
recently glial cell adhesion molecule17. Mimicry has been 
reported for the lytic proteins BHRF1 and BPLF1 (REF.119). 
Peptides from these viral lytic proteins were found bound 
to the HLA- DR15 haplotype and were cross- reactive 
with the self- protein RASGRP2 as a target autoantigen, 
which is expressed in the brain and B cells and is targeted 
by brain- homing, autoreactive CD4+ T cells119.

Autoreactive antibodies in MS also cross- react with 
viral proteins, especially EBNA1 (REF.120). Higher levels 
of antibodies to EBNA1 are typically observed in both 
serum and CSF of patients with MS121,122. Elevated titres 
of antibodies to EBNA1 were found to have a genetic 
component beyond just HLA type123, and high titres of 
antibodies to EBNA1 are associated with an increased 
risk of MS124. Many of these EBNA1- specific antibodies 
are polyreactive, and it is not clear which antigen initi-
ates the immunogenicity. In addition to viral mimicry, 
virus infection in peripheral tissue induces cellular stress 
proteins, such as CRYAB, that can mimic CNS tissues 
and elicit an autoimmune reaction to proteins such  
as myelin125. Interestingly, CRYAB- specific antibodies 
from patients with MS cross- react with EBNA1 (REF.126). 
Despite these correlations, the pathogenic role of auto-
reactive and EBV- cross- reactive antibodies in MS is not 
well established.

Why then do so many self- reactive immune responses 
in MS cross- react with EBV peptides and EBNA1 in 
particular? Peptide library analyses have identified sev-
eral domains of EBNA1 that are recognized by autore-
active immune responses (FIG. 2). EBNA1 amino acids  
391–410 peptide mimics CRYAB amino acids 1–15  

Box 1 | Critical questions and knowledge gaps

•	How do developmental changes in the human immune system impact the long- term 
control	of	Epstein–Barr	virus	(EBV)	with	respect	to	T cell	responsiveness	and	latent	
B cell	reservoir?	And	how	does	this	inform	our	understanding	of	the	timing	of	EBV	
infection	and	its	subsequent	lifetime	latency	and	immune	control?

•	What,	if	any,	are	the	pathogenic	roles	of	EBV	in	the	central	nervous	system	(CNS)?	Do	
CNS- infiltrating immune cells harbour EBV or EBV- reactive immune cells, especially 
in	multiple	sclerosis	(MS)?	What	are	the	specific	dynamics	of	EBV	infection	in	the	
CNS?	Which	cells	are	involved,	and	does	this	differ	in	patients	with	MS	compared	 
with	healthy	controls?

•	How	does	EBV	reprogramming	of	B cells	contribute	to	MS	risk?	Does	EBV	alter	B cell	
antigen	presentation	and	T cell	miscommunication	to	drive	autoimmunity?	Does	EBV	
rescue	autoreactive	B cells?

•	How	do	MS-	risk	alleles	compound	the	effects	of	EBV	latent	infection	in	B cells?	Is	
enhanced	EBNA2	binding	at	MS-	risk	alleles	sufficient	to	drive	B cell	autoimmunity?

•	How	do	EBV	infection	and	the	HLA-	DR15	allele	compound	the	risk	of	MS?	Is	there	an	
altered	presentation	of	EBV	antigens	or	EBV-	induced	factors	in	this	HLA	haplotype?

•	Which EBV factors are most consistently associated with MS pathogenesis, and can 
this	inform	more	selective	drug	design	and	immunotherapies?

