What are variables. Variables are things that we measure, control, or manipulate in research. They differ in many respects, most notably in the role they are given in our research and in the type of measures that can be applied to them. 

Correlational vs. experimental research. Most empirical research belongs clearly to one of those two general categories. In correlational research we do not (or at least try not to) influence any variables but only measure them and look for relations (correlations) between some set of variables, such as blood pressure and cholesterol level. In experimental research, we manipulate some variables and then measure the effects of this manipulation on other variables; for example, a researcher might artificially increase blood pressure and then record cholesterol level. Data analysis in experimental research also comes down to calculating "correlations" between variables, specifically, those manipulated and those affected by the manipulation. However, experimental data may potentially provide qualitatively better information: Only experimental data can conclusively demonstrate causal relations between variables. For example, if we found that whenever we change variable A then variable B changes, then we can conclude that "A influences B." Data from correlational research can only be "interpreted" in causal terms based on some theories that we have, but correlational data cannot conclusively prove causality. 

Dependent vs. independent variables. Independent variables are those that are manipulated whereas dependent variables are only measured or registered. This distinction appears terminologically confusing to many because, as some students say, "all variables depend on something." However, once you get used to this distinction, it becomes indispensable. The terms dependent and independent variable apply mostly to experimental research where some variables are manipulated, and in this sense they are "independent" from the initial reaction patterns, features, intentions, etc. of the subjects. Some other variables are expected to be "dependent" on the manipulation or experimental conditions. That is to say, they depend on "what the subject will do" in response. Somewhat contrary to the nature of this distinction, these terms are also used in studies where we do not literally manipulate independent variables, but only assign subjects to "experimental groups" based on some pre-existing properties of the subjects. For example, if in an experiment, males are compared with females regarding their white cell count (WCC), Gender could be called the independent variable and WCC the dependent variable. 

Measurement scales. Variables differ in "how well" they can be measured, i.e., in how much measurable information their measurement scale can provide. There is obviously some measurement error involved in every measurement, which determines the "amount of information" that we can obtain. Another factor that determines the amount of information that can be provided by a variable is its "type of measurement scale." Specifically variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio. 

Nominal variables allow for only qualitative classification. That is, they can be measured only in terms of whether the individual items belong to some distinctively different categories, but we cannot quantify or even rank order those categories. For example, all we can say is that 2 individuals are different in terms of variable A (e.g., they are of different race), but we cannot say which one "has more" of the quality represented by the variable. Typical examples of nominal variables are gender, race, color, city, etc. 

Ordinal variables allow us to rank order the items we measure in terms of which has less and which has more of the quality represented by the variable, but still they do not allow us to say "how much more." A typical example of an ordinal variable is the socioeconomic status of families. For example, we know that upper-middle is higher than middle but we cannot say that it is, for example, 18% higher. Also this very distinction between nominal, ordinal, and interval scales itself represents a good example of an ordinal variable. For example, we can say that nominal measurement provides less information than ordinal measurement, but we cannot say "how much less" or how this difference compares to the difference between ordinal and interval scales. 

Interval variables allow us not only to rank order the items that are measured, but also to quantify and compare the sizes of differences between them. For example, temperature, as measured in degrees Fahrenheit or Celsius, constitutes an interval scale. We can say that a temperature of 40 degrees is higher than a temperature of 30 degrees, and that an increase from 20 to 40 degrees is twice as much as an increase from 30 to 40 degrees. 

Ratio variables are very similar to interval variables; in addition to all the properties of interval variables, they feature an identifiable absolute zero point, thus they allow for statements such as x is two times more than y. Typical examples of ratio scales are measures of time or space. For example, as the Kelvin temperature scale is a ratio scale, not only can we say that a temperature of 200 degrees is higher than one of 100 degrees, we can correctly state that it is twice as high. Interval scales do not have the ratio property. Most statistical data analysis procedures do not distinguish between the interval and ratio properties of the measurement scales. 
Relations between variables. Regardless of their type, two or more variables are related if in a sample of observations, the values of those variables are distributed in a consistent manner. In other words, variables are related if their values systematically correspond to each other for these observations. For example, Gender and WCC would be considered to be related if most males had high WCC and most females low WCC, or vice versa; Height is related to Weight because typically tall individuals are heavier than short ones; IQ is related to the Number of Errors in a test, if people with higher IQ's make fewer errors. 

Why relations between variables are important. Generally speaking, the ultimate goal of every research or scientific analysis is finding relations between variables. The philosophy of science teaches us that there is no other way of representing "meaning" except in terms of relations between some quantities or qualities; either way involves relations between variables. Thus, the advancement of science must always involve finding new relations between variables. Correlational research involves measuring such relations in the most straightforward manner. However, experimental research is not any different in this respect. For example, the above mentioned experiment comparing WCC in males and females can be described as looking for a correlation between two variables: Gender and WCC. Statistics does nothing else but help us evaluate relations between variables. Actually, all of the hundreds of procedures that are described in this manual can be interpreted in terms of evaluating various kinds of inter-variable relations. 
Two basic features of every relation between variables. The two most elementary formal properties of every relation between variables are the relation's (a) magnitude (or "size") and (b) its reliability (or "truthfulness"). 

Magnitude (or "size"). The magnitude is much easier to understand and measure than reliability. For example, if every male in our sample was found to have a higher WCC than any female in the sample, we could say that the magnitude of the relation between the two variables (Gender and WCC) is very high in our sample. In other words, we could predict one based on the other (at least among the members of our sample). 

Reliability (or "truthfulness"). The reliability of a relation is a much less intuitive concept, but still extremely important. It pertains to the "representativeness" of the result found in our specific sample for the entire population. In other words, it says how probable it is that a similar relation would be found if the experiment was replicated with other samples drawn from the same population. Remember that we are almost never "ultimately" interested only in what is going on in our sample; we are interested in the sample only to the extent it can provide information about the population. If our study meets some specific criteria (to be mentioned later), then the reliability of a relation between variables observed in our sample can be quantitatively estimated and represented using a standard measure (technically called p-value or statistical significance level, see the next paragraph). 

What is "statistical significance" (p-value). The statistical significance of a result is the probability that the observed relationship (e.g., between variables) or a difference (e.g., between means) in a sample occurred by pure chance ("luck of the draw"), and that in the population from which the sample was drawn, no such relationship or differences exist. Using less technical terms, one could say that the statistical significance of a result tells us something about the degree to which the result is "true" (in the sense of being "representative of the population"). More technically, the value of the p-value represents a decreasing index of the reliability of a result (see Brownlee, 1960). The higher the p-value, the less we can believe that the observed relation between variables in the sample is a reliable indicator of the relation between the respective variables in the population. Specifically, the p-value represents the probability of error that is involved in accepting our observed result as valid, that is, as "representative of the population." For example, a p-value of .05 (i.e.,1/20) indicates that there is a 5% probability that the relation between the variables found in our sample is a "fluke." In other words, assuming that in the population there was no relation between those variables whatsoever, and we were repeating experiments like ours one after another, we could expect that approximately in every 20 replications of the experiment there would be one in which the relation between the variables in question would be equal or stronger than in ours. (Note that this is not the same as saying that, given that there IS a relationship between the variables, we can expect to replicate the results 5% of the time or 95% of the time; when there is a relationship between the variables in the population, the probability of replicating the study and finding that relationship is related to the statistical power of the design. See also, Power Analysis). In many areas of research, the p-value of .05 is customarily treated as a "border-line acceptable" error level. 

How to determine that a result is "really" significant. There is no way to avoid arbitrariness in the final decision as to what level of significance will be treated as really "significant." That is, the selection of some level of significance, up to which the results will be rejected as invalid, is arbitrary. In practice, the final decision usually depends on whether the outcome was predicted a priori or only found post hoc in the course of many analyses and comparisons performed on the data set, on the total amount of consistent supportive evidence in the entire data set, and on "traditions" existing in the particular area of research. Typically, in many sciences, results that yield p
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 .05 are considered borderline statistically significant but remember that this level of significance still involves a pretty high probability of error (5%). Results that are significant at the p  .01 level are commonly considered statistically significant, and p [image: image2.png]
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 .001 levels are often called "highly" significant. But remember that those classifications represent nothing else but arbitrary conventions that are only informally based on general research experience. 

Statistical significance and the number of analyses performed. Needless to say, the more analyses you perform on a data set, the more results will meet "by chance" the conventional significance level. For example, if you calculate correlations between ten variables (i.e., 45 different correlation coefficients), then you should expect to find by chance that about two (i.e., one in every 20) correlation coefficients are significant at the p [image: image4.png]


 .05 level, even if the values of the variables were totally random and those variables do not correlate in the population. Some statistical methods that involve many comparisons, and thus a good chance for such errors, include some "correction" or adjustment for the total number of comparisons. However, many statistical methods (especially simple exploratory data analyses) do not offer any straightforward remedies to this problem. Therefore, it is up to the researcher to carefully evaluate the reliability of unexpected findings. Many examples in this manual offer specific advice on how to do this; relevant information can also be found in most research methods textbooks. 

Strength vs. reliability of a relation between variables. We said before that strength and reliability are two different features of relationships between variables. However, they are not totally independent. In general, in a sample of a particular size, the larger the magnitude of the relation between variables, the more reliable the relation (see the next paragraph). 

Why stronger relations between variables are more significant. Assuming that there is no relation between the respective variables in the population, the most likely outcome would be also finding no relation between those variables in the research sample. Thus, the stronger the relation found in the sample, the less likely it is that there is no corresponding relation in the population. As you see, the magnitude and significance of a relation appear to be closely related, and we could calculate the significance from the magnitude and vice-versa; however, this is true only if the sample size is kept constant, because the relation of a given strength could be either highly significant or not significant at all, depending on the sample size (see the next paragraph). 
Why significance of a relation between variables depends on the size of the sample. If there are very few observations, then there are also respectively few possible combinations of the values of the variables, and thus the probability of obtaining by chance a combination of those values indicative of a strong relation is relatively high. Consider the following illustration. If we are interested in two variables (Gender: male/female and WCC: high/low) and there are only four subjects in our sample (two males and two females), then the probability that we will find, purely by chance, a 100% relation between the two variables can be as high as one-eighth. Specifically, there is a one-in-eight chance that both males will have a high WCC and both females a low WCC, or vice versa. Now consider the probability of obtaining such a perfect match by chance if our sample consisted of 100 subjects; the probability of obtaining such an outcome by chance would be practically zero. Let's look at a more general example. Imagine a theoretical population in which the average value of WCC in males and females is exactly the same. Needless to say, if we start replicating a simple experiment by drawing pairs of samples (of males and females) of a particular size from this population and calculating the difference between the average WCC in each pair of samples, most of the experiments will yield results close to 0. However, from time to time, a pair of samples will be drawn where the difference between males and females will be quite different from 0. How often will it happen? The smaller the sample size in each experiment, the more likely it is that we will obtain such erroneous results, which in this case would be results indicative of the existence of a relation between gender and WCC obtained from a population in which such a relation does not exist. 
Example. "Baby boys to baby girls ratio." Consider the following example from research on statistical reasoning (Nisbett, et al., 1987). There are two hospitals: in the first one, 120 babies are born every day, in the other, only 12. On average, the ratio of baby boys to baby girls born every day in each hospital is 50/50. However, one day, in one of those hospitals twice as many baby girls were born as baby boys. In which hospital was it more likely to happen? The answer is obvious for a statistician, but as research shows, not so obvious for a lay person: It is much more likely to happen in the small hospital. The reason for this is that technically speaking, the probability of a random deviation of a particular size (from the population mean), decreases with the increase in the sample size. 

