
Hematopoietic stem cells and
betaherpesvirus latency

Lindsey B. Crawford1,2,3*

1Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States,
2Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States,
3Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln,
Lincoln, NE, United States

The human betaherpesviruses including human cytomegalovirus (HCMV),
human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish
latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse
repertoire of HPCs in humans and the complex interactions between these
viruses and host HPCs regulate the viral lifecycle, including latency. Precise
manipulation of host and viral factors contribute to preferential maintenance of
the viral genome, increased host cell survival, and specific manipulation of the
cellular environment including suppression of neighboring cells and immune
control. The dynamic control of these processes by the virus regulate inter- and
intra-host signals critical to the establishment of chronic infection. Regulation
occurs through direct viral protein interactions and cellular signaling, miRNA
regulation, and viral mimics of cellular receptors and ligands, all leading to
control of cell proliferation, survival, and differentiation. Hematopoietic stem
cells have unique biological properties and the tandem control of virus and host
make this a unique environment for chronic herpesvirus infection in the bone
marrow. This review highlights the elegant complexities of the betaherpesvirus
latency and HPC virus-host interactions.
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1 Introduction

Hematopoiesis is a highly regulated, hierarchical, and multilinear process wherein stem
cells differentiate into mature hematopoietic cells. Successful hematopoiesis is required for
the formation and continual replenishment of all cellular components and maintenance of
a functional immune system. This complex process is now believed to be partially
reversable allowing dynamic control of stem cell fate and differentiation. The classic
model of hematopoietic differentiation proposes that pluripotent hematopoietic stem cells
(HSCs) are part of a larger pool of progenitors (HPCs) whose functions and abilities
(including differentiation to specific lineages) vary depending on their specific
characteristics including developmental status (e.g., fetal vs adult) and physical location
(e.g., tissues vs bone marrow). In adults, HSCs reside in the bone marrow and differentiate
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through a series of progenitors (including the heterogeneous HPC
population) which subsequently give rise to committed progenitors
which, in turn, differentiate specifically into mature immune cells
(Figure 1, overview). These differentiation stages, the fate of the
progenitor cells, and hematopoietic programs are controlled by a
complex interplay between stem cells, the bone marrow niche,
neighboring immune cells, and external and/or environmental
factors (King et al., 2020).

In stem cells, progenitors, and mature blood lineage cells, the
fundamental processes of self-renewal, quiescence, apoptosis,
proliferation, and differentiation are governed by these interactions.
Since hematopoiesis is an essential process for life, it makes sense that
many processes required for maintenance are conserved. Under
normal physiologic conditions, hematopoietic homeostasis is
maintained in hematopoietic stem/progenitor cells (HS/HPCs) by a
delicate, and complex, balance between all fundamental stem cell
processes: self-renewal and/or apoptosis with proliferation and/or
differentiation. Under stress conditions, including viral infection,
fewer HS/HPCs undergo apoptosis while increased levels of
cytokines and growth factors enhance proliferation and
differentiation in order to repopulate and support immune system
function. In healthy individuals, the hematopoietic system returns to
baseline after stress conditions end. However, deregulation of

hematopoietic conditions is associated with stress (Zhao and
Baltimore, 2015) and ageing (Groarke and Young, 2019) as well as
numerous disease states including cancer, autoimmune disorders,
and chronic viral infection. Many viruses are associated with
dysregulation of bone marrow function and pathogenic outcomes
[reviewed (Kolb-Mäurer and Goebel, 2003; Pascutti et al., 2016)], and
previous studies demonstrated direct productive and/or latent viral
infection in HS/HPCs from diverse viral families, including
retroviruses (Banerjee et al., 2010), parvovirus (Segovia et al., 2003),
JC virus (Monaco et al., 1996), hepatitis C (Sansonno et al., 1998),
measles (Manchester et al., 2002), and herpesviruses (Maciejewski
et al., 1992; Isomura et al., 1997; Mirandola et al., 2000; Wu et al.,
2006). This review discusses the evidence for betaherpesviruses
infection of, and latency establishment in, HS/HPCs, and how the
interactions between virus and host control hematopoietic programs.

2 Hematopoietic complexity: what
defines an HSC?

HSCs are pluripotent stem cells that can differentiate into and
generate all hemato-lymphoid lineage cells. The most widely used
operational definition of a ‘classic HSC’ is characterization by

FIGURE 1

Overview of human hematopoiesis. Schematic overview of human hematopoiesis from early hematopoietic stem cells (HSCs) to more mature
hematopoietic progenitors (HPCs), both populations with self-renewal and multilineage differentiation potential. The heterogeneous HPC population
subsequently gives rise to a series of intermediate progenitors, including commitment to either the lymphoid or myeloid lineages through the
committed lymphoid (CLP) or committed myeloid progenitor (CMP), respectively. Lineage analysis and differentiation capability of the CMP
population and direct descendants can be assessed with the classic colony forming unit (CFU) assay, and populations distinguished by morphology
and other characteristics. Lineage commitment of the monocytic lineage begins with the CFU-GM (CFU-granulocyte/macrophage) diverging from
the CFU-Mk (CFU-megakaryocyte) and erythroid [BFU-E (burst-forming unit-erythroid) and CFU-E (CFU-erythroid)] lineages. These intermediate
progenitors have more restricted self-renewal capacity and differentiate into mature and functional immune cells (i.e., monocytes, T-cells, B-cells,
dendritic cells). Lineage tracing can be performed using cell surface receptors, beginning with CD34+CD38- early HSCs and HPCs, maturation to
committed progenitors, then finally mature immune cells that express lineage markers (Lineage+, e.g. CD3+ T-cells or CD14+ monocytes) and lack
CD34 expression. Betaherpesviruses infect HPCs and specifically control differentiation to virus-favorable lineages. Highlighted (in color and bold)
here with their lineage preferences are HHV-6 or HHV-7 to T-cell differentiation (blue) and HHV-5 (HCMV) to myeloid differentiation (green).
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expression of the surface receptor CD34, since the development of
the sialomucin CD34 monoclonal antibody in the mid-1980s (Civin
et al., 1984). However, the identity of an HSC is still somewhat
unclear. First, CD34 expression is heterogeneous (Krause et al.,
1996) and includes differentiating cells, committed progenitors and
early multipotent progenitors as well as stem cells. Second, newer
research suggests that the very earliest HSCs may lack CD34
expression (Sonoda, 2021). Third, and ironically, the function of
CD34 on these cells is still not defined (AbuSamra et al., 2017).
Regardless, CD34 expression is the classic and well accepted
identifier for both HSCs and the slightly more mature HPC
population, although different cells in these subsets likely have
different functions. The ‘standard’ HS/HPC pool is currently
defined by using a combination of CD34 expression (CD34+) and
the absence of mature lineage markers (Lin-).