•	How	do	effective	MS	therapies	(for	example,	CD20	depletion,	cladribine	and	 
CD52	depletion)	affect	EBV-	positive	cells,	EBV	infection	cycle,	the	frequency	of	
EBV-	positive	cells	and	EBV	loads?	Does	deficient	cytotoxic	T	lymphocyte	control	 
in MS lead to EBV reactivation and increased EBV antibody responses and CNS 
inflammation?
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with an overlapping sequence of RRPFF126. A simi-
lar domain of EBNA1 (amino acids 386–405) mimics 
glial cell adhesion molecule17. In the case of glial cell 
adhesion molecule, post- translational modification of 
the host protein increased cross- reactivity, providing 
a mechanism for epitope evolution and spreading in 
response to environmental signals. Some reactivity to 
EBNA1 was associated with germ line, unmutated BCR, 
suggesting that early antibodies have innate affinity for 
a region of EBNA1 (REF.17). Other studies have pointed 
to the glycine- rich regions of EBNA1, which generate 
repetitive, low- complexity peptides127. Autoreactive 
antibodies also react with peptides derived from the 
exposed surface of the EBNA1 DNA- binding domain, 
but not the DNA- binding interface itself, suggesting 
that the intact EBNA1–DNA complex is an impor-
tant antigenic stimulus128. Paradoxically, EBNA1 also 
has immune- evasive properties. The internal Gly- Ala 
repeats (amino acids 90–303) suppress HLA presenta-
tion through multiple mechanisms, including inhibition 
of peptide processing129–131, suppression of autophagy132 
and translational suppression133,134 owing to the mRNA 
structure134–136. How these activities are related to the 
high exposure of EBNA1 in autoimmune disease and 
what aspects of EBNA1 peptide presentation differ in 
patients with MS are unclear.

Rescue of autoreactive and inflammatory B cells. EBV 
is highly efficient at immortalizing naive and resting 
B cells (FIG. 3). However, it is not fully established which 
B cell subtypes may or may not be susceptible to EBV.  

EBV immortalization of a ‘forbidden’ autoreactive B cell 
clone has been proposed as a potential mechanism trig-
gering MS137. EBV transformation could bypass the nor-
mal process of elimination of autoreactive B cells, although 
most of this selection occurs in the bone marrow at early 
stages of B cell development138. Similar mechanisms 
of immune evasion are proposed for EBV- associated 
cancers139 (BOX 2). EBV immortalization bypasses many 
of the requirements for T cell help through the virally 
encoded CD40- like receptor LMP1 and BCR- like recep-
tor LMP2 (REFS.23,31). Their combined expression is suffi-
cient to drive lymphomagenesis in transgenic mice140, and 
it is likely that these ligand- independent receptors provide 
signals that can rescue autoreactive B cells. EBV- infected 
B cells also express mature BCR and IgG without neces-
sarily passing through GC selection, further enabling the 
survival of B cell clones reactive to self 141. EBV- infected 
B cells alter T cell interactions mediated by CD70–CD27 
and OX40L that disable T cell control and enable B cell 
lymphomagenesis142,143. Whether these forbidden B cells 
are antigen- presenting cells or antibody- producing  
cells is not yet known. However, recent B cell depletion 
studies suggest that B cell subtypes, and not plasma 
cell numbers or overall circulating antibody levels, best 
correlate with CNS pathogenesis in patients with MS90.

EBV infiltrating the CNS. EBV- infected B cells migrate 
to the CNS, where they may have altered immune reac-
tivities and are associated with EBV- associated diseases, 
including primary CNS lymphoma (FIG. 4). EBV- positive 
B cells and plasma cells have been identified after death 
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in MS lesions in the CNS of patients with MS, but 
not in controls144–146. EBV gene expression was a vari-
able mixture of both latent transcripts (EBV- encoded 
small RNAs (EBERs), EBNA3A, LMP2A and LMP2B) 
and lytic transcripts (BZLF1 and gp350) in these brain 
lesions33,144,146–148. In situ hybridization experiments 
revealed a significant number of EBER+ B cells and a 
small number of BZLF1+ cells, although some EBV-  
positive B cells were also found in the brains of controls148.  
EBV- infected plasma cells in the CNS have been found 
synapsed with cytotoxic CD8+ T cells, suggesting a local 
inflammatory interaction initiated by EBV- positive 
B cells in the CNS149. There is evidence that EBV estab-
lishes an extralymphatic viral sanctuary in the CNS150, 
especially in vulnerable individuals during infectious 
mononucleosis, in which approximately 50% of memory 
B cells can be EBV positive151. However, several studies 
failed to find evidence of  EBV- positive B cells in the CSF of  
patients with MS or MS lesions in the CNS152–157. Some 
of these conflicting findings may be due to technical 
challenges of detecting transient EBV gene expression 
in migratory B cells in the CNS of patients with MS and 
post- mortem samples158.