	


Why small relations can be proven significant only in large samples. The examples in the previous paragraphs indicate that if a relationship between variables in question is "objectively" (i.e., in the population) small, then there is no way to identify such a relation in a study unless the research sample is correspondingly large. Even if our sample is in fact "perfectly representative" the effect will not be statistically significant if the sample is small. Analogously, if a relation in question is "objectively" very large (i.e., in the population), then it can be found to be highly significant even in a study based on a very small sample. Consider the following additional illustration. If a coin is slightly asymmetrical, and when tossed is somewhat more likely to produce heads than tails (e.g., 60% vs. 40%), then ten tosses would not be sufficient to convince anyone that the coin is asymmetrical, even if the outcome obtained (six heads and four tails) was perfectly representative of the bias of the coin. However, is it so that 10 tosses is not enough to prove anything? No, if the effect in question were large enough, then ten tosses could be quite enough. For instance, imagine now that the coin is so asymmetrical that no matter how you toss it, the outcome will be heads. If you tossed such a coin ten times and each toss produced heads, most people would consider it sufficient evidence that something is "wrong" with the coin. In other words, it would be considered convincing evidence that in the theoretical population of an infinite number of tosses of this coin there would be more heads than tails. Thus, if a relation is large, then it can be found to be significant even in a small sample. 

	


Can "no relation" be a significant result? The smaller the relation between variables, the larger the sample size that is necessary to prove it significant. For example, imagine how many tosses would be necessary to prove that a coin is asymmetrical if its bias were only .000001%! Thus, the necessary minimum sample size increases as the magnitude of the effect to be demonstrated decreases. When the magnitude of the effect approaches 0, the necessary sample size to conclusively prove it approaches infinity. That is to say, if there is almost no relation between two variables, then the sample size must be almost equal to the population size, which is assumed to be infinitely large. Statistical significance represents the probability that a similar outcome would be obtained if we tested the entire population. Thus, everything that would be found after testing the entire population would be, by definition, significant at the highest possible level, and this also includes all "no relation" results. 

	


How to measure the magnitude (strength) of relations between variables. There are very many measures of the magnitude of relationships between variables which have been developed by statisticians; the choice of a specific measure in given circumstances depends on the number of variables involved, measurement scales used, nature of the relations, etc. Almost all of them, however, follow one general principle: they attempt to somehow evaluate the observed relation by comparing it to the "maximum imaginable relation" between those specific variables. Technically speaking, a common way to perform such evaluations is to look at how differentiated are the values of the variables, and then calculate what part of this "overall available differentiation" is accounted for by instances when that differentiation is "common" in the two (or more) variables in question. Speaking less technically, we compare "what is common in those variables" to "what potentially could have been common if the variables were perfectly related." Let us consider a simple illustration. Let us say that in our sample, the average index of WCC is 100 in males and 102 in females. Thus, we could say that on average, the deviation of each individual score from the grand mean (101) contains a component due to the gender of the subject; the size of this component is 1. That value, in a sense, represents some measure of relation between Gender and WCC. However, this value is a very poor measure, because it does not tell us how relatively large this component is, given the "overall differentiation" of WCC scores. Consider two extreme possibilities: 

If all WCC scores of males were equal exactly to 100, and those of females equal to 102, then all deviations from the grand mean in our sample would be entirely accounted for by gender. We would say that in our sample, gender is perfectly correlated with WCC, that is, 100% of the observed differences between subjects regarding their WCC is accounted for by their gender. 

If WCC scores were in the range of 0-1000, the same difference (of 2) between the average WCC of males and females found in the study would account for such a small part of the overall differentiation of scores that most likely it would be considered negligible. For example, one more subject taken into account could change, or even reverse the direction of the difference. Therefore, every good measure of relations between variables must take into account the overall differentiation of individual scores in the sample and evaluate the relation in terms of (relatively) how much of this differentiation is accounted for by the relation in question. 

	


Common "general format" of most statistical tests. Because the ultimate goal of most statistical tests is to evaluate relations between variables, most statistical tests follow the general format that was explained in the previous paragraph. Technically speaking, they represent a ratio of some measure of the differentiation common in the variables in question to the overall differentiation of those variables. For example, they represent a ratio of the part of the overall differentiation of the WCC scores that can be accounted for by gender to the overall differentiation of the WCC scores. This ratio is usually called a ratio of explained variation to total variation. In statistics, the term explained variation does not necessarily imply that we "conceptually understand" it. It is used only to denote the common variation in the variables in question, that is, the part of variation in one variable that is "explained" by the specific values of the other variable, and vice versa. 

	


How the "level of statistical significance" is calculated. Let us assume that we have already calculated a measure of a relation between two variables (as explained above). The next question is "how significant is this relation?" For example, is 40% of the explained variance between the two variables enough to consider the relation significant? The answer is "it depends." Specifically, the significance depends mostly on the sample size. As explained before, in very large samples, even very small relations between variables will be significant, whereas in very small samples even very large relations cannot be considered reliable (significant). Thus, in order to determine the level of statistical significance, we need a function that represents the relationship between "magnitude" and "significance" of relations between two variables, depending on the sample size. The function we need would tell us exactly "how likely it is to obtain a relation of a given magnitude (or larger) from a sample of a given size, assuming that there is no such relation between those variables in the population." In other words, that function would give us the significance (p) level, and it would tell us the probability of error involved in rejecting the idea that the relation in question does not exist in the population. This "alternative" hypothesis (that there is no relation in the population) is usually called the null hypothesis. It would be ideal if the probability function was linear, and for example, only had different slopes for different sample sizes. Unfortunately, the function is more complex, and is not always exactly the same; however, in most cases we know its shape and can use it to determine the significance levels for our findings in samples of a particular size. Most of those functions are related to a general type of function which is called normal. 

	


Why the "Normal distribution" is important. The "Normal distribution" is important because in most cases, it well approximates the function that was introduced in the previous paragraph (for a detailed illustration, see Are all test statistics normally distributed?). The distribution of many test statistics is normal or follows some form that can be derived from the normal distribution. In this sense, philosophically speaking, the Normal distribution represents one of the empirically verified elementary "truths about the general nature of reality," and its status can be compared to the one of fundamental laws of natural sciences. The exact shape of the normal distribution (the characteristic "bell curve") is defined by a function which has only two parameters: mean and standard deviation. 

A characteristic property of the Normal distribution is that 68% of all of its observations fall within a range of ±1 standard deviation from the mean, and a range of ±2 standard deviations includes 95% of the scores. In other words, in a Normal distribution, observations that have a standardized value of less than -2 or more than +2 have a relative frequency of 5% or less. (Standardized value means that a value is expressed in terms of its difference from the mean, divided by the standard deviation.) If you have access to STATISTICA, you can explore the exact values of probability associated with different values in the normal distribution using the interactive Probability Calculator tool; for example, if you enter the Z value (i.e., standardized value) of 4, the associated probability computed by STATISTICA will be less than .0001, because in the normal distribution almost all observations (i.e., more than 99.99%) fall within the range of ±4 standard deviations. The animation below shows the tail area associated with other Z values. 
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Illustration of how the normal distribution is used in statistical reasoning (induction). Recall the example discussed above, where pairs of samples of males and females were drawn from a population in which the average value of WCC in males and females was exactly the same. Although the most likely outcome of such experiments (one pair of samples per experiment) was that the difference between the average WCC in males and females in each pair is close to zero, from time to time, a pair of samples will be drawn where the difference between males and females is quite different from 0. How often does it happen? If the sample size is large enough, the results of such replications are "normally distributed" (this important principle is explained and illustrated in the next paragraph), and thus knowing the shape of the normal curve, we can precisely calculate the probability of obtaining "by chance" outcomes representing various levels of deviation from the hypothetical population mean of 0. If such a calculated probability is so low that it meets the previously accepted criterion of statistical significance, then we have only one choice: conclude that our result gives a better approximation of what is going on in the population than the "null hypothesis" (remember that the null hypothesis was considered only for "technical reasons" as a benchmark against which our empirical result was evaluated). Note that this entire reasoning is based on the assumption that the shape of the distribution of those "replications" (technically, the "sampling distribution") is normal. This assumption is discussed in the next paragraph. 

	


Are all test statistics normally distributed? Not all, but most of them are either based on the normal distribution directly or on distributions that are related to, and can be derived from normal, such as t, F, or Chi-square. Typically, those tests require that the variables analyzed are themselves normally distributed in the population, that is, they meet the so-called "normality assumption." Many observed variables actually are normally distributed, which is another reason why the normal distribution represents a "general feature" of empirical reality. The problem may occur when one tries to use a normal distribution-based test to analyze data from variables that are themselves not normally distributed (see tests of normality in Nonparametrics or ANOVA/MANOVA). In such cases we have two general choices. First, we can use some alternative "nonparametric" test (or so-called "distribution-free test" see, Nonparametrics); but this is often inconvenient because such tests are typically less powerful and less flexible in terms of types of conclusions that they can provide. Alternatively, in many cases we can still use the normal distribution-based test if we only make sure that the size of our samples is large enough. The latter option is based on an extremely important principle which is largely responsible for the popularity of tests that are based on the normal function. Namely, as the sample size increases, the shape of the sampling distribution (i.e., distribution of a statistic from the sample; this term was first used by Fisher, 1928a) approaches normal shape, even if the distribution of the variable in question is not normal. This principle is illustrated in the following animation showing a series of sampling distributions (created with gradually increasing sample sizes of: 2, 5, 10, 15, and 30) using a variable that is clearly non-normal in the population, that is, the distribution of its values is clearly skewed. 
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Elementary Concepts in Statistics



Overview of Elementary Concepts in Statistics. In this introduction, we will briefly discuss those elementary statistical concepts that provide the necessary foundations for more specialized expertise in any area of statistical data analysis. The selected topics illustrate the basic assumptions of most statistical methods and/or have been demonstrated in research to be necessary components of one's general understanding of the "quantitative nature" of reality (Nisbett, et al., 1987). Because of space limitations, we will focus mostly on the functional aspects of the concepts discussed and the presentation will be very short. Further information on each of those concepts can be found in statistical textbooks. Recommended introductory textbooks are: Kachigan (1986), and Runyon and Haber (1976); for a more advanced discussion of elementary theory and assumptions of statistics, see the classic books by Hays (1988), and Kendall and Stuart (1979). 