Functionally, a cell must meet four basic requirements to be an
HSC: 1) the capability for self-renewal, 2) the capability to undergo
apoptosis, 3) the maintenance of multilineage hematopoiesis, and 4)
mobilization out of the bone marrow into the circulating blood. The
most stringent test to evaluate if a population contains true HS/
HPCs is pairing identity (surface marker expression) with function.
For example, HSCs can be isolated in vitro using the surface
receptor CD34 (Hao et al., 1996) and reconstitute irradiated
recipients (Baum et al., 1992). Numerous studies and clinical
applications provide support for human hematopoietic
reconstitution using CD34+ cells for both autologous and
allogeneic transplants (Weissman and Shizuru, 2008). In 2020,
more than 20,000 hematopoietic cell transplants were performed
in the United States alone (Health Resources and Services
Administration, 2022) as therapy for diverse diseases including
cancer, immunodeficiencies, autoimmune and blood disorders, and
a variety of genetic conditions. However, many more individuals do
not receive this well-established therapy due to a lack of appropriate
donor cells and complications with donor quality. Of those that do,
even well-matched transplant material of sufficient cells with good
function can lead to rejection as a result of graft vs host disease and/
or suppressed cell engraftment or immune function due to
infectious disease complications. Human betaherpesviruses play a
significant role in the success, or lack thereof, of hematopoietic stem
cell transplant (Ljungman, 2010; Yoshikawa, 2018).

3 Human hematopoietic hierarchy
and function

Long-term transplantation experiments, in a diversity of
species, suggest a clonal diversity model where the HSC
compartment consists of a fixed number of different types of
HSCs, each with a preprogrammed fate (Muller-Siebrug et al.,
2002; Lu et al., 2019; Teets et al., 2020). This coincides with the
classic model of hematopoiesis where HS/HPCs maintain the stem
cell compartment through regulated quiescence and self-renewal
balanced with controlled apoptosis, proliferation, and
differentiation as needed. These cells subsequently give rise to
either the committed myeloid progenitor (CMP) or committed
lymphoid progenitor (CLP) which, while still multipotent, have

more restricted self-renewal capacity. These intermediates then
differentiate specifically into mature (lineage-committed) immune
cells (i.e. monocytes, T-cells, B-cells, dendritic cells) (Figure 1).
Specific differentiation stages, progenitor cell fate, and
hematopoiesis, are all controlled by complex interactions between
hematopoietic cells and their environment, and by the fine-tuned
control of hematopoietic viruses. Understanding the factors
governing human hematopoiesis is essential to understand the
mechanisms of viral biology and to specifically target or clear
viral infections residing in these cells.

Further refinement of the identity and function of the HS/HPC
pool is a first step in refining our knowledge of human hematopoiesis.
Prior work pairing cell surface markers with functional studies
identified different sub-populations enriched for HSC functions. For
example, preferential long-term engraftment abilities are enriched in
the CD34+CD38- population (Steidl et al., 2002; Ishikawa et al., 2003;
Venezia et al., 2004; Forsberg et al., 2005). Yet further refinement has
proved elusive.While the surface marker ‘identity’ of these cells and the
basic definition of a human HSC vs HPC are broadly defined (Parekh
and Crooks, 2013), the functional ability of these cells to engraft varies.
Prior work suggests a difference in cell type required for either short- or
long-term reconstitution, and yet separation of early progenitors using
additional markers (e.g. CD90) into these populations [putative early
progenitors (CD38-CD90+) and short-term progenitors (CD38+CD90-

)] shows that both support early engraftment and yet still have
heterogeneous phenotypes (Cheung et al., 2012), meaning the true
definition of an HSC vs an HPC and their different functions are still
under-defined. This is key to understanding the biology of viruses,
including the betaherpsvirues, which utilize the unique biology of these
cells to establish latency as discussed below.

Recent work capitalizing on single cell genomics and
proteomics has provided maps of hematopoietic commitment and
differentiation, and characterized rare subpopulations (Triana et al.,
2021) including with age- and tissue-related specifics (Andersson
et al., 2014; Hennrich et al., 2018). Yet, the conclusions drawn from
these studies have yet to come to a consensus, with some in support
of the traditional hierarchical model (Pellin et al., 2019), some
supporting a model with a limited number of defined “primed
states” (Zheng et al., 2018), or the idea that hematopoietic
commitment is a continuous process rather than discrete stages
(Velten et al., 2017).

Combining these newer technologies with reconstitution
models will refine our knowledge of functional hematopoietic
populations. Functional analysis in humanized mouse models
demonstrates the success rate of different human HS/HPC
populations using serial transplants in immunodeficient mice and
measurement of reconstitution. Since the early 1990s, these models
have given us new insights into human hematopoiesis (Baum et al.,
1992; Lapidot et al., 1992; Bock, 1997). Despite this, many putative
HS/HPC populations lack full lineage reconstitution, likely due in
part to the species mismatch and the lack of a fully supportive bone
marrow microenvironment (Abarrategi et al., 2018; Stripecke et al.,
2020; Martinov et al., 2021), and therefore a fully refined population
for reconstitution has yet to be defined. Other differences even
within a single species, including sex (Cui et al., 2022), age (Groarke
and Young, 2019), and environment (i.e. inflammation (King et al.,
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2020), exert significant effects on stem cells, differentiation, and the
risk for related malignancies; clearly demonstrating that while the
basic principles are conserved, specific differences influence cell fate
and function in hematopoiesis.