Deficient CTL control of EBV infection. T cell control 
of EBV infection is required for homeostatic viral per-
sistence, and immune dysregulation is observed in all 
EBV- associated disease. In healthy carriers of  latent EBV  
infection (more than 90% of the adult population), 
nearly 1% of all T cells are reactive to EBV latent or 
lytic antigens159,160. Immune response to EBV is fre-
quently skewed in patients with MS. Higher titres of 
EBNA1- reactive IgG are found several years before 
the onset of MS symptoms and correlate with MS 
risk8,161,162. EBNA1- specific T cell frequencies increase 
and specificities broaden in MS. CD4+ T cells show TH1 
polarization and CD8+ T cell responses correlate with 
disease activity163–166. MS progression correlates with a 
decreased functionality of EBV- specific CD4+ T cells 
and CD8+ T cells, as measured by IFNγ production and 
cytotoxic activity167–169. T cell exhaustion may partly 
account for the failure to control chronic EBV infec-
tion. Developmental changes in the immune system are 
also critical for control of EBV infection. Childhood 
experience (time of exposure to EBV and geographical 
risk) indicate that immune system maturation, expo-
sure and education are important components of MS 
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preferentially multiple sclerosis (MS)- risk alleles. EBV- induced viral and  
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direct interaction with T cells or natural killer (NK) cells, as well as through 
soluble factors, including exosomes. EBNA1 is frequently processed as an 
antigenic epitope that can stimulate autoreactive B cell and T cell  
development. Although EBV- positive cells are shown as antigen- presenting 
cells, it is not known whether they actually present EBNA1 peptides or 
whether these are presented by uninfected antigen- presenting cells, 
including uninfected dendritic cells and macrophages that captured 
infected cell debris. OPN, osteopontin; TNF, tumour necrosis factor.
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aetiology8. Poorly defined, idiosyncratic CTL deficien-
cies may also enable EBV- positive B cells to proliferate, 
migrate to the CNS and express inflammatory viral and 
host factors169.

EBV- associated inflammation. Both B cells and T cells 
from patients with MS have atypical inflammatory 
features. Patients with MS with high EBV loads have  
T- bet+CXCR3+ memory B cells induced by IFNγ and TLR9  
signals and EBV- reactive CTLs autoreactive to neuronal 
tissue170. EBV load correlated with the early emergence of 
CXCR3+ class- switched memory B cells, GC- like B cell  
development and trafficking of these cells to the CNS 
in mice170. These CXCR3+ B cells had enhanced ability 
to secrete anti- EBNA1 IgG171. It is important to note 
that EBV- negative B cells from patients with MS also 
have inflammatory features, and memory B cell subsets,  
in particular, were found to secrete higher levels of GM- 
CSF in patients with MS relative to healthy controls92. 
EBV- infected B cells produce high levels of inflamma-
tory cytokines and exosomes that contain inflammatory 
components, including small viral nucleic acids, such as 
EBERs and miRNAs172. Exosomes containing EBERs 
with 5′- triphosphate pathogen- associated molecular 
patterns stimulated dendritic cell antiviral inflamma-
tory activity, similar to systemic lupus erythematosus172. 
EBV miRNAs, which can be transported in exosomes, 
can target MS risk- associated genes, such as ZC3HAV1 
regulating interferon response173. Exosomes may cross 
the blood–brain barrier, and are endocytosed by brain 
microvascular endothelial cells174. Therefore, it is possi-
ble that EBV- positive B cells in the periphery produce 
exosomes that cross into the CNS and/or that EBV- 
positive B cells in the CNS are a source of these inflam-
matory exosomes (FIG. 4). EBV- positive B cells may also 

induce autoreactive T cells through modification of their 
antigen presentation8,90.