	What are variables? 

Correlational vs. experimental research 

Dependent vs. independent variables 

Measurement scales 

Relations between variables 

Why relations between variables are important 

Two basic features of every relation between variables 

What is "statistical significance" (p-value) 

How to determine that a result is "really" significant 

Statistical significance and the number of analyses performed 

Strength vs. reliability of a relation between variables 

Why stronger relations between variables are more significant 
	 
	Why significance of a relation between variables depends on the size of the sample 

Example: "Baby boys to baby girls ratio" 

Why small relations can be proven significant only in large samples 

Can "no relation" be a significant result? 

How to measure the magnitude (strength) of relations between variables 

Common "general format" of most statistical tests 

How the "level of statistical significance" is calculated 

Why the "Normal distribution" is important 

Illustration of how the normal distribution is used in statistical reasoning (induction) 

Are all test statistics normally distributed? 

How do we know the consequences of violating the normality assumption? 


What are variables. Variables are things that we measure, control, or manipulate in research. They differ in many respects, most notably in the role they are given in our research and in the type of measures that can be applied to them. 
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Descriptive Statistics 
"True" Mean and Confidence Interval. 
Probably the most often used descriptive statistic is the mean. The mean is a particularly informative measure of the "central tendency" of the variable if it is reported along with its confidence intervals. As mentioned earlier, usually we are interested in statistics (such as the mean) from our sample only to the extent to which they can infer information about the population. The confidence intervals for the mean give us a range of values around the mean where we expect the "true" (population) mean is located (with a given level of certainty, see also Elementary Concepts). For example, if the mean in your sample is 23, and the lower and upper limits of the p=.05 confidence interval are 19 and 27 respectively, then you can conclude that there is a 95% probability that the population mean is greater than 19 and lower than 27. If you set the p-level to a smaller value, then the interval would become wider thereby increasing the "certainty" of the estimate, and vice versa; as we all know from the weather forecast, the more "vague" the prediction (i.e., wider the confidence interval), the more likely it will materialize. Note that the width of the confidence interval depends on the sample size and on the variation of data values. The larger the sample size, the more reliable its mean. The larger the variation, the less reliable the mean (see also Elementary Concepts). The calculation of confidence intervals is based on the assumption that the variable is normally distributed in the population. The estimate may not be valid if this assumption is not met, unless the sample size is large, say n=100 or more. 

Shape of the Distribution, Normality. An important aspect of the "description" of a variable is the shape of its distribution, which tells you the frequency of values from different ranges of the variable. Typically, a researcher is interested in how well the distribution can be approximated by the normal distribution (see the animation below for an example of this distribution) (see also Elementary Concepts). Simple descriptive statistics can provide some information relevant to this issue. For example, if the skewness (which measures the deviation of the distribution from symmetry) is clearly different from 0, then that distribution is asymmetrical, while normal distributions are perfectly symmetrical. If the kurtosis (which measures "peakedness" of the distribution) is clearly different from 0, then the distribution is either flatter or more peaked than normal; the kurtosis of the normal distribution is 0. 
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More precise information can be obtained by performing one of the tests of normality to determine the probability that the sample came from a normally distributed population of observations (e.g., the so-called Kolmogorov-Smirnov test, or the Shapiro-Wilks' W test. However, none of these tests can entirely substitute for a visual examination of the data using a histogram (i.e., a graph that shows the frequency distribution of a variable). 
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The graph allows you to evaluate the normality of the empirical distribution because it also shows the normal curve superimposed over the histogram. It also allows you to examine various aspects of the distribution qualitatively. For example, the distribution could be bimodal (have 2 peaks). This might suggest that the sample is not homogeneous but possibly its elements came from two different populations, each more or less normally distributed. In such cases, in order to understand the nature of the variable in question, you should look for a way to quantitatively identify the two sub-samples.

	


Correlations 

Purpose (What is Correlation?) Correlation is a measure of the relation between two or more variables. The measurement scales used should be at least interval scales, but other correlation coefficients are available to handle other types of data. Correlation coefficients can range from -1.00 to +1.00. The value of -1.00 represents a perfect negative correlation while a value of +1.00 represents a perfect positive correlation. A value of 0.00 represents a lack of correlation. 
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The most widely-used type of correlation coefficient is Pearson r, also called linear or product- moment correlation. 

Simple Linear Correlation (Pearson r). Pearson correlation (hereafter called correlation), assumes that the two variables are measured on at least interval scales (see Elementary Concepts), and it determines the extent to which values of the two variables are "proportional" to each other. The value of correlation (i.e., correlation coefficient) does not depend on the specific measurement units used; for example, the correlation between height and weight will be identical regardless of whether inches and pounds, or centimeters and kilograms are used as measurement units. Proportional means linearly related; that is, the correlation is high if it can be "summarized" by a straight line (sloped upwards or downwards). 
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This line is called the regression line or least squares line, because it is determined such that the sum of the squared distances of all the data points from the line is the lowest possible. Note that the concept of squared distances will have important functional consequences on how the value of the correlation coefficient reacts to various specific arrangements of data (as we will later see). 

How to Interpret the Values of Correlations. As mentioned before, the correlation coefficient (r) represents the linear relationship between two variables. If the correlation coefficient is squared, then the resulting value (r2, the coefficient of determination) will represent the proportion of common variation in the two variables (i.e., the "strength" or "magnitude" of the relationship). In order to evaluate the correlation between variables, it is important to know this "magnitude" or "strength" as well as the significance of the correlation. 

Significance of Correlations. The significance level calculated for each correlation is a primary source of information about the reliability of the correlation. As explained before (see Elementary Concepts), the significance of a correlation coefficient of a particular magnitude will change depending on the size of the sample from which it was computed. The test of significance is based on the assumption that the distribution of the residual values (i.e., the deviations from the regression line) for the dependent variable y follows the normal distribution, and that the variability of the residual values is the same for all values of the independent variable x. However, Monte Carlo studies suggest that meeting those assumptions closely is not absolutely crucial if your sample size is not very small and when the departure from normality is not very large. It is impossible to formulate precise recommendations based on those Monte- Carlo results, but many researchers follow a rule of thumb that if your sample size is 50 or more then serious biases are unlikely, and if your sample size is over 100 then you should not be concerned at all with the normality assumptions. There are, however, much more common and serious threats to the validity of information that a correlation coefficient can provide; they are briefly discussed in the following paragraphs. 

Outliers. Outliers are atypical (by definition), infrequent observations. Because of the way in which the regression line is determined (especially the fact that it is based on minimizing not the sum of simple distances but the sum of squares of distances of data points from the line), outliers have a profound influence on the slope of the regression line and consequently on the value of the correlation coefficient. A single outlier is capable of considerably changing the slope of the regression line and, consequently, the value of the correlation, as demonstrated in the following example. Note, that as shown on that illustration, just one outlier can be entirely responsible for a high value of the correlation that otherwise (without the outlier) would be close to zero. Needless to say, one should never base important conclusions on the value of the correlation coefficient alone (i.e., examining the respective scatterplot is always recommended). 

[image: image11.png]BEENRewOVED, 1+58

u





Note that if the sample size is relatively small, then including or excluding specific data points that are not as clearly "outliers" as the one shown in the previous example may have a profound influence on the regression line (and the correlation coefficient). This is illustrated in the following example where we call the points being excluded "outliers;" one may argue, however, that they are not outliers but rather extreme values. 
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Typically, we believe that outliers represent a random error that we would like to be able to control. Unfortunately, there is no widely accepted method to remove outliers automatically (however, see the next paragraph), thus what we are left with is to identify any outliers by examining a scatterplot of each important correlation. Needless to say, outliers may not only artificially increase the value of a correlation coefficient, but they can also decrease the value of a "legitimate" correlation. 

See also Confidence Ellipse. 

Quantitative Approach to Outliers. Some researchers use quantitative methods to exclude outliers. For example, they exclude observations that are outside the range of ±2 standard deviations (or even ±1.5 sd's) around the group or design cell mean. In some areas of research, such "cleaning" of the data is absolutely necessary. For example, in cognitive psychology research on reaction times, even if almost all scores in an experiment are in the range of 300-700 milliseconds, just a few "distracted reactions" of 10-15 seconds will completely change the overall picture. Unfortunately, defining an outlier is subjective (as it should be), and the decisions concerning how to identify them must be made on an individual basis (taking into account specific experimental paradigms and/or "accepted practice" and general research experience in the respective area). It should also be noted that in some rare cases, the relative frequency of outliers across a number of groups or cells of a design can be subjected to analysis and provide interpretable results. For example, outliers could be indicative of the occurrence of a phenomenon that is qualitatively different than the typical pattern observed or expected in the sample, thus the relative frequency of outliers could provide evidence of a relative frequency of departure from the process or phenomenon that is typical for the majority of cases in a group. See also Confidence Ellipse. 

Correlations in Non-homogeneous Groups. A lack of homogeneity in the sample from which a correlation was calculated can be another factor that biases the value of the correlation. Imagine a case where a correlation coefficient is calculated from data points which came from two different experimental groups but this fact is ignored when the correlation is calculated. Let us assume that the experimental manipulation in one of the groups increased the values of both correlated variables and thus the data from each group form a distinctive "cloud" in the scatterplot (as shown in the graph below). 
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In such cases, a high correlation may result that is entirely due to the arrangement of the two groups, but which does not represent the "true" relation between the two variables, which may practically be equal to 0 (as could be seen if we looked at each group separately, see the following graph). 
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If you suspect the influence of such a phenomenon on your correlations and know how to identify such "subsets" of data, try to run the correlations separately in each subset of observations. If you do not know how to identify the hypothetical subsets, try to examine the data with some exploratory multivariate techniques (e.g., Cluster Analysis). 