Viral infection also highlights these specific outcomes, as many
viruses have evolved to manipulate hematopoiesis and specifically
drive differentiation towards a virus-favorable outcome. Uniquely,
however, different viruses manipulate different cellular pathways to
specifically drive differentiation (Figure 1, highlighted lineages for
beta-herpesviruses). For example, common viruses that establish
long-term (latent or chronic) infections, including retroviruses and
herpesviruses, all infect HPCs but control hematopoiesis, drive
differentiation to specific lineages, and manipulate specific cellular
pathways in virus-specific manners (Banerjee et al., 2010; Stanojevic
et al., 2022). Herpesvirus infection, in particular, is a common
concern during hematopoietic cell (and solid organ) transplant,
where immunosuppression provides a cellular environment
promoting viral infection and/or reactivation, which in turn can
lead to additional myelosuppression, which can ultimately result in
graft failure (Ivana et al., 2022). Yet, while many mammalian
species, from elephants to mice, are infected with herpesviruses,
the evolutionary differences that prevent cross-infection, even
between highly related primate betaherpesvirus species, highlight
specific adaptations to the host immune system and distinct
mechanisms of viral behavior (Cagliani et al., 2020; Fisher and
Lloyd, 2020). Understanding these mechanisms will provide novel
insights into viral infection (and treatment), immune function, and
hematopoietic mechanisms.

4 Human betaherpesviruses

The human Herpesviridae (HHV) family is composed of large
double-stranded DNA viruses in three subfamilies containing nine
known distinct viruses. The alphaherpesviruses include HHV-1
[Herpes simplex virus (HSV)-1], HHV-2 (HSV-2), and HHV-3
[Varicella zoster virus (VZV)]. The betaherpesviruses include HHV-
5 [human cytomegalovirus (HCMV)] and the Roseloviruses, including
HHV-6a, HHV-6b, and HHV-7. The gammaherpesviruses include
HHV-4 [Epstein-Barr virus (EBV)] and HHV-8 (Kaposi sarcoma-
associated virus (KSHV)]. All members have a restricted host range,
and unique infection, replication, and latency patterns. The differences
in cell tropism and complex lifecycle stages highlight the unique
properties of herpesviruses-cell host interactions.

Betaherpesviruses are ubiquitous and establish lifelong
infections in the host. Infections typically occur early in life, with
seroprevalence increasing with age and varying depending on
geographical location and socioeconomic factors. Global
seroprevalence of HCMV is currently estimated to be between 40-
90%; >90% for HHV-6a and b combined; and >80% for HHV-7
(Howley et al., 2021). Infection for all betaherpesviruses is systemic,
infecting multiple organs, including the hematopoietic
compartments (bone marrow, lungs, liver, and kidneys) and
mucosal tissue and brain [reviewed in (Di Luca et al., 1996; Britt,
2007; Santpere et al., 2020)]. In contrast, each virus has specific
cellular targets in vivo and in vitro, especially for latency (discussed

below). Direct infection and production of infectious progeny virus
during lytic infection generally results in destruction of the infected
cell, while latency results in quiescent virus and long-term
maintenance for lifelong viral persistence [reviewed in (Mori and
Yamanishi, 2007; Goodrum, 2022)].

Latency is a complex and multifactorial process involving viral
genome maintenance, viral persistence, cellular control, and
immune regulation. Betaherpesviruses are shed in saliva, urine, or
genital secretions as frequently as daily even in the presence of
neutralizing antibodies and strong cellular immunity, indicating
that latency is a dynamic process and suggesting frequent, but
specific reactivation events and complex avoidance of the host
immune system (Cohen, 2020).

5 Betaherpesvirus latency
and hematopoiesis

As discussed below, viral infection of HS/HPCs leads to a
diverse set of outcomes. Direct infection from diverse viral
families, including herpesviruses may adversely affect the HPC
pool and neighboring cells. Alteration of the cytokine and cellular
transcription factors critical for stem cell maintenance perturbs the
HSC pool and immune system maintenance by altering
proliferation and differentiation. Prevention of apoptosis or
triggering inappropriate differentiation can lead to disease.
Alternatively, direct induction of cytolysis leads to progenitor cell
destruction, and both direct and indirect effects on neighboring cells
leads to immunosuppression. Infected HPCs also serve as a
mechanism for viral dissemination including within and
between hosts.

5.1 HCMV

Viral infection in the bone marrow and the concept that viruses
can manipulate this compartment through infection, latency
establishment, and immune modulation was first demonstrated in
studies of human cytomegalovirus (HCMV). HCMV is the
prototypical betaherpesvirus and although most HCMV infections
are asymptomatic in healthy individuals (Nogalski et al., 2014), the
virus is the leading cause of congenital abnormalities following fetal
infection (Voigt et al., 2016; Xia et al., 2021) and is a significant
cause of morbidity and mortality during hematopoietic stem cell
(Stern et al., 2019; Annaloro et al., 2021) and solid organ (Ramanan
and Razonable, 2013) transplant. Transplant-associated HCMV
disease results from viral latency-induced myelosuppression and/
or acute CMV disease following reactivation (Nogalski et al., 2014;
Kotton et al., 2022). It is well established that HCMV establishes
latency in HS/HPCs and persists in myeloid lineage cells and that
while these cells are required for viral survival and replication,
infection also results in myelosuppression (Goodrum, 2022). This
apparent conflict of interest on the part of the virus supports the
hypothesis that viruses directly and specifically control stem and
immune cell fate for evolutionary and survival advantages.
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Herpesvirus latency in general, and HCMV latency specifically,
is defined as the ability of the virus to enter a cell and maintain the
viral genome, without producing infectious virus. While HCMV
can infect a wide number of cell types (as demonstrated through a
variety of both experimental and ex vivo approaches), viral
persistence and latency occur in cells of the myeloid lineage.
CD34+ HPCs provide a critical reservoir of latent HCMV
infection (Mendelson et al., 1996; Goodrum et al., 2004) and
infection of HPCs contributes to the hematopoietic abnormalities
observed in transplant patients (Reeves and Sinclair, 2008;
Ljungman et al., 2011; Goodrum, 2016; Safdar and Armstrong,
2019). In vivo, latently infected HPCs exit the bone marrow in
response to cytokine/growth factor signaling, traffic to the
periphery, and differentiate into monocytes and tissue
macrophages (Smith et al., 2004; Chan et al., 2008; Goodrum,
2016). This is supported by recovery of infectious virus after
allogeneic ex vivo stimulation of peripheral blood monocytes
from seropositive patients (Soderberg-Naucler et al., 1997). More
recent data suggests unique transcriptional programs in different
myeloid lineage cells (Schwartz and Stern-Ginossar, 2019) and
differentiation provides a cellular environment appropriate for
viral replication and reactivation (Soderberg-Naucler et al., 2001;
Smith et al., 2004; Chan et al., 2012a). In parallel, direct infection of
monocytes promotes differentiation towards macrophages (Ibanez
et al., 1991; Soderberg-Naucler et al., 2001; Smith et al., 2004; Chan
et al., 2012b) and while the specific role of monocytes are outside
the scope of this review, they are discussed recently elsewhere
[reviewed in (Min et al., 2020)]. We have also previously shown
that infection of HPCs specifically alters differentiation both in vitro
and in vivo (Crawford et al., 2018; Crawford et al., 2019; Crawford
et al., 2020), highlighting the cell type-specific interactions between
the virus and host, particularly as related to cellular differentiation.
In short, HPCs provide the latent reservoir, monocytes disseminate
the virus, and macrophages produce infectious virus for spread; and
the cellular differentiation state and cellular heterogeneity play
critical roles in this balance.