Deregulation of B cell gene expression and autoimmune 
control. EBV encodes several transcriptional regulators 
and signalling molecules that reprogramme B cell gene 
networks implicated in cancer and autoimmunity. The 
latency nuclear regulatory factor EBNA2 is essential for 
EBV immortalization and drives B cell proliferation175. 
EBNA2 interacts with several host transcription fac-
tors, and studies involving chromatin immunoprecip-
itation followed by sequencing revealed that EBNA2 
binds to almost half of the risk alleles for seven auto-
immune disorders176. Genome- wide chromatin acces-
sibility (assay for transposase- accessible chromatin 
using sequencing) and DNA looping (HiC) further 
demonstrated the role of EBNA2 in altering chromatin 
structure at many autoimmune genetic risk alleles177. 
Risk alleles were enriched for EBNA2 binding relative 
to non- risk alleles, as demonstrated for a few specific 
examples, such as ZMIZ1 (REF.177).

Genome- wide linkage studies have further impli-
cated EBV as a regulator of MS-risk alleles178. Expression 
quantitative trait locus analysis found that genes located 
near MS-risk SNPs were linked with EBV type III 
latency. These genes include BATF, IRF5, IRF7 and 
STAT genes. In a related study, EBNA2 bound prefer-
entially to five of six MS-risk alleles, relative to non- risk 
alleles, and a peptide inhibitor that disrupts EBNA2 
interaction with the cellular transcription factor RBPJ 
altered high- risk allele expression71. Thus, MS- risk 
alleles could increase the efficiency of EBNA2 to pro-
mote B cell survival and immortalization71. EBNA2 tar-
gets also overlap with those of vitamin D receptor, which 
is another risk factor for MS179. Furthermore, poly-
morphisms in EBNA2 correlate with MS risk, suggest-
ing that the virus strain may also be a risk factor180. The 
precise mechanism of gene deregulation in MS may be 
further nuanced and influenced by epigenetic control. 
DNA methylation and genomic imprinting of alleles 
associated with MS have been implicated in MS181,182. 
For example, HLA- DRB*1501 is hypomethylated and 
expressed at high levels in antigen- presenting cells in  
patients with MS183,184. Alternative splicing has been seen 
in MS B cells, and may be related to EBV transcriptional 
reprogramming185.

EBV encodes several other transcription regulatory 
factors that can influence B cell biology. The EBV lytic 
activator BZLF1 is a potent transcriptional regulator of 
numerous viral and cellular genes. BZLF1 expression has 
been identified in plasma B cells in post- mortem brain  
samples from patients with MS and has been associ-
ated with reactive cytotoxic CD8+ T cell infiltration166. 
EBV- induced G protein- coupled receptor 2 (EBI2; also  
known as GPR183) is a G protein receptor for dihydroxy-
cholesterol, which is overexpressed in MS lesions and 
involved in migration of CD4+ T cells186.

EBV genomes are also regulated by epigenetic modi-
fication, especially DNA methylation, which can impact 
viral gene expression and latency type187,188. Epigenetic 
control of EBV is an important component of EBV 
cancer aetiology, but its role in autoimmune disease is 