Nonlinear Relations between Variables. Another potential source of problems with the linear (Pearson r) correlation is the shape of the relation. As mentioned before, Pearson r measures a relation between two variables only to the extent to which it is linear; deviations from linearity will increase the total sum of squared distances from the regression line even if they represent a "true" and very close relationship between two variables. The possibility of such non-linear relationships is another reason why examining scatterplots is a necessary step in evaluating every correlation. For example, the following graph demonstrates an extremely strong correlation between the two variables which is not well described by the linear function. 
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Measuring Nonlinear Relations. What do you do if a correlation is strong but clearly nonlinear (as concluded from examining scatterplots)? Unfortunately, there is no simple answer to this question, because there is no easy-to-use equivalent of Pearson r that is capable of handling nonlinear relations. If the curve is monotonous (continuously decreasing or increasing) you could try to transform one or both of the variables to remove the curvilinearity and then recalculate the correlation. For example, a typical transformation used in such cases is the logarithmic function which will "squeeze" together the values at one end of the range. Another option available if the relation is monotonous is to try a nonparametric correlation (e.g., Spearman R, see Nonparametrics and Distribution Fitting) which is sensitive only to the ordinal arrangement of values, thus, by definition, it ignores monotonous curvilinearity. However, nonparametric correlations are generally less sensitive and sometimes this method will not produce any gains. Unfortunately, the two most precise methods are not easy to use and require a good deal of "experimentation" with the data. Therefore you could: 

Try to identify the specific function that best describes the curve. After a function has been found, you can test its "goodness-of-fit" to your data. 

Alternatively, you could experiment with dividing one of the variables into a number of segments (e.g., 4 or 5) of an equal width, treat this new variable as a grouping variable and run an analysis of variance on the data. 

Exploratory Examination of Correlation Matrices. A common first step of many data analyses that involve more than a very few variables is to run a correlation matrix of all variables and then examine it for expected (and unexpected) significant relations. When this is done, you need to be aware of the general nature of statistical significance (see Elementary Concepts); specifically, if you run many tests (in this case, many correlations), then significant results will be found "surprisingly often" due to pure chance. For example, by definition, a coefficient significant at the .05 level will occur by chance once in every 20 coefficients. There is no "automatic" way to weed out the "true" correlations. Thus, you should treat all results that were not predicted or planned with particular caution and look for their consistency with other results; ultimately, though, the most conclusive (although costly) control for such a randomness factor is to replicate the study. This issue is general and it pertains to all analyses that involve "multiple comparisons and statistical significance." This problem is also briefly discussed in the context of post-hoc comparisons of means and the Breakdowns option. 

Casewise vs. Pairwise Deletion of Missing Data. The default way of deleting missing data while calculating a correlation matrix is to exclude all cases that have missing data in at least one of the selected variables; that is, by casewise deletion of missing data. Only this way will you get a "true" correlation matrix, where all correlations are obtained from the same set of observations. However, if missing data are randomly distributed across cases, you could easily end up with no "valid" cases in the data set, because each of them will have at least one missing data in some variable. The most common solution used in such instances is to use so-called pairwise deletion of missing data in correlation matrices, where a correlation between each pair of variables is calculated from all cases that have valid data on those two variables. In many instances there is nothing wrong with that method, especially when the total percentage of missing data is low, say 10%, and they are relatively randomly distributed between cases and variables. However, it may sometimes lead to serious problems. 

For example, a systematic bias may result from a "hidden" systematic distribution of missing data, causing different correlation coefficients in the same correlation matrix to be based on different subsets of subjects. In addition to the possibly biased conclusions that you could derive from such "pairwise calculated" correlation matrices, real problems may occur when you subject such matrices to another analysis (e.g., multiple regression, factor analysis, or cluster analysis) that expects a "true correlation matrix," with a certain level of consistency and "transitivity" between different coefficients. Thus, if you are using the pairwise method of deleting the missing data, be sure to examine the distribution of missing data across the cells of the matrix for possible systematic "patterns." 

How to Identify Biases Caused by the Bias due to Pairwise Deletion of Missing Data. If the pairwise deletion of missing data does not introduce any systematic bias to the correlation matrix, then all those pairwise descriptive statistics for one variable should be very similar. However, if they differ, then there are good reasons to suspect a bias. For example, if the mean (or standard deviation) of the values of variable A that were taken into account in calculating its correlation with variable B is much lower than the mean (or standard deviation) of those values of variable A that were used in calculating its correlation with variable C, then we would have good reason to suspect that those two correlations (A-B and A-C) are based on different subsets of data, and thus, that there is a bias in the correlation matrix caused by a non-random distribution of missing data. 

Pairwise Deletion of Missing Data vs. Mean Substitution. Another common method to avoid loosing data due to casewise deletion is the so-called mean substitution of missing data (replacing all missing data in a variable by the mean of that variable). Mean substitution offers some advantages and some disadvantages as compared to pairwise deletion. Its main advantage is that it produces "internally consistent" sets of results ("true" correlation matrices). The main disadvantages are: 

Mean substitution artificially decreases the variation of scores, and this decrease in individual variables is proportional to the number of missing data (i.e., the more missing data, the more "perfectly average scores" will be artificially added to the data set). 

Because it substitutes missing data with artificially created "average" data points, mean substitution may considerably change the values of correlations. 

Spurious Correlations. Although you cannot prove causal relations based on correlation coefficients (see Elementary Concepts), you can still identify so-called spurious correlations; that is, correlations that are due mostly to the influences of "other" variables. For example, there is a correlation between the total amount of losses in a fire and the number of firemen that were putting out the fire; however, what this correlation does not indicate is that if you call fewer firemen then you would lower the losses. There is a third variable (the initial size of the fire) that influences both the amount of losses and the number of firemen. If you "control" for this variable (e.g., consider only fires of a fixed size), then the correlation will either disappear or perhaps even change its sign. The main problem with spurious correlations is that we typically do not know what the "hidden" agent is. However, in cases when we know where to look, we can use partial correlations that control for (partial out) the influence of specified variables. 

Are correlation coefficients "additive?" No, they are not. For example, an average of correlation coefficients in a number of samples does not represent an "average correlation" in all those samples. Because the value of the correlation coefficient is not a linear function of the magnitude of the relation between the variables, correlation coefficients cannot simply be averaged. In cases when you need to average correlations, they first have to be converted into additive measures. For example, before averaging, you can square them to obtain coefficients of determination which are additive (as explained before in this section), or convert them into so-called Fisher z values, which are also additive. 

How to Determine Whether Two Correlation Coefficients are Significant. A test is available that will evaluate the significance of differences between two correlation coefficients in two samples. The outcome of this test depends not only on the size of the raw difference between the two coefficients but also on the size of the samples and on the size of the coefficients themselves. Consistent with the previously discussed principle, the larger the sample size, the smaller the effect that can be proven significant in that sample. In general, due to the fact that the reliability of the correlation coefficient increases with its absolute value, relatively small differences between large correlation coefficients can be significant. For example, a difference of .10 between two correlations may not be significant if the two coefficients are .15 and .25, although in the same sample, the same difference of .10 can be highly significant if the two coefficients are .80 and .90.

t-test for independent samples 

Purpose, Assumptions. The t-test is the most commonly used method to evaluate the differences in means between two groups. For example, the t-test can be used to test for a difference in test scores between a group of patients who were given a drug and a control group who received a placebo. Theoretically, the t-test can be used even if the sample sizes are very small (e.g., as small as 10; some researchers claim that even smaller n's are possible), as long as the variables are normally distributed within each group and the variation of scores in the two groups is not reliably different (see also Elementary Concepts). As mentioned before, the normality assumption can be evaluated by looking at the distribution of the data (via histograms) or by performing a normality test. The equality of variances assumption can be verified with the F test, or you can use the more robust Levene's test. If these conditions are not met, then you can evaluate the differences in means between two groups using one of the nonparametric alternatives to the t- test (see Nonparametrics and Distribution Fitting). 

The p-level reported with a t-test represents the probability of error involved in accepting our research hypothesis about the existence of a difference. Technically speaking, this is the probability of error associated with rejecting the hypothesis of no difference between the two categories of observations (corresponding to the groups) in the population when, in fact, the hypothesis is true. Some researchers suggest that if the difference is in the predicted direction, you can consider only one half (one "tail") of the probability distribution and thus divide the standard p-level reported with a t-test (a "two-tailed" probability) by two. Others, however, suggest that you should always report the standard, two-tailed t-test probability. 

See also, Student's t Distribution. 

Arrangement of Data. In order to perform the t-test for independent samples, one independent (grouping) variable (e.g., Gender: male/female) and at least one dependent variable (e.g., a test score) are required. The means of the dependent variable will be compared between selected groups based on the specified values (e.g., male and female) of the independent variable. The following data set can be analyzed with a t-test comparing the average WCC score in males and females.

	 
	GENDER
	WCC

	case 1
case 2
case 3
case 4
case 5
	male
male
male
female
female
	111
110
109
102
104

	 
	mean WCC in males = 110
mean WCC in females = 103
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This chapter includes a general introduction to ANOVA and a discussion of the general topics in the analysis of variance techniques, including repeated measures designs, ANCOVA, MANOVA, unbalanced and incomplete designs, contrast effects, post-hoc comparisons, assumptions, etc. For related topics, see also Variance Components (topics related to estimation of variance components in mixed model designs), Experimental Design/DOE (topics related to specialized applications of ANOVA in industrial settings), and Repeatability and Reproducibility Analysis (topics related to specialized designs for evaluating the reliability and precision of measurement systems).

See also General Linear Models, General Regression Models; to analyze nonlinear models, see Generalized Linear Models. 

Basic Ideas 

The Purpose of Analysis of Variance 

In general, the purpose of analysis of variance (ANOVA) is to test for significant differences between means. Elementary Concepts provides a brief introduction into the basics of statistical significance testing. If we are only comparing two means, then ANOVA will give the same results as the t test for independent samples (if we are comparing two different groups of cases or observations), or the t test for dependent samples (if we are comparing two variables in one set of cases or observations). If you are not familiar with those tests you may at this point want to "brush up" on your knowledge about those tests by reading Basic Statistics and Tables. 

Why the name analysis of variance? It may seem odd to you that a procedure that compares means is called analysis of variance. However, this name is derived from the fact that in order to test for statistical significance between means, we are actually comparing (i.e., analyzing) variances. 