Previous advances in model systems including development of
an in vitro latency and reactivation model using primary HPCs
(Goodrum et al., 2002; Umashankar and Goodrum, 2014) allowed
identification of some of the viral genes and host pathways involved
in latency and reactivation [reviewed in (Collins-McMillen et al.,
2018)] and description of some of the mechanisms HCMV uses to
manipulate the cell. Consistent with established biological
differences in different cell types, including source and subtype of
the stem cells, functional differences in experimental model systems
support differing utility and design strategies to understand the
principles and mechanisms of latency [reviewed in (Crawford
et al., 2022)].

The evidence for direct infection of HPCs with HCMV is well
established, including in CD34+ HPCs isolated from adult (bone
marrow) and immature cells (cord blood or fetal liver). Infection of
HPCs with clinical viral strains results in direct myelosuppressive
effects (Maciejewski et al., 1992; Torok-Storb et al., 1992;
Movassagh et al., 1996; Sindre et al., 1996; Zhuravskaya et al.,
1997; Steffens et al., 1998). These early results have since been
replicated by numerous other groups. Additional research also

demonstrated that multiple CD34+ HPCs subtypes, refined using
cellular surface marker expression to reflect stem cell heterogeneity,
can be infected with HCMV and that these populations respond
differently to infection, including myelosuppressive effects and their
ability to support latency (discussed below) (Goodrum et al., 2004;
Crawford et al., 2021). These studies demonstrate direct viral
inhibition of stem cell maintenance and myelopoiesis, however
clinical evidence of global engraftment suppression (Holmberg
et al., 1999; Ljungman et al., 2011), suggests HCMV may have a
larger role. Indeed, HCMV infection of HPCs or stromal cells
results in the modulation of hematopoietic cytokines including
IL-6, MIP-1a, and TGF-b, (Apperley et al., 1989; Simmons et al.,
1990; Lagneaux et al., 1996; Taichman et al., 1997; Randolph-
Habecker et al., 2002; Hancock et al., 2020a). In addition, in
murine CMV bone marrow engraftment models, infection is also
associated with cytokine dysregulation (Steffens et al., 1998).
Further, engraftment of humanized mice with a pool of HPCs
wherein only a subset are HCMV-infected is sufficient to result in
engraftment delay and suppression (Crawford et al., 2020), which is
comparable to clinical patients who receive a seropositive, but
undetectable viral load, bone marrow transplant.

5.2 HCMV control of latency and cellular
properties

How HCMV regulates latency and reactivation and concurrent
host cell signaling is not linear or straightforward. Regulation is
complex, finely regulated, and dependent both upon the cell type and
viral lifecycle phase. HPCs are a critical reservoir for the virus
following primary infection both in vitro and in vivo, likely due in
part to the quiescent nature of the cell (reduced cellular proliferation
improves viral genome maintenance) and the immune privileged
nature of the bone marrow (reduced immune system clearance and
improved viral persistence). A summary of viral gene products and
host factors with direct links to latency and/or reactivation specifically
in HPCs are presented in Table 1, although this review will cover
these only briefly, as much of this research has been recently and
admirably reviewed elsewhere (Elder et al., 2019; Cohen, 2020;
Dooley and O’Connor, 2020; Mlera et al., 2020; Poole and Sinclair,
2020; Diggins et al., 2021b; Smith et al., 2021; Goodrum, 2022).

Latency is characterized by restriction of viral gene expression,
including reduction of expression from the major immediate early
promoter (MIEP), which normally directs lytic replication through
control of the viral immediate early (IE) genes (Mocarski et al.,
1996; Marchini et al., 2001). While a decrease in IE expression then
appears to a be straightforward measure of latency initiation,
herpesviruses are not straightforward. Exon 4 of IE1 has been
shown to be actively expressed in HPCs to interact with viral
DNA terminal repeats as a potential viral genome maintenance
mechanism (Tarrant-Elorza et al., 2014). Early studies to detect viral
transcription in experimental latency systems indicated that limited
viral genes (the latency factors: US28, UL138, LUNA, UL111A) and
long noncoding RNAs (lncRNAs) are expressed (Reeves and
Sinclair, 2013; Rossetto et al., 2013; Collins-McMillen et al.,
2018). However, more recent studies with newer sequencing
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TABLE 1 HCMV and cellular host factors controlling latency in HPCs.