Box 2 | Common themes of EBV- associated cancers and MS

There are several common features of Epstein–Barr virus (EBV) infection as an aetiolog-
ical agent in both cancer and multiple sclerosis (MS). Most EBV- associated cancers 
result from EBV prolonging the survival of a cell that acquires additional oncogenic 
mutations or epigenetic changes that drive cancer cell evolution. Cancer may also arise 
from EBV entering a cell with precancerous mutations that may enable EBV to establish 
an	oncogenic	infection,	such	as	a	type	II	latency	in	an	epithelial	cell.	It	is	also	possible	
that EBV acquires mutations and induces epigenetic changes in the host cell that drive 
oncogenesis. These rare events amount to a significant incidence of cancer cases 
owing to the high prevalence and persistence of EBV. Similar types of aberrations may 
need	to	be	considered	for	MS.	Does	EBV	infect	a	rare	‘forbidden’	B cell?	If	so,	what	 
are	the	B cells	that	are	infected	in	patients	with	MS,	and	how	may	these	differ	from	
non-	pathogenic	EBV-	positive	B cells	that	do	not	drive	MS?	Could	EBV	have	acquired	
rare	mutations	or	polymorphisms	that	drive	MS?	Because	EBV	is	so	ubiquitous	and	
because it is usually acquired early in life, the question of how the virus may be toler-
ated	as	‘self’	versus	chronically	rejected	as	‘non-	self’	may	depend	on	the	age	at	primary	
infection. Antigens acquired before a certain stage of immune development and pre-
sented in the appropriate HLA context may be considered self- antigens and acquire 
tolerance. Similarly, foreign antigens that mimic self- antigens may escape immune rec-
ognition	by	posing	as	self	or	exhausting	T cells.	EBV	modulation	of	many	B cell	immuno-
regulatory	genes	is	also	likely	to	contribute	to	pathogenesis	in	both	cancer	and	MS.	
Indeed,	similarly	to	MS,	infectious	mononucleosis	in	adolescence	increases	the	risk	of	
developing	Hodgkin	lymphoma	(an	approximately	fourfold	increase).	In	Hodgkin	lym-
phoma,	EBV	rescues	defective	germinal	centre	B cells	from	apoptosis	and	initiates	early	
events	in	lymphomagenesis	by	altering	normal	B cell	gene	expression	programmes139. 
Therefore,	it	is	possible	that	an	analogous	EBV-	mediated	rescue	of	autoreactive	B cells	
or	other	B cell	subsets	may	set	the	stage	for	the	development	of	MS.
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not well described. Studies in MS patients and animal 
models have identified gene variants, miRNAs and 
viral co- factors that exert epigenetic control to increase 
inflammation, immune cell differentiation and myelin 
breakdown189. Epigenetic modification of genes that pro-
mote neuroinvasion of EBV- positive B cells, including 
the genes encoding osteopontin and CXCR4, has been 
described in some experimental models, suggesting that 
EBV may affect epigenetic mechanisms driving MS190.

EBV interactions with HLA. HLA alleles have different 
binding affinities and specificities for antigenic peptides 
that impact T cell immunogenicity and functionality191. 
Antigenic peptides derived from MBP have been identi-
fied from B cells from patients with MS and correlate with  

higher levels of MBP- specific T cells in patients with 
MS than in controls81. Related studies implicate variant 
peptide binding of the high- risk HLA- DRB1*15 allele 
in the presentation of various autoreactive peptides. 
Some of these peptides may be derived from EBV pro-
teins, providing a potential mechanism to explain the 
combined risk of EBV infection and HLA- DRB1*15. 
For example, humanized mice reconstituted with HLA- 
DR15 had elevated CD8+ T cell responses and CD4+ 
T cells cross- reacting with MBP192. In addition, some 
studies have found that HLA- DR15 and HLA- DRB*07 
patients with MS have higher EBV viral loads, whereas 
HLA- A*02 individuals have lower viral loads, suggest-
ing that class I and class II MHC molecules modulate 
EBV latency control193,194. However, other studies did not 
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find increased EBV viral loads in MS or changes that 
immediately precede or coincide with relapses195–197. 
Nevertheless, HLA- A*02 correlates with a decreased 
risk of MS (reviewed in REF.198). Alternatively, but per-
haps related, MS- associated risk alleles, including HLA- 
DRB5, are also correlated with differentially regulated 
gene expression199,200. Higher expression levels of HLA 
alleles may also affect peptide selection and presentation 
that contribute to peptide mimicry and autoreactivity. 
Another intriguing finding is that the HLA- DR15 allele 
can serve as a co- receptor for EBV entry into B cells, 
raising the possibility that viral entry pathways may also 
contribute to MS risk201.