The Partitioning of Sums of Squares 
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For more introductory topics, see the topic name. 
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Multivariate Designs: MANOVA/MANCOVA 
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See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

The Partioning of Sums of Squares 

At the heart of ANOVA is the fact that variances can be divided up, that is, partitioned. Remember that the variance is computed as the sum of squared deviations from the overall mean, divided by n-1 (sample size minus one). Thus, given a certain n, the variance is a function of the sums of (deviation) squares, or SS for short. Partitioning of variance works as follows. Consider the following data set: 

	 
	Group 1
	Group 2

	Observation 1
Observation 2
Observation 3
	2
3
1
	6
7
5

	Mean
Sums of Squares (SS)
	2
2
	6
2

	Overall Mean
Total Sums of Squares
	 4
28


The means for the two groups are quite different (2 and 6, respectively). The sums of squares within each group are equal to 2. Adding them together, we get 4. If we now repeat these computations, ignoring group membership, that is, if we compute the total SS based on the overall mean, we get the number 28. In other words, computing the variance (sums of squares) based on the within-group variability yields a much smaller estimate of variance than computing it based on the total variability (the overall mean). The reason for this in the above example is of course that there is a large difference between means, and it is this difference that accounts for the difference in the SS. In fact, if we were to perform an ANOVA on the above data, we would get the following result: 

	 
	MAIN EFFECT

	
	SS
	 df 
	MS
	F
	p

	Effect
Error
	24.0
4.0
	1
4
	24.0
1.0
	24.0
 
	.008
 


As you can see, in the above table the total SS (28) was partitioned into the SS due to within-group variability (2+2=4) and variability due to differences between means (28-(2+2)=24). 

SS Error and SS Effect. The within-group variability (SS) is usually referred to as Error variance. This term denotes the fact that we cannot readily explain or account for it in the current design. However, the SS Effect we can explain. Namely, it is due to the differences in means between the groups. Put another way, group membership explains this variability because we know that it is due to the differences in means. 

Significance testing. The basic idea of statistical significance testing is discussed in Elementary Concepts. Elementary Concepts also explains why very many statistical test represent ratios of explained to unexplained variability. ANOVA is a good example of this. Here, we base this test on a comparison of the variance due to the between- groups variability (called Mean Square Effect, or MSeffect) with the within- group variability (called Mean Square Error, or Mserror; this term was first used by Edgeworth, 1885). Under the null hypothesis (that there are no mean differences between groups in the population), we would still expect some minor random fluctuation in the means for the two groups when taking small samples (as in our example). Therefore, under the null hypothesis, the variance estimated based on within-group variability should be about the same as the variance due to between-groups variability. We can compare those two estimates of variance via the F test (see also F Distribution), which tests whether the ratio of the two variance estimates is significantly greater than 1. In our example above, that test is highly significant, and we would in fact conclude that the means for the two groups are significantly different from each other. 

Summary of the basic logic of ANOVA. To summarize the discussion up to this point, the purpose of analysis of variance is to test differences in means (for groups or variables) for statistical significance. This is accomplished by analyzing the variance, that is, by partitioning the total variance into the component that is due to true random error (i.e., within- group SS) and the components that are due to differences between means. These latter variance components are then tested for statistical significance, and, if significant, we reject the null hypothesis of no differences between means, and accept the alternative hypothesis that the means (in the population) are different from each other. 

Dependent and independent variables. The variables that are measured (e.g., a test score) are called dependent variables. The variables that are manipulated or controlled (e.g., a teaching method or some other criterion used to divide observations into groups that are compared) are called factors or independent variables. For more information on this important distinction, refer to Elementary Concepts. 

Multi-Factor ANOVA 

In the simple example above, it may have occurred to you that we could have simply computed a t test for independent samples to arrive at the same conclusion. And, indeed, we would get the identical result if we were to compare the two groups using this test. However, ANOVA is a much more flexible and powerful technique that can be applied to much more complex research issues. 

Multiple factors. The world is complex and multivariate in nature, and instances when a single variable completely explains a phenomenon are rare. For example, when trying to explore how to grow a bigger tomato, we would need to consider factors that have to do with the plants' genetic makeup, soil conditions, lighting, temperature, etc. Thus, in a typical experiment, many factors are taken into account. One important reason for using ANOVA methods rather than multiple two-group studies analyzed via t tests is that the former method is more efficient, and with fewer observations we can gain more information. Let us expand on this statement. 

Controlling for factors. Suppose that in the above two-group example we introduce another grouping factor, for example, Gender. Imagine that in each group we have 3 males and 3 females. We could summarize this design in a 2 by 2 table: 

	 
	Experimental
Group 1
	Experimental
Group 2

	Males
 
 
	2
3
1
	6
7
5

	Mean
	2
	6

	Females
 
 
	4
5
3
	8
9
7

	Mean
	4
	8


Before performing any computations, it appears that we can partition the total variance into at least 3 sources: (1) error (within-group) variability, (2) variability due to experimental group membership, and (3) variability due to gender. (Note that there is an additional source -- interaction -- that we will discuss shortly.) What would have happened had we not included gender as a factor in the study but rather computed a simple t test? If you compute the SS ignoring the gender factor (use the within-group means ignoring or collapsing across gender; the result is SS=10+10=20), you will see that the resulting within-group SS is larger than it is when we include gender (use the within- group, within-gender means to compute those SS; they will be equal to 2 in each group, thus the combined SS-within is equal to 2+2+2+2=8). This difference is due to the fact that the means for males are systematically lower than those for females, and this difference in means adds variability if we ignore this factor. Controlling for error variance increases the sensitivity (power) of a test. This example demonstrates another principal of ANOVA that makes it preferable over simple two-group t test studies: In ANOVA we can test each factor while controlling for all others; this is actually the reason why ANOVA is more statistically powerful (i.e., we need fewer observations to find a significant effect) than the simple t test. 

Interaction Effects 

There is another advantage of ANOVA over simple t-tests: ANOVA allows us to detect interaction effects between variables, and, therefore, to test more complex hypotheses about reality. Let us consider another example to illustrate this point. (The term interaction was first used by Fisher, 1926.) 

Main effects, two-way interaction. Imagine that we have a sample of highly achievement-oriented students and another of achievement "avoiders." We now create two random halves in each sample, and give one half of each sample a challenging test, the other an easy test. We measure how hard the students work on the test. The means of this (fictitious) study are as follows: 

	 
	Achievement-
oriented
	Achievement-
avoiders

	Challenging Test
Easy Test
	10
5
	5
10


How can we summarize these results? Is it appropriate to conclude that (1) challenging tests make students work harder, (2) achievement-oriented students work harder than achievement- avoiders? None of these statements captures the essence of this clearly systematic pattern of means. The appropriate way to summarize the result would be to say that challenging tests make only achievement-oriented students work harder, while easy tests make only achievement- avoiders work harder. In other words, the type of achievement orientation and test difficulty interact in their effect on effort; specifically, this is an example of a two-way interaction between achievement orientation and test difficulty. Note that statements 1 and 2 above describe so-called main effects. 

Higher order interactions. While the previous two-way interaction can be put into words relatively easily, higher order interactions are increasingly difficult to verbalize. Imagine that we had included factor Gender in the achievement study above, and we had obtained the following pattern of means: 

	Females
 
	Achievement-
oriented
	Achievement-
avoiders

	Challenging Test
Easy Test
	10
5
	5
10

	Males
 
	Achievement-
oriented
	Achievement-
avoiders

	Challenging Test
Easy Test
	1
6
	6
1


How could we now summarize the results of our study? Graphs of means for all effects greatly facilitate the interpretation of complex effects. The pattern shown in the table above (and in the graph below) represents a three-way interaction between factors. 
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Thus we may summarize this pattern by saying that for females there is a two-way interaction between achievement-orientation type and test difficulty: Achievement-oriented females work harder on challenging tests than on easy tests, achievement-avoiding females work harder on easy tests than on difficult tests. For males, this interaction is reversed. As you can see, the description of the interaction has become much more involved. 

A general way to express interactions. A general way to express all interactions is to say that an effect is modified (qualified) by another effect. Let us try this with the two-way interaction above. The main effect for test difficulty is modified by achievement orientation. For the three-way interaction in the previous paragraph, we may summarize that the two-way interaction between test difficulty and achievement orientation is modified (qualified) by gender. If we have a four-way interaction, we may say that the three-way interaction is modified by the fourth variable, that is, that there are different types of interactions in the different levels of the fourth variable. As it turns out, in many areas of research five- or higher- way interactions are not that uncommon. 
Complex Designs 

Let us review the basic "building blocks" of complex designs. 
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See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

Between-Groups and Repeated Measures 

When we want to compare two groups, we would use the t test for independent samples; when we want to compare two variables given the same subjects (observations), we would use the t test for dependent samples. This distinction -- dependent and independent samples -- is important for ANOVA as well. Basically, if we have repeated measurements of the same variable (under different conditions or at different points in time) on the same subjects, then the factor is a repeated measures factor (also called a within-subjects factor, because to estimate its significance we compute the within-subjects SS). If we compare different groups of subjects (e.g., males and females; three strains of bacteria, etc.) then we refer to the factor as a between-groups factor. The computations of significance tests are different for these different types of factors; however, the logic of computations and interpretations is the same. 

Between-within designs. In many instances, experiments call for the inclusion of between-groups and repeated measures factors. For example, we may measure math skills in male and female students (gender, a between-groups factor) at the beginning and the end of the semester. The two measurements on each student would constitute a within-subjects (repeated measures) factor. The interpretation of main effects and interactions is not affected by whether a factor is between-groups or repeated measures, and both factors may obviously interact with each other (e.g., females improve over the semester while males deteriorate). 

Incomplete (Nested) Designs 

There are instances where we may decide to ignore interaction effects. This happens when (1) we know that in the population the interaction effect is negligible, or (2) when a complete factorial design (this term was first introduced by Fisher, 1935a) cannot be used for economic reasons. Imagine a study where we want to evaluate the effect of four fuel additives on gas mileage. For our test, our company has provided us with four cars and four drivers. A complete factorial experiment, that is, one in which each combination of driver, additive, and car appears at least once, would require 4 x 4 x 4 = 64 individual test conditions (groups). However, we may not have the resources (time) to run all of these conditions; moreover, it seems unlikely that the type of driver would interact with the fuel additive to an extent that would be of practical relevance. Given these considerations, one could actually run a so-called Latin square design and "get away" with only 16 individual groups (the four additives are denoted by letters A, B, C, and D): 

	 
	Car

	
	 1 
	 2 
	 3 
	 4 

	Driver 1
Driver 2
Driver 3
Driver 4
	A
B
C
D
	B
C
D
A
	C
D
A
B
	D
A
B
C


Latin square designs (this term was first used by Euler, 1782) are described in most textbooks on experimental methods (e.g., Hays, 1988; Lindman, 1974; Milliken & Johnson, 1984; Winer, 1962), and we do not want to discuss here the details of how they are constructed. Suffice it to say that this design is incomplete insofar as not all combinations of factor levels occur in the design. For example, Driver 1 will only drive Car 1 with additive A, while Driver 3 will drive that car with additive C. In a sense, the levels of the additives factor (A, B, C, and D) are placed into the cells of the car by driver matrix like "eggs into a nest." This mnemonic device is sometimes useful for remembering the nature of nested designs. 