Gene
region

HPC Source Cell Line Reference

Embryonic Fetal
liver

Cord
blood

Bone
marrow

mPB Kasumi-
3

KG-
1

RS4;11 in
vivo

Viral Genes

UL7 Crawford et al., 2018

Hancock et al., 2021

Crawford et al., 2021

UL111A Poole et al., 2014

UL122/UL123

promoters Collins-McMillen et al., 2019

Hale et al., 2020

IE1 Saffert et al., 2010

IE1x4 Tarrant-Elorza et al., 2014

UL133 Umashankar et al., 2011

Petrucelli et al., 2012

UL135 Umashankar et al., 2014

Buehler et al., 2016

Rak et al., 2018

UL136 Caviness et al., 2014

Caviness et al., 2016

UL138 Petrucelli et al., 2009

Umashankar et al., 2011

Petrucelli et al., 2012

Lee et al., 2015; Lee et al., 2016

Buehler et al., 2016

US28 Humby and O’Connor, 2015

Crawford et al., 2019

Krishna et al., 2019; Krishna et al., 2020;
Krishna et al., 2022

LUNA Poole et al., 2018

Viral miRNAs

miR-US5-
1

Hancock et al., 2021

miR-US5-
2

Hancock et al., 2020a; Hancock et al.,
2020b

miR-US22 Mikell et al., 2019

miR-
US25-1

Diggins et al., 2021a

miR-
UL22A

Hancock et al., 2020a

miR-
UL112

Hancock et al., 2021

(Continued)
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methods, including single-cell sequencing, propose that HCMV
latency may instead be a pattern of typically lytic gene expression
plus lncRNAs (Shnayder et al., 2018). Additional work from the
same authors also demonstrates that in both monocytes and HS/
HPCs, specific subsets of cells harbor higher viral transcript levels
and that these transcriptional programs correlate with latent virus
driving cellular differentiation to specific monocyte lineage(s)
(Shnayder et al., 2020). Other studies using sensitive qPCR for
individual genes of interest also detected gene expression of a
variety of transcripts and miRNAs in a variety of latency models
(summarized in Table 1) and discussed below. These data suggest

that latency cannot be measured solely by a transcriptional profile,
at least not yet. Combining transcriptional analysis, with genome
maintenance, and the ability to productively reactivate following
stimulus provides both an internal measure of a latency snapshot
timepoint and functional evidence of latency. Importantly, since
cells with roles in latency and persistence have unique biological
outcomes depending on the viral lifecycle, cellular differentiation
stages, and transcriptional programming (Goodrum et al., 2004;
Schwartz and Stern-Ginossar, 2019; Min et al., 2020; Crawford et al.,
2021) the context of cell heterogeneity and differentiation state must
be considered alongside the traditional latency programing factors.

TABLE 1 Continued

Gene
region

HPC Source Cell Line Reference

Embryonic Fetal
liver

Cord
blood

Bone
marrow

mPB Kasumi-
3

KG-
1

RS4;11 in
vivo

miR-
UL148D

Lau et al., 2016

Pan et al., 2016

Cellular Genes

AP-1 Krishna et al., 2020

EGFR Kim et al., 2017

Rak et al., 2018

EGR-1 Buehler et al., 2016

Buehler et al., 2019

Mikell et al., 2019

FOXO Hale et al., 2020

IFI16 Elder et al., 2019

IL-10 Poole et al., 2015

KAP-1 Rauwel et al., 2015

miRNAs Poole et al., 2011

SAMHD1 Kim et al., 2019

TGF-b Hancock et al., 2020a

TNF-a Forte et al., 2018

Transcriptomic Profiling

Bulk Goodrum et al., 2002; Goodrum et al.,
2007

Rossetto et al., 2013

Cheng et al., 2017

Forte et al., 2021

Single Cell Shnayder et al., 2018

miRNAs Lau et al., 2016

Mikell et al., 2019

[References for Table 1: (Goodrum et al., 2002; Goodrum et al., 2007; Petrucelli et al., 2009; Poole et al., 2011; Umashankar et al., 2011; Petrucelli et al., 2012; Rossetto et al., 2013; Caviness et al.,
2014; Poole et al., 2014; Tarrant-Elorza et al., 2014; Umashankar et al., 2014; Humby and O'Connor, 2015; Lee et al., 2015; Poole et al., 2015; Rauwel et al., 2015; Buehler et al., 2016; Lau et al.,
2016; Lee et al., 2016; Pan et al., 2016; Cheng et al., 2017; Kim et al., 2017; Krishna et al., 2017; Crawford et al., 2018; Forte et al., 2018; Poole et al., 2018; Rak et al., 2018; Shnayder et al., 2018;
Buehler et al., 2019; Collins-McMillen et al., 2019; Crawford et al., 2019; Elder et al., 2019; Kim et al., 2019; Krishna et al., 2019; Mikell et al., 2019; Hale et al., 2020; Hancock et al., 2020a; Krishna
et al., 2020; Crawford et al., 2021; Diggins et al., 2021a; Forte et al., 2021; Hancock et al., 2021; Krishna et al., 2022)].
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Latency requires a coordinated regulation of entry, gene
expression, genome maintenance, modulation of host responses,
and reactivation (Goodrum, 2016). Virus infection (Figure 2, left
panel) begins with viral entry into the cell stimulating cellular
responses. In HPCs, this stimulates EGFR, previously identified as
an important factor in viral infection for a variety of other viruses
(Zheng et al., 2014) and a key cellular regulator, including of
hematopoietic control (Hynes and Lane, 2005; Ryan et al., 2010;
Doan et al., 2013). Following transit of the viral capsid to the
nucleus, the viral genome is released and is chromatinized (Reeves
et al., 2005; Ioudinkova et al., 2006). Genome transcriptional
repression is also regulated both by direct repression of IE gene
expression (Martıńez et al., 2014), expression of IE regulatory
proteins [UL138 (Lee et al., 2016)], and through sequestration of
transcriptional regulators including pp71 (Kalejta et al., 2003),
although the mechanisms are not clearly understood.

Both maintenance of latency (Figure 2, middle panel) and
reactivation (Figure 2, right panel) are regulated by the
coordinated effort of viral and cellular control. Cellular regulation,
including modulation of all major cellular functions (host cell
signaling, proliferation, differentiation, survival, and immune
evasion) are controlled by viral signaling and in turn regulate the

viral lifecycle. Although much is yet to be discovered, several classes
of viral gene products controlling latency and reactivation, and their
roles in host control, have been explored.