Opportunities for therapeutic intervention
Existing immunomodulatory therapies and their poten-
tial effect on EBV. The effectiveness of immunosuppres-
sive and anti- inflammatory therapies in MS supports 
the autoimmune component in disease pathogenesis. 
Corticosteroids effectively treat MS flares202, but are too 
immunosuppressive for long- term use. Several immuno-
suppressive and chemotherapeutic drugs that dramati-
cally decrease the levels of circulating immune cells, 
including cyclophosphamide, cladribine, mitoxantrone, 
methotrexate and teriflunomide, have been used with 
variable success203,204. It is now appreciated that B cells 
play an essential role in MS pathogenesis, on the basis 
of the success of CD20- specific depletion. Monoclonal 
antibodies to the B cell antigen CD20 (ocrelizumab 
and ofatumumab) reduce MS relapse and lesion for-
mation, while a monoclonal antibody (anti- IL-12 p40 
and anti- IL-23 p40, ustekinumab) that targets both TH1 
cells and TH17 cells did not show similar efficacy205–207. 
Importantly, additional therapeutics that broadly tar-
get B cells, including anti- CD52 monoclonal antibody 
and cladribine act as B cell- depleting drugs and are 
of therapeutic use in MS. By contrast, treatments that 
target naive and plasma B cells (for example, atacicept)  
or boost memory B cells (for example, infliximab) 
further aggravate MS via TNF blockade208. The effects 
of these treatments on EBV load is not yet known. 
Interestingly, teriflunomide has been shown to reduce 
both EBV- induced lymphoproliferation and lytic viral 
replication209.

EBV- specific CTL therapy. Cell- based immunotherapies, 
including EBV- specific CTL lines, have proven success-
ful in the treatment of post- transplantation lymphopro-
liferative disorder and EBV- associated lymphomas and 
nasopharyngeal carcinoma, with low rates of graft- versus- 
host disease210–212. Therefore, the use of autologous T cell 
therapy has been expanded to clinical trials in MS213–216. 
These therapies attempt to compensate for deficient 
CTL control of EBV- infected B cells. Phase I trials using 
ATA188, an allogenic T cell therapy using T cells from 
healthy donors, have been initiated to evaluate allogenic 
EBV CTL therapy in PPMS and SPMS (NCT03283826), 
and the first clinical episode highly suggestive of MS 
(NCT02912897). Initial reports have demonstrated 
increased circulation of LMP- reactive and lymphoblastoid 
cell line (LCL)- reactive effector CD8+ memory cell popu-
lations. Notably, patients with PPMS have reported clinical 

improvement after autologous EBV- specific T cell therapy 
targeting EBNA1, LMP1 and LMP2A214. Early results sug-
gest that ATA188 is safe and well tolerated, with a decrease 
in Expanded Disability Status Scale (EDSS) score217.

Antivirals, vaccines and their potential to target EBV in  
MS pathogenesis. Specific antivirals for treating EBV 
infection have not, to date, been approved for treatment  
of MS. Moreover, several clinical trials testing the effi-
cacy of antivirals, specifically those with broad antiher-
pesvirus activity, including acyclovir and valacyclovir, 
did not demonstrate a clear benefit in MS218–220. IFNβ,  
a cytokine with broad antiviral, antiproliferative and anti- 
inflammatory effects, was the first immunomodulatory 
therapy to successfully modify the disease course of MS,  
and is still one of the most frequently used therapeu-
tic options for MS; it is considered a first- line therapy 
with modest efficacy in controlling ongoing disease221. 
The exact mode of action of IFNβ in MS is only partly 
understood. IFNβ has potent antiviral activity and is 
known to counteract many immunomodulatory actions 
of EBV222,223. Antiviral nucleoside analogues may also 
be effective for treating EBV infection in MS. Recent 
studies have shown that the non- cyclic nucleoside ana-
logue tenofovir alafenamide (TAF), which was devel-
oped as a specific inhibitor for the HIV and hepatitis 
B virus reverse transcriptases and is frequently used in 
HIV pre- exposure prophylaxis, also inhibits the EBV 
DNA polymerase224. Notably, TAF was twice as potent 
as ganciclovir in direct inhibition of EBV replication 
and DNA polymerase activity225. In addition, anecdotal 
reports and case studies have suggested that there may 
be a clinical benefit and decreased relapses in patients 
with RRMS receiving TAF regimens226. A clinical trial 
(NCT04880577) has been initiated to test the ability 
of TAF as an add- on therapy to ocrelizumab to reduce 
symptoms and promote neuroprotection in RRMS.