Note that there are several other statistical procedures which may be used to analyze these types of designs; see the section on Methods for Analysis of Variance for details. In particular the methods discussed in the Variance Components and Mixed Model ANOVA/ANCOVA chapter are very efficient for analyzing designs with unbalanced nesting (when the nested factors have different numbers of levels within the levels of the factors in which they are nested), very large nested designs (e.g., with more than 200 levels overall), or hierarchically nested designs (with or without random factors). 
Analysis of Covariance (ANCOVA) 

General Idea 

The Basic Ideas section discussed briefly the idea of "controlling" for factors and how the inclusion of additional factors can reduce the error SS and increase the statistical power (sensitivity) of our design. This idea can be extended to continuous variables, and when such continuous variables are included as factors in the design they are called covariates. 

Fixed Covariates 

Changing Covariates 

For more introductory topics, see the topic name. 

Basic Ideas 

Complex Designs 

Multivariate Designs: MANOVA/MANCOVA 

Contrast Analysis and Post hoc Tests 

Assumptions and Effects of Violating Assumptions 

See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

Fixed Covariates 

Suppose that we want to compare the math skills of students who were randomly assigned to one of two alternative textbooks. Imagine that we also have data about the general intelligence (IQ) for each student in the study. We would suspect that general intelligence is related to math skills, and we can use this information to make our test more sensitive. Specifically, imagine that in each one of the two groups we can compute the correlation coefficient (see Basic Statistics and Tables) between IQ and math skills. Remember that once we have computed the correlation coefficient we can estimate the amount of variance in math skills that is accounted for by IQ, and the amount of (residual) variance that we cannot explain with IQ (refer also to Elementary Concepts and Basic Statistics and Tables). We may use this residual variance in the ANOVA as an estimate of the true error SS after controlling for IQ. If the correlation between IQ and math skills is substantial, then a large reduction in the error SS may be achieved. 

Effect of a covariate on the F test. In the F test (see also F Distribution), to evaluate the statistical significance of between-groups differences, we compute the ratio of the between- groups variance (MSeffect) over the error variance (MSerror). If MSerror becomes smaller, due to the explanatory power of IQ, then the overall F value will become larger. 

Multiple covariates. The logic described above for the case of a single covariate (IQ) can easily be extended to the case of multiple covariates. For example, in addition to IQ, we might include measures of motivation, spatial reasoning, etc., and instead of a simple correlation, compute the multiple correlation coefficient (see Multiple Regression). 

When the F value gets smaller. In some studies with covariates it happens that the F value actually becomes smaller (less significant) after including covariates in the design. This is usually an indication that the covariates are not only correlated with the dependent variable (e.g., math skills), but also with the between-groups factors (e.g., the two different textbooks). For example, imagine that we measured IQ at the end of the semester, after the students in the different experimental groups had used the respective textbook for almost one year. It is possible that, even though students were initially randomly assigned to one of the two textbooks, the different books were so different that both math skills and IQ improved differentially in the two groups. In that case, the covariate will not only partition variance away from the error variance, but also from the variance due to the between- groups factor. Put another way, after controlling for the differences in IQ that were produced by the two textbooks, the math skills are not that different. Put in yet a third way, by "eliminating" the effects of IQ, we have inadvertently eliminated the true effect of the textbooks on students' math skills. 

Adjusted means. When the latter case happens, that is, when the covariate is affected by the between-groups factor, then it is appropriate to compute so-called adjusted means. These are the means that one would get after removing all differences that can be accounted for by the covariate. 

Interactions between covariates and factors. Just as we can test for interactions between factors, we can also test for the interactions between covariates and between-groups factors. Specifically, imagine that one of the textbooks is particularly suited for intelligent students, while the other actually bores those students but challenges the less intelligent ones. As a result, we may find a positive correlation in the first group (the more intelligent, the better the performance), but a zero or slightly negative correlation in the second group (the more intelligent the student, the less likely he or she is to acquire math skills from the particular textbook). In some older statistics textbooks this condition is discussed as a case where the assumptions for analysis of covariance are violated (see Assumptions and Effects of Violating Assumptions). However, because ANOVA/MANOVA uses a very general approach to analysis of covariance, you can specifically estimate the statistical significance of interactions between factors and covariates. 

Changing Covariates 

While fixed covariates are commonly discussed in textbooks on ANOVA, changing covariates are discussed less frequently. In general, when we have repeated measures, we are interested in testing the differences in repeated measurements on the same subjects. Thus we are actually interested in evaluating the significance of changes. If we have a covariate that is also measured at each point when the dependent variable is measured, then we can compute the correlation between the changes in the covariate and the changes in the dependent variable. For example, we could study math anxiety and math skills at the beginning and at the end of the semester. It would be interesting to see whether any changes in math anxiety over the semester correlate with changes in math skills. 

Multivariate Designs: MANOVA/MANCOVA 

Between-Groups Designs 

Repeated Measures Designs 

Sum Scores versus MANOVA 

For more introductory topics, see the topic name. 

Basic Ideas 
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Analysis of Covariance (ANCOVA) 

Contrast Analysis and Post hoc Tests 

Assumptions and Effects of Violating Assumptions 

See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

Between-Groups Designs 

All examples discussed so far have involved only one dependent variable. Even though the computations become increasingly complex, the logic and nature of the computations do not change when there is more than one dependent variable at a time. For example, we may conduct a study where we try two different textbooks, and we are interested in the students' improvements in math and physics. In that case, we have two dependent variables, and our hypothesis is that both together are affected by the difference in textbooks. We could now perform a multivariate analysis of variance (MANOVA) to test this hypothesis. Instead of a univariate F value, we would obtain a multivariate F value (Wilks' lambda) based on a comparison of the error variance/covariance matrix and the effect variance/covariance matrix. The "covariance" here is included because the two measures are probably correlated and we must take this correlation into account when performing the significance test. Obviously, if we were to take the same measure twice, then we would really not learn anything new. If we take a correlated measure, we gain some new information, but the new variable will also contain redundant information that is expressed in the covariance between the variables. 

Interpreting results. If the overall multivariate test is significant, we conclude that the respective effect (e.g., textbook) is significant. However, our next question would of course be whether only math skills improved, only physics skills improved, or both. In fact, after obtaining a significant multivariate test for a particular main effect or interaction, customarily one would examine the univariate F tests (see also F Distribution) for each variable to interpret the respective effect. In other words, one would identify the specific dependent variables that contributed to the significant overall effect. 

Repeated Measures Designs 

If we were to measure math and physics skills at the beginning of the semester and the end of the semester, we would have a multivariate repeated measure. Again, the logic of significance testing in such designs is simply an extension of the univariate case. Note that MANOVA methods are also commonly used to test the significance of univariate repeated measures factors with more than two levels; this application will be discussed later in this section. 

Sum Scores versus MANOVA 

Even experienced users of ANOVA and MANOVA techniques are often puzzled by the differences in results that sometimes occur when performing a MANOVA on, for example, three variables as compared to a univariate ANOVA on the sum of the three variables. The logic underlying the summing of variables is that each variable contains some "true" value of the variable in question, as well as some random measurement error. Therefore, by summing up variables, the measurement error will sum to approximately 0 across all measurements, and the sum score will become more and more reliable (increasingly equal to the sum of true scores). In fact, under these circumstances, ANOVA on sums is appropriate and represents a very sensitive (powerful) method. However, if the dependent variable is truly multi- dimensional in nature, then summing is inappropriate. For example, suppose that my dependent measure consists of four indicators of success in society, and each indicator represents a completely independent way in which a person could "make it" in life (e.g., successful professional, successful entrepreneur, successful homemaker, etc.). Now, summing up the scores on those variables would be like adding apples to oranges, and the resulting sum score will not be a reliable indicator of a single underlying dimension. Thus, one should treat such data as multivariate indicators of success in a MANOVA. 
Contrast Analysis and Post hoc Tests 

Why Compare Individual Sets of Means? 
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See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

Why Compare Individual Sets of Means? 

Usually, experimental hypotheses are stated in terms that are more specific than simply main effects or interactions. We may have the specific hypothesis that a particular textbook will improve math skills in males, but not in females, while another book would be about equally effective for both genders, but less effective overall for males. Now generally, we are predicting an interaction here: the effectiveness of the book is modified (qualified) by the student's gender. However, we have a particular prediction concerning the nature of the interaction: we expect a significant difference between genders for one book, but not the other. This type of specific prediction is usually tested via contrast analysis. 

Contrast Analysis 

Briefly, contrast analysis allows us to test the statistical significance of predicted specific differences in particular parts of our complex design. It is a major and indispensable component of the analysis of every complex ANOVA design. 

Post hoc Comparisons 

Sometimes we find effects in our experiment that were not expected. Even though in most cases a creative experimenter will be able to explain almost any pattern of means, it would not be appropriate to analyze and evaluate that pattern as if one had predicted it all along. The problem here is one of capitalizing on chance when performing multiple tests post hoc, that is, without a priori hypotheses. To illustrate this point, let us consider the following "experiment." Imagine we were to write down a number between 1 and 10 on 100 pieces of paper. We then put all of those pieces into a hat and draw 20 samples (of pieces of paper) of 5 observations each, and compute the means (from the numbers written on the pieces of paper) for each group. How likely do you think it is that we will find two sample means that are significantly different from each other? It is very likely! Selecting the extreme means obtained from 20 samples is very different from taking only 2 samples from the hat in the first place, which is what the test via the contrast analysis implies. Without going into further detail, there are several so-called post hoc tests that are explicitly based on the first scenario (taking the extremes from 20 samples), that is, they are based on the assumption that we have chosen for our comparison the most extreme (different) means out of k total means in the design. Those tests apply "corrections" that are designed to offset the advantage of post hoc selection of the most extreme comparisons. 
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For more introductory topics, see the topic name. 

Basic Ideas 

Complex Designs 

Analysis of Covariance (ANCOVA) 

Multivariate Designs: MANOVA/MANCOVA 

Contrast Analysis and Post hoc Tests 

See also Methods for Analysis of Variance, Variance Components and Mixed Model ANOVA/ANCOVA, and Experimental Design (DOE). 

Deviation from Normal Distribution 

Assumptions. It is assumed that the dependent variable is measured on at least an interval scale level (see Elementary Concepts). Moreover, the dependent variable should be normally distributed within groups. 

Effects of violations. Overall, the F test (see also F Distribution) is remarkably robust to deviations from normality (see Lindman, 1974, for a summary). If the kurtosis (see Basic Statistics and Tables) is greater than 0, then the F tends to be too small and we cannot reject the null hypothesis even though it is incorrect. The opposite is the case when the kurtosis is less than 0. The skewness of the distribution usually does not have a sizable effect on the F statistic. If the n per cell is fairly large, then deviations from normality do not matter much at all because of the central limit theorem, according to which the sampling distribution of the mean approximates the normal distribution, regardless of the distribution of the variable in the population. A detailed discussion of the robustness of the F statistic can be found in Box and Anderson (1955), or Lindman (1974). 