One master regulator of viral latency and reactivation is the
polycistronic UL133-138 locus (Umashankar et al., 2011;
Umashankar et al., 2014). This region encodes genes with specific
roles in both latency and reactivation [reviewed (Mlera et al.,
2020)]. Briefly, following virus entry and stimulation of the MEK/
ERK signaling pathway, EGR-1 stimulation in turn stimulates
UL138 expression to promote latency establishment and suppress
virus replication. EGF receptor recycling is regulated by UL138 to
preserve surface expression, control cellular proliferation and
differentiation, and promote latency (Buehler et al., 2016). UL133
and UL136p23/19 are also pro-latency proteins, while UL136p25 is
context dependent. Temporal regulation of the UL133-UL138
region shifts with cell state (differentiation and proliferation
status) and viral kinetics. Expression of UL136p33 and UL136p26
may mediate the shift towards a UL135-dominant state and
reduction of UL138’s suppressive effects, which results in a virus
replication-promoting cell state. UL135 also promotes EGFR
recycling, reverses the effects of UL138, promoting differentiation
and triggering reactivation (Buehler et al., 2016). In HPCs the

FIGURE 2

HCMV regulation of progenitor cell mechanisms for latency maintenance, latency establishment, and the initiation of reactivation. HCMV viral proteins
and miRNAs controlling cellular signaling, cytokine feedback loops, and as mimics of cellular receptors and ligands to control cell fate, are presented in
Table 1, and select highlights are discussed here and in the text. Panel 1: Hematopoietic stem and progenitor cells (HS/HPCs) are susceptible to and the
preferential site of HCMV latency establishment and maintenance. Specific viral programs regulate entry and genome delivery to the nucleus. Further
viral control, including regulation of cellular receptors (including EGFR) by the UL133-UL138 genes control cellular functions (e.g. quiescence,
proliferation). Additional viral products regulate signaling pathways, such as US28 regulation of RhoA and UL7 interaction with FLT3R. The viral miRNAs
serve as negative regulators of cellular transcriptional pathways to control cellular genes for essential functions (e.g., miR-US5-2 and miR-UL112
regulation of FOXO3 to prevent apoptosis or miR-UL148D regulation of CDC25B to control cell cycle). Viral miRNAs also regulate viral transcription
including miR-UL112 inhibition of IE to establish latency. Panel 2: Latency maintenance is also controlled by complex interactions of viral genes, proteins,
miRNAs, and cellular pathways including the regulation of proliferation, cell cycle control, and cytokine production (discussed in the text and highlighted
here). Latency maintenance is also accompanied by the control of the HPC extracellular environment, mediated in part by viral miRNA control of the
master cell regulating cytokine, TGF-b. Panel 3: Viral reactivation and cellular differentiation to the mature myeloid lineages is a quintessential chicken
and egg question – which came first? Regardless, reactivation and differentiation are inextricably linked. Viral regulation by the UL133-UL138 region
triggers a shift from latency to reactivation by fine-tuning the EGFR pathway. Latency maintenance is relieved, and reactivation and differentiation are
initiated by expression of specific viral proteins including US28, UL7 and LUNA; while the viral miRNAs continue to control cellular and viral transcription
to regulate differentiation and proliferation which results in the production of new virus particles from mature myeloid lineage cells. (To represent the
biological differences of stem cell subsets along myeloid differentiation, nuclear:cytoplasmic ratios are approximately to scale, but some cellular protein
localization is solely descriptive rather than representative.).
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UL136 isoforms are also expressed temporally and work as
antagonists to balance these stages (Caviness et al., 2016).

A key example of the differing roles of viral regulation in
different cell types, even in the context of the same viral lifecycle
phase is US28. During natural infection, US28 is expressed in
PBMCs (Patterson et al., 1998), and has been detected in a variety
of HPC and monocyte latency models by different groups (Zipeto
et al., 1999; Beisser et al., 2001; Goodrum et al., 2002; Cheung et al.,
2006; Humby and O'Connor, 2015; Cheng et al., 2017). US28 is a
viral G protein-coupled receptor that regulates viral latency
establishment and reactivation, and controls cellular signaling
pathways during entry and reactivation. In CD34+ HPCs, US28
constitutive signaling is required for latency establishment and
virus-mediated reprogramming of infected cells (Humby and
O'Connor, 2015; Krishna et al., 2017; Krishna et al., 2019); yet in
HPCs and in humanized mice US28 ligand binding activity is
required for latency and reactivation (Crawford et al., 2019). The
apparent difference in these outcomes likely highlights the fine-
tuned control of different hematopoietic cells (including distinct
HS/HPC subsets) by HCMV. These data clearly demonstrate a key
role for US28 regulation of the host cell and the control of latent vs
reactivation states, although further understanding of the specific
mechanisms and distinct roles in different cell types are still needed.

Part of latency regulation is control of host cell signaling. Fine
tuning of cellular (and viral) signaling pathways can be
accomplished through miRNA targeting of transcripts. HCMV
encodes 22 mature miRNAs with diverse roles at all stages of
viral infection [reviewed (Diggins et al., 2021b)], including in
experimental latency models and in patient samples (Zhou et al.,
2020). During latency, select miRNAs regulate maintenance,
reactivation, and cellular control in HPCs in conjunction with
viral and cellular proteins. In addition, miRNAs also directly
regulate cell signaling in HPCs. miR-UL148D is expressed early
in HPC infection (Pan et al., 2016) and during latency (Mikell et al.,
2019). Like US28, miR-UL148D has potentially contradictory roles
in regulating latency and reactivation, both by promoting latency
establishment by downregulating an IE activator (Pan et al., 2016)
and/or blocking cellular activin receptor activity to decrease IL-6
secretion during latency (Lau et al., 2016). More recent studies also
demonstrate roles for miRNAs to control cell proliferation through
regulation of the RhoA signaling axis by miR-US25-1 (Diggins et al.,
2021a) or in coordination with UL135 and UL138 to regulate EGFR
by miR-US22’s regulation of EGR-1 (Mikell et al., 2019). In
addition, miR-US5-1 and miR-UL112 work in concert with UL7
to protect cells from apoptosis (Hancock et al., 2021) and promote
HPC survival.