There are distinct challenges for EBV vaccine devel-
opment. Sterilizing immunity to EBV may not be 
possible given the efficiency of EBV transmission and 
persistence, and merely delaying the time of infection 
is undesirable, because it increases the risk of mono-
nucleosis and MS. Furthermore, identification of the 
most appropriate viral antigens is complex for both 
prevention of infection and treatment of existing dis-
ease. Vaccine approaches to block early events in EBV 
primary infection would require neutralizing antibodies 
that target components of viral entry proteins (includ-
ing gp350, gp42, gH, gL and gB). Therapeutic vaccines 
for various EBV- associated cancers or autoimmune 
disease may need to target multiple viral proteins, as 
both latent and lytic viral genes have been implicated 
in disease pathogenesis. In addition to careful consid-
eration of the viral antigens included in the vaccine,  
a successful vaccine strategy for EBV must stimulate both  
the humoral arm and the cell- mediated arm of the adap-
tive immune system and induce production of effector 
and long- lived memory cells. The development of a  
vaccine targeted at preventing the development of mono-
nucleosis in EBV- seronegative children could poten-
tially reduce the likelihood that these individuals will  
later develop MS. A small trial examining the efficacy  

Graft- versus- host disease
A condition in which the 
donor’s immune system (the 
graft) rejects the recipient  
(the host) as non- self.
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of vaccination with the HLA- B*0801- restricted CD8+ 
T cell epitope FLRGRAYGL demonstrated a reduced 
likelihood of developing mononucleosis in those chil-
dren who seroconverted227. Similarly, vaccination of 
EBV- seronegative young adults with a recombinant 
gp350 subunit vaccine prevented the development  
of mononucleosis, although it did not decrease rates of  
asymptomatic EBV infection228. Phase I/II trials demon-
strated that this gp350 subunit vaccine was well tol-
erated and immunogenic, inducing robust gp350 
antibody responses as well as EBV- neutralizing antibody 
responses229. Following the success of its severe acute 
respiratory syndrome coronavirus 2 vaccine, Moderna 
launched a vaccine trial (NCT05164094) using mRNA 
encoding EBV gp350, gB, gH/gL and gp42 in seronega-
tive 18–30- year- old adults. Further studies are required 
to determine whether this approach or other vaccine 
approaches could ultimately decrease the likelihood of 
developing mononucleosis and, subsequently, MS.

Conclusions
Despite years of controversy, the role of EBV infection 
and seropositivity as essential co- factors for most forms 
of MS may now be settled. As the severity of EBV pri-
mary infection strongly correlates with the development 
of MS many years later, it is likely that MS depends on 
the initial immune response to EBV infection. Failure to 

control this primary infection may lead to colonization 
of resident memory B cell and T cell follicles in CNS 
accessible sites, such as tertiary lymphoid structures, 
that are uniquely prone to inducing immune pathol-
ogy in the CNS. The time of infection likely contributes 
to immune system elimination of viral, autoreactive 
T cells and antibodies that target CNS components. 
These events must be further exacerbated by numerous 
genetic risk alleles, especially HLA- DRB1*1501, that 
may compound the effects of EBV infection through 
aberrant presentation of autoreactive peptides. Other 
alleles can cooperate with EBV transcription regulatory 
factors, such as EBNA2, through altered binding spec-
ificity and gene programmes promoting inflammatory 
B cell proliferation. Whether there are any special fea-
tures of EBV antigens, such as EBNA1, that induce high 
rates of polyreactivity and self- mimicry needs to be fur-
ther investigated. Among the most pressing questions is 
whether EBV- infected cells or viral products act within  
the CNS or indirectly through inflammatory events in the  
periphery. Ultimately, how autoreactive immune cells 
and antibodies form and accumulate in the CNS remain 
high- priority questions. Knowing that EBV is a likely 
driver of inflammatory autoimmune disease provides a 
target for future therapies.
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