Homogeneity of Variances 

Assumptions. It is assumed that the variances in the different groups of the design are identical; this assumption is called the homogeneity of variances assumption. Remember that at the beginning of this section we computed the error variance (SS error) by adding up the sums of squares within each group. If the variances in the two groups are different from each other, then adding the two together is not appropriate, and will not yield an estimate of the common within-group variance (since no common variance exists). 

Effects of violations. Lindman (1974, p. 33) shows that the F statistic is quite robust against violations of this assumption (heterogeneity of variances; see also Box, 1954a, 1954b; Hsu, 1938). 

Special case: correlated means and variances. However, one instance when the F statistic is very misleading is when the means are correlated with variances across cells of the design. A scatterplot of variances or standard deviations against the means will detect such correlations. The reason why this is a "dangerous" violation is the following: Imagine that you have 8 cells in the design, 7 with about equal means but one with a much higher mean. The F statistic may suggest to you a statistically significant effect. However, suppose that there also is a much larger variance in the cell with the highest mean, that is, the means and the variances are correlated across cells (the higher the mean the larger the variance). In that case, the high mean in the one cell is actually quite unreliable, as is indicated by the large variance. However, because the overall F statistic is based on a pooled within-cell variance estimate, the high mean is identified as significantly different from the others, when in fact it is not at all significantly different if one based the test on the within-cell variance in that cell alone. 

This pattern -- a high mean and a large variance in one cell -- frequently occurs when there are outliers present in the data. One or two extreme cases in a cell with only 10 cases can greatly bias the mean, and will dramatically increase the variance. 

Homogeneity of Variances and Covariances 

Assumptions. In multivariate designs, with multiple dependent measures, the homogeneity of variances assumption described earlier also applies. However, since there are multiple dependent variables, it is also required that their intercorrelations (covariances) are homogeneous across the cells of the design. There are various specific tests of this assumption. 

Effects of violations. The multivariate equivalent of the F test is Wilks' lambda. Not much is known about the robustness of Wilks' lambda to violations of this assumption. However, because the interpretation of MANOVA results usually rests on the interpretation of significant univariate effects (after the overall test is significant), the above discussion concerning univariate ANOVA basically applies, and important significant univariate effects should be carefully scrutinized. 

Special case: ANCOVA. A special serious violation of the homogeneity of variances/covariances assumption may occur when covariates are involved in the design. Specifically, if the correlations of the covariates with the dependent measure(s) are very different in different cells of the design, gross misinterpretations of results may occur. Remember that in ANCOVA, we in essence perform a regression analysis within each cell to partition out the variance component due to the covariates. The homogeneity of variances/covariances assumption implies that we perform this regression analysis subject to the constraint that all regression equations (slopes) across the cells of the design are the same. If this is not the case, serious biases may occur. There are specific tests of this assumption, and it is advisable to look at those tests to ensure that the regression equations in different cells are approximately the same. 

Sphericity and Compound Symmetry 

Reasons for Using the Multivariate Approach to Repeated Measures ANOVA. In repeated measures ANOVA containing repeated measures factors with more than two levels, additional special assumptions enter the picture: The compound symmetry assumption and the assumption of sphericity. Because these assumptions rarely hold (see below), the MANOVA approach to repeated measures ANOVA has gained popularity in recent years (both tests are automatically computed in ANOVA/MANOVA). The compound symmetry assumption requires that the variances (pooled within-group) and covariances (across subjects) of the different repeated measures are homogeneous (identical). This is a sufficient condition for the univariate F test for repeated measures to be valid (i.e., for the reported F values to actually follow the F distribution). However, it is not a necessary condition. The sphericity assumption is a necessary and sufficient condition for the F test to be valid; it states that the within-subject "model" consists of independent (orthogonal) components. The nature of these assumptions, and the effects of violations are usually not well-described in ANOVA textbooks; in the following paragraphs we will try to clarify this matter and explain what it means when the results of the univariate approach differ from the multivariate approach to repeated measures ANOVA. 

The necessity of independent hypotheses. One general way of looking at ANOVA is to consider it a model fitting procedure. In a sense we bring to our data a set of a priori hypotheses; we then partition the variance (test main effects, interactions) to test those hypotheses. Computationally, this approach translates into generating a set of contrasts (comparisons between means in the design) that specify the main effect and interaction hypotheses. However, if these contrasts are not independent of each other, then the partitioning of variances runs afoul. For example, if two contrasts A and B are identical to each other and we partition out their components from the total variance, then we take the same thing out twice. Intuitively, specifying the two (not independent) hypotheses "the mean in Cell 1 is higher than the mean in Cell 2" and "the mean in Cell 1 is higher than the mean in Cell 2" is silly and simply makes no sense. Thus, hypotheses must be independent of each other, or orthogonal (the term orthogonality was first used by Yates, 1933). 

Independent hypotheses in repeated measures. The general algorithm implemented will attempt to generate, for each effect, a set of independent (orthogonal) contrasts. In repeated measures ANOVA, these contrasts specify a set of hypotheses about differences between the levels of the repeated measures factor. However, if these differences are correlated across subjects, then the resulting contrasts are no longer independent. For example, in a study where we measured learning at three times during the experimental session, it may happen that the changes from time 1 to time 2 are negatively correlated with the changes from time 2 to time 3: subjects who learn most of the material between time 1 and time 2 improve less from time 2 to time 3. In fact, in most instances where a repeated measures ANOVA is used, one would probably suspect that the changes across levels are correlated across subjects. However, when this happens, the compound symmetry and sphericity assumptions have been violated, and independent contrasts cannot be computed. 

Effects of violations and remedies. When the compound symmetry or sphericity assumptions have been violated, the univariate ANOVA table will give erroneous results. Before multivariate procedures were well understood, various approximations were introduced to compensate for the violations (e.g., Greenhouse & Geisser, 1959; Huynh & Feldt, 1970), and these techniques are still widely used. 

MANOVA approach to repeated measures. To summarize, the problem of compound symmetry and sphericity pertains to the fact that multiple contrasts involved in testing repeated measures effects (with more than two levels) are not independent of each other. However, they do not need to be independent of each other if we use multivariate criteria to simultaneously test the statistical significance of the two or more repeated measures contrasts. This "insight" is the reason why MANOVA methods are increasingly applied to test the significance of univariate repeated measures factors with more than two levels. We wholeheartedly endorse this approach because it simply bypasses the assumption of compound symmetry and sphericity altogether. 

Cases when the MANOVA approach cannot be used. There are instances (designs) when the MANOVA approach cannot be applied; specifically, when there are few subjects in the design and many levels on the repeated measures factor, there may not be enough degrees of freedom to perform the multivariate analysis. For example, if we have 12 subjects and p = 4 repeated measures factors, each at k = 3 levels, then the four-way interaction would "consume" (k-1)p = 24 = 16 degrees of freedom. However, we have only 12 subjects, so in this instance the multivariate test cannot be performed. 

Differences in univariate and multivariate results. Anyone whose research involves extensive repeated measures designs has seen cases when the univariate approach to repeated measures ANOVA gives clearly different results from the multivariate approach. To repeat the point, this means that the differences between the levels of the respective repeated measures factors are in some way correlated across subjects. Sometimes, this insight by itself is of considerable interest. 

Methods for Analysis of Variance 

Several chapters in this textbook discuss methods for performing analysis of variance. Although many of the available statistics overlap in the different chapters, each is best suited for particular applications. 

General ANCOVA/MANCOVA: This chapter includes discussions of full factorial designs, repeated measures designs, mutivariate design (MANOVA), designs with balanced nesting (designs can be unbalanced, i.e., have unequal n), for evaluating planned and post-hoc comparisons, etc. 

General Linear Models: This extremely comprehensive chapter discusses a complete implementation of the general linear model, and describes the sigma-restricted as well as the overparameterized approach. This chapter includes information on incomplete designs, complex analysis of covariance designs, nested designs (balanced or unbalanced), mixed model ANOVA designs (with random effects), and huge balanced ANOVA designs (efficiently). It also contains descriptions of six types of Sums of Squares. 

General Regression Models: This chapter discusses the between subject designs and multivariate designs which are appropriate for stepwise regression as well as discussing how to perform stepwise and best-subset model building (for continuous as well as categorical predictors). 

Mixed ANCOVA and Variance Components: This chapter includes discussions of experiments with random effects (mixed model ANOVA), estimating variance components for random effects, or large main effect designs (e.g., with factors with over 100 levels) with or without random effects, or large designs with many factors, when you do not need to estimate all interactions. 

Experimental Design (DOE): This chapter includes discussions of standard experimental designs for industrial/manufacturing applications, including 2**(k-p) and 3**(k-p) designs, central composite and non-factorial designs, designs for mixtures, D and A optimal designs, and designs for arbitrarily constrained experimental regions. 

Repeatability and Reproducibility Analysis (in the Process Analysis chapter): This section in the Process Analysis chapter includes a discussion of specialized designs for evaluating the reliability and precision of measurement systems; these designs usually include two or three random factors, and specialized statistics can be computed for evaluating the quality of a measurement system (typically in industrial/manufacturing applications). 

Breakdown Tables (in the Basic Statistics chapter): This chapter includes discussions of experiments with only one factor (and many levels), or with multiple factors, when a complete ANOVA table is not required.
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Association Rules Introductory Overview 
The goal of the techniques described in this section is to detect relationships or associations between specific values of categorical variables in large data sets. This is a common task in many data mining projects as well as in the data mining subcategory text mining. These powerful exploratory techniques have a wide range of applications in many areas of business practice and also research - from the analysis of consumer preferences or human resource management, to the history of language. These techniques enable analysts and researchers to uncover hidden patterns in large data sets, such as "customers who order product A often also order product B or C" or "employees who said positive things about initiative X also frequently complain about issue Y but are happy with issue Z." The implementation of the so-called a-priori algorithm (see Agrawal and Swami, 1993; Agrawal and Srikant, 1994; Han and Lakshmanan, 2001; see also Witten and Frank, 2000) allows you to process rapidly huge data sets for such associations, based on predefined "threshold" values for detection. 