HCMV also regulates global cellular cytokines to control both
direct cellular effects (including latency, reactivation, and cell
control) and indirect effects (altering neighboring cells, including
the induction of myelosuppression). miR-US5-2 and miR-UL22A
work in concert to stimulate TGF-b expression (through miR-US5-
2 downregulation of NAB1) and simultaneous downregulation of
SMAD3 by miR-UL22A (Buehler et al., 2019; Mikell et al., 2019;
Hancock et al., 2020a). By this mechanism, the latently infected cell
can produce TGF-b to regulate the external environment, resulting

in myelosuppression of uninfected neighboring cells, and yet
protect the host HPC from the negative effects of TGF-b.

Viral reactivation can be triggered by global stimulation,
including through cytokine manipulation and direct genetic or
protein level control. G-CSF mobilization of stem cells into the
periphery in patients stimulates viral reactivation and disease
(Anderson et al., 2003) and can be used as a robust trigger for
viral reactivation in humanized mouse models both with and
without functional HCMV-specific immune responses (Smith
et al., 2010; Crawford et al., 2017). In addition to its early effects,
specific regulation of the EGFR pathway by viral miRNAs (miR-
US5-2 and miR-US22) and viral proteins (UL135 and UL138) also
control reactivation (Hancock et al., 2020a; Hancock et al., 2020b).
Other viral proteins, such as UL7, function as homologs to cellular
receptors to control differentiation and stimulate reactivation
(Crawford et al., 2018). Control of differentiation from an HPC to
the monocytic lineage, either through directed pathways or more
global effects such as G-CSF stimulation, is a well-established trigger
for reactivation (Sinclair and Reeves, 2014). Crosstalk between these
pathways and other cellular signaling pathways are expected from
our understanding of cell biology, and additional evidence indicates
that other viral proteins (including US28) also contribute to this
signaling although how these viral factors synergize for control are
not yet known.

Although these studies clearly demonstrate the intricate virus-
cell interactions that regulate the host and allow viral persistence,
much remains to be defined about the central strategies of latency,
especially in context of stem cell subsets.

5.3 HHV-6a and HHV-6b

HHV-6 (both HHV-6a and HHV-6b) has many commonalities
with HCMV. Infection is chronic and widespread, and these viruses are
genetically the most closely related betaherpesviruses. Cell tropism of
HHV-6 is different however, as primary and replicative infection occurs
not only in monocytes, but also B-cells, NK cells, neural cells, and with
a primary preference for CD4+ T-cells and persistence in salivary
glands (Cohen, 2020). In vitro infection of CD34+ HPCs with HHV-6
suppresses hematopoietic colony formation of granulocyte-
macrophage, erythroid, and megakaryocyte lineages (Isomura et al.,
2003). Interestingly, while both HHV-6a and HHV-6b demonstrate an
MOI-dependent general effect on in vitro colony formation and on
erythroid lineage colonies specifically, only HHV-6b has a significant
suppressive effect on granulocyte-macrophage lineage differentiation
(Isomura et al., 1997). The difference in lineage-specific differentiation
outcomes following infection of HHV-6a (erythroid only) compared
with the broader myelosuppressive effects of HHV-6b and HCMV
support a role for unique viral-cell interactions specific to each virus.

Data from stem cell transplant recipients demonstrates clear
viral replication and/or reactivation (greater than 103 copies/106

PBMCs, compared to undetectable viral load in immunocompetent
individuals) (Boutolleau et al., 2003). In this study, viral load was
also higher in patients with engraftment complications (including
delayed neutrophil engraftment, graft vs host disease, and/or overt
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viral disease). In vitro analysis, again using CD34+ HPCs with
specific differentiation conditions for megakaryocyte vs non-
megakaryocyte colonies, demonstrated that HHV-6a and HHV-
6b infection inhibit global colony formation regardless of the
presence of supportive serum or additional thrombopoietin
(TPO) when used to support HSC maintenance and
megakaryocyte differentiation in the culture (Isomura et al., 2000).

Similar to HCMV, HHV-6 genomic DNA can be detected in
HPCs (Isomura et al., 1997), however, in contrast, heat-inactivation
and/or use of supernatants from HHV-6 infected cells abolishes the
suppressive effects on HPCs (Isomura et al., 2000), strongly
supporting a majority direct effect of HHV-6 on the suppression
of HPC differentiation rather than indirect effects on the bone
marrow environment. Once infected however, HPCs support early
expression of IE genes followed by later downregulation of
transcription in both early and late progenitors (Isomura et al.,
2003), suggesting the potential for latency establishment, although
this has not yet been demonstrated in vitro.

Unique out of all herpesviruses, HHV-6 infection also results in
viral integration in 1-2% of healthy individuals (Arbuckle et al.,
2010; Morissette and Flamand, 2010). While integration is usually
near the subtelomeric/telomeric junction on the chromosome, and
is rarely oncogenic due to this location, this virus can be transmitted
through the germline and the long-term effects of herpesvirus
integration here are still unknown [reviewed (Pantry and
Medveczky, 2017)]. There is also little known about the
mechanisms of latency and reactivation involving integrated
HHV-6, although the involvement of telomerase and the lack of a
consistent integration site leave room for speculation as to how
these unique viral mechanisms regulate host cell control. Evidence
from other studies, including from HIV (Pasternak and Berkhout,
2023), HPV (McBride and Warburton, 2017), and viral vector
integration specifically in stem cells (Kimbrel and Lanza, 2020),
support a clear role for viral integration, that when combined with
long latency periods, such as with integrated HHV-6, can result
in disease.