How association rules work. The usefulness of this technique to address unique data mining problems is best illustrated in a simple example. Suppose you are collecting data at the check-out cash registers at a large book store. Each customer transaction is logged in a database, and consists of the titles of the books purchased by the respective customer, perhaps additional magazine titles and other gift items that were purchased, and so on. Hence, each record in the database will represent one customer (transaction), and may consist of a single book purchased by that customer, or it may consist of many (perhaps hundreds of) different items that were purchased, arranged in an arbitrary order depending on the order in which the different items (books, magazines, and so on) came down the conveyor belt at the cash register. The purpose of the analysis is to find associations between the items that were purchased, i.e., to derive association rules that identify the items and co-occurrences of different items that appear with the greatest (co-)frequencies. For example, you want to learn which books are likely to be purchased by a customer who you know already purchased (or is about to purchase) a particular book. This type of information could then quickly be used to suggest to the customer those additional titles. You may already be "familiar" with the results of these types of analyses, if you are a customer of various on-line (Web-based) retail businesses; many times when making a purchase on-line, the vendor will suggest similar items (to the ones purchased by you) at the time of "check-out", based on some rules such as "customers who buy book title A are also likely to purchase book title B," and so on. 

Unique data analysis requirements. Crosstabulation tables, and in particular Multiple Response tables can be used to analyze data of this kind. However, in cases when the number of different items (categories) in the data is very large (and not known ahead of time), and when the "factorial degree" of important association rules is not known ahead of time, then these tabulation facilities may be too cumbersome to use, or simply not applicable: Consider once more the simple "bookstore-example" discussed earlier. First, the number of book titles is practically unlimited. In other words, if we would make a table where each book title would represent one dimension, and the purchase of that book (yes/no) would be the classes or categories for each dimension, then the complete crosstabulation table would be huge and sparse (consisting mostly of empty cells). Alternatively, we could construct all possible two-way tables from all items available in the store; this would allow us to detect two-way associations (association rules) between items. However, the number of tables that would have to be constructed would again be huge, most of the two-way tables would be sparse, and worse, if there were any three-way association rules "hiding" in the data, we would miss them completely. The a-priori algorithm implemented in Association Rules will not only automatically detect the relationships ("cross-tabulation tables") that are important (i.e., cross-tabulation tables that are not sparse, not containing mostly zero's), but also determine the factorial degree of the tables that contain the important association rules. 

To summarize, Association Rules will allow you to find rules of the kind If X then (likely) Y where X and Y can be single values, items, words, etc., or conjunctions of values, items, words, etc. (e.g., if (Car=Porsche and Gender=Male and Age<20) then (Risk=High and Insurance=High)). The program can be used to analyze simple categorical variables, dichotomous variables, and/or multiple response variables. The algorithm will determine association rules without requiring the user to specify the number of distinct categories present in the data, or any prior knowledge regarding the maximum factorial degree or complexity of the important associations. In a sense, the algorithm will construct cross-tabulation tables without the need to specify the number of dimensions for the tables, or the number of categories for each dimension. Hence, this technique is particularly well suited for data and text mining of huge databases. 
Computational Procedures and Terminology 
Categorical or class variables. Categorical variables are single variables that contains codes or text values to denote distinct classes; for example, a variable Gender would have the categories Male and Female. 

Multiple response variables. Multiple response variables usually consist of multiple variables (i.e., a list of variables) that can contain, for each observations, codes or text values describing a single "dimension" or transaction. A good example of a multiple response variable would be if a vendor recorded the purchases made by a customer in a single record, where each record could contain one or more items purchased, in arbitrary order. This is a typical format in which customer transaction data would be kept. 

Multiple dichotomies. In this data format, each variable would represent one item or category, and the dichotomous data in each variable would indicate whether or not the respective item or category applies to the respective case. For example, suppose a vendor created a data spreadsheet where each column represented one of the products available for purchase. Each transaction (row of the data spreadsheet) would record whether or not the respective customer did or did not purchase that product, i.e., whether or not the respective transaction involved each item. 

Association Rules: If Body then Head. The A-priori algorithm attempts to derive from the data association rules of the form: If "Body" then "Head", where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High); here the logical conjunction before the then would be the Body, and the logical conjunction following the then would be the Head of the association rule). 

Initial Pass Through the Data: The Support Value. First the program will scan all variables to determine the unique codes or text values (items) found in the variables selected for the analysis. In this initial pass, the relative frequencies with which the individual codes or text values occur in each transaction will also be computed. The probability that a transaction contains a particular code or text value is called Support; the Support value is also computed in consecutive passes through the data, as the joint probability (relative frequency of co-occurrence) of pairs, triplets, etc. of codes or text values (items), i.e., separately for the Body and Head of each association rule. 

Second Pass Through the Data: The Confidence Value; Correlation Value. After the initial pass through the data, all items with a support value less than some predefined minimum support value will be "remembered" for subsequent passes through the data: Specifically, the conditional probabilities will be computed for all pairs of codes or text values that have support values greater than the minimum support value. This conditional probability - that an observation (transaction) that contains a code or text value X also contains a code or text value Y -- is called the Confidence Value. In general (in later passes through the data) the confidence value denotes the conditional probability of the Head of the association rule, given the Body of the association rule. 

In addition, the support value will be computed for each pair of codes or text values, and a Correlation value based on the support values. The correlation value for a pair of codes or text values {X, Y} is computed as the support value for that pair, divided by the square root of the product of the support values for X and Y. After the second pass through the data those pairs of codes or text values that (1) have a confidence value that is greater than some user-defined minimum confidence value, (2) have a support value that is greater than some user-defined minimum support value, and (3) have a correlation value that is greater than some minimum correlation value will be retained. 

Subsequent Passes Through The Data: Maximum Item Size in Body, Head. The data in subsequent steps, the data will be further scanned computing support, confidence, and correlation values for pairs of codes or text values (associations between single codes or text values), triplets of codes or text values, and so on. To reiterate, in general, at each association rules will be derived of the general form if "Body" then "Head", where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items). 

Unless the process stops because no further associations can be found that satisfy the minimum support, confidence, and correlation conditions, the process could continue to build very complex association rules (e.g., if X1 and X2 .. and X20 then Y1 and Y2 ... and Y20). To avoid excessive complexity, additionally, the user can specify the maximum number of codes or text values (items) in the Body and Head of the association rules; this value is referred to as the maximum item set size in the Body and Head of an association rule. 

	To index 


Tabular Representation of Associations 

Association rules are generated of the general form if Body then Head, where Body and Head stand for single codes or text values (items) or conjunctions of codes or text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High). The major statistics computed for the association rules are Support (relative frequency of the Body or Head of the rule), Confidence (conditional probability of the Head given the Body of the rule), and Correlation (support for Body and Head, divided by the square root of the product of the support for the Body and the support for the Head). These statistics can be summarized in a spreadsheet, as shown below. 
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This results spreadsheet shows an example of how association rules can be applied to text mining tasks. This analysis was performed on the paragraphs (dialog spoken by the characters in the play) in the first scene of Shakespeare's "All's Well That Ends Well," after removing a few very frequent words like is, of, etc. The values for support, confidence, and correlation are expressed in percent. 

Graphical Representation of Associations 

As a result of applying Association Rules data mining techniques to large datasets rules of the form if "Body" then "Head" will be derived, where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High)). These rules can be reviewed in textual format or tables, or in graphical format (see below). 
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Association Rules Networks, 2D. For example, consider the data that describe a (fictitious) survey of 100 patrons of sports bars and their preferences for watching various sports on television. This would be an example of simple categorical variables, where each variable represents one sport. For each sport, each respondent indicated how frequently s/he watched the respective type of sport on television. The association rules derived from these data could be summarized as follows: 

In this graph, the support values for the Body and Head portions of each association rule are indicated by the sizes and colors of each. The thickness of each line indicates the confidence value (conditional probability of Head given Body) for the respective association rule; the sizes and colors of the circles in the center, above the Implies label, indicate the joint support (for the co-occurences) of the respective Body and Head components of the respective association rules. Hence, in this graphical summary, the strongest support value was found for Swimming=Sometimes, which was associated Gymnastic=Sometimes, Baseball = Sometimes, and Basketball=Sometimes. Incidentally. Unlike simple frequency and crosstabulation tables, the absolute frequencies with which individual codes or text values (items) occur in the data are often not reflected in the association rules; instead, only those codes or text values (items) are retained that show sufficient values for support, confidence, and correlation, i.e., that co-occur with other codes or text values (items) with sufficient relative (co-)frequency. 
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The results that can be summarized in 2D Association Rules networks can be relatively simple, or complex, as illustrated in the network shown to the left. 

This is an example of how association rules can be applied to text mining tasks. This analysis was performed on the paragraphs (dialog spoken by the characters in the play) in the first scene of Shakespeare's "All's Well That Ends Well," after removing a few very frequent words like is, of, etc. Of course, the specific words and phrases removed during the data preparation phase of text (or data) mining projects will depend on the purpose of the research. 

Association Rules Networks, 3D. Association rules can be graphically summarized in 2D Association Networks, as well as 3D Association Networks. Shown below are some (very clear) results from an analysis. Respondents in a survey were asked to list their (up to) 3 favorite fast-foods. The association rules derived from those data are summarized in a 3D Association Network display. 
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As in the 2D Association Network, the support values for the Body and Head portions of each association rule are indicated by the sizes and colors of each circle in the 2D. The thickness of each line indicates the confidence value (joint probability) for the respective association rule; the sizes and colors of the "floating" circles plotted against the (vertical) z-axis indicate the joint support (for the co-occurences) of the respective Body and Head components of the association rules. The plot position of each circle along the vertical z - axis indicates the respective confidence value. Hence, this particular graphical summary clearly shows two simple rules: Respondents who name Pizza as a preferred fast food also mention Hamburger, and vice versa. 

Interpreting and Comparing Results 

When comparing the results of applying association rules to those from simple frequency or cross-tabulation tables, you may notice that in some cases very high-frequency codes or text values (items) are not part of any association rule. This can sometimes be perplexing. 

To illustrate how this pattern of findings can occur, consider this example: Suppose you analyzed data from a survey of insurance rates for different makes of automobiles in America. Simple tabulation would very likely show that many people drive automobiles manufactured by Ford, GM, and Chrysler; however, none of these makes may be associated with particular patterns in insurance rates, i.e., none of these brands may be involved in high-confidence, high-correlation association rules linking them to particular categories of insurance rates. However, when applying association rules methods, automobile makes which occur in the sample with relatively low frequency (e.g., Porsche) may be found to be associated with high insurance rates (allowing you to infer, for example, a rule that if Car=Porsche then Insurance=High). If you only reviewed a simple cross-tabulation table (make of car by insurance rate) this high-confidence association rule may well have gone unnoticed.
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Interpreting and Comparing Results 

Association Rules Introductory Overview 
The goal of the techniques described in this section is to detect relationships or associations between specific values of categorical variables in large data sets. This is a common task in many data mining projects as well as in the data mining subcategory text mining. These powerful exploratory techniques have a wide range of applications in many areas of