While less is known about the regulation of HHV-6 latency,
some commonalities have been established. The HHV-6 IE2 protein
shares structural homology with EBNA1 (EBV) and LANA
(KSHV), suggesting that it may also be involved with genome
maintenance by host chromosome tethering (Nishimura et al.,
2017), although no functional studies have yet been performed. In
integrated HHV-6 infection, the genome is enriched with
heterochromatin (Saviola et al., 2019) which is consistent with
genome silencing required for latency maintenance. Similar to
HCMV, the frequency of infection is low (1:10,000 to 1:100,000),
hampering gene expression analysis. Although HHV-6 encodes
four latency-associated transcripts in macrophages (Kondo et al.,
2002) and an U95 RNA has also been detected in healthy donor
PBMCs (Rotola et al., 1998), no studies have assessed viral
transcription in HPCs. HHV-6 also encodes miRNAs expressed
during lytic replication (Tuddenham et al., 2012), including one
that targets the IE gene U86 (Nukui et al., 2015), which may suggest
a role in early reactivation, although the function of these miRNAs
during latency has yet to be determined.

5.4 HHV-7

The final human betaherpesvirus, HHV-7 is understudied.
Prior work demonstrated that like the other betaherpesviruses,
HHV-7 is a common and chronic human infection. HHV-7
infects T-cells, epithelial cells of the lungs, and salivary glands,
with latency establishment in CD4+ T-cells (Cohen, 2020). Little is
known about the molecular mechanisms of viral gene regulation, or
a role in progenitor cells, although HHV-7 DNA has been detected
in CD34+ HPCs from bone marrow (Mirandola et al., 2000).

To determine if HHV-7 also governs hematopoietic progenitor
cell fate and/or plays a role in transplant outcomes, several studies
assessed the role of direct HHV-7 infection in HPCs, although these
data are contradictory. In the same study as discussed above for
HHV-6 (Boutolleau et al., 2003), where increasing HHV-6 viral
loads correlated with immunosuppression and adverse outcomes,
HHV-7 viral loads were comparable in transplant patients and
healthy controls, although the authors suggest based on kinetic viral
load data that HHV-7 may act as a cofactor of HHV-6 reactivation.
In contrast, in a cohort study of pediatric patients which included
allogenic and autologous bone marrow transplants, while less than
6% of patients had detectable HHV-7 viral loads, all HHV-7+
patients also had complications including graft vs host disease and/
or co-infections (Khanani et al., 2007).

To determine if infection of progenitor cells alters
hematopoietic colony formation, several studies assessed the in
vitro infection of CD34+ HPCs with HHV-7. The first study found
that HHV-7 infection had no effect on hematopoietic colony
formation regardless of differentiation outcome (Isomura et al.,
1997). Later studies also verified that HHV-7 infection also had no
influence on differentiation either in the presence or absence of
TPO (Isomura et al., 2000). However, an additional study found
that HHV-7 infection of cord blood HPCs slightly altered the
proportions of granulocytic/macrophagic and erythroid colony
formation and significantly inhibited pluripotent colony
formation (Mirandola et al., 2000). This study also demonstrated
that this effect resulted from direct infection of HPCs, as
neutralizing serum blocked changes in colony formation
following HHV-7 infection. Interestingly, similar to HCMV,
HHV-7 also has a seemingly contradictory role of both inhibiting
hematopoiesis and directly stimulating differentiation of certain cell
types. HHV-7 infection increases myeloid but not erythroid
maturation in liquid culture yet viral mRNA is maintained in
both cell types (Mirandola et al., 2000), providing additional
evidence that the viral life cycle and cell type-specific functions
are intertwined.

6 Discussion and perspectives

Viral latency, in betaherpesviruses and others, is regulated by a
complex system of viral and cellular control. During latency, the
virus promotes preferential maintenance of the viral genome,
increased host cell survival, and manipulates the cellular
environment, including suppression of neighboring cells and
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immune control. The idea that HCMV latency is dynamic with the
virus responding specifically to inter- and intra-host signals was
recently reviewed and highlights the complexity of virus-host
interactions (Goodrum, 2022). This is especially relevant in the
context of betaherpesvirus infection in hematopoietic progenitor
cells. HCMV, HHV-6, and HHV-7 are master regulators of cells,
controlling cellular signaling, responses, and fate through a variety
of mechanisms that are temporally regulated to match the viral
lifecycle and the cell type and differentiation stage. In HCMV,
multiple viral proteins (Collins-McMillen et al., 2018), miRNAs
(Chen et al., 2022; Diggins and Hancock, 2022), and cellular
pathways (Smith et al., 2021) regulate viral and host cell signaling
(Figure 2). This regulation varies depending on the cell type or
model system hosting the virus (Crawford et al., 2022) and is
specific to cell fate and viral lifecycle stage, setting up precisely
tuned regulatory mechanisms by the virus. While fewer specific
details are known about the role of HHV-6 or HHV-7 proteins in
latency and cellular control, betaherpesvirus infection has
implications in complex disease, including during transplant
(Higdon et al., 2023) and latent viral proteins have promise as
novel therapeutics (Perera et al., 2021; Berg and Rosenkilde, 2023).

Understanding the complexity of latency also necessitates
understanding the specifics of the host cell – which for
betaherpesviruses are unique populations of hematopoietic stem
and progenitor cells and their individual properties. Currently,
stemness is defined by the ability to self-renew and the absence of
lineage-specific programing. More recent data suggests that HSCs
are more tightly defined by unique transcriptomic, metabolomic,
and cellular properties that are not (yet) clearly linked with function
or surface marker “definitions” (Laurenti and Göttgens, 2018). This
is supported by transcriptome data from the Human Protein Atlas
which shows that 61% of all human genes are expressed in the bone
marrow and more than 10% have increased expression here
compared to other tissue types (Uhlén et al., 2015). This evidence
of stem cell signatures and the preference for betaherpesvirus
establishment of latency in these cells sets up the premise of a
functional interplay between virus and host. Both HCMV and
HHV-6 have differential effects in HPCs of different identity
(Isomura et al., 2003; Goodrum et al., 2004; Crawford et al.,
2021), and HCMV and HHV-7 also have seemingly contradictory
roles by both suppressing global hematopoiesis yet activating
specific hematopoietic lineages (Mirandola et al., 2000; Goodrum,

2022). Understanding this interplay has significant implications for
basic viral and stem cell biology, and for new therapeutic tools for
stem cell function and chronic viral infection, and further research
is required to understand the complex players involved.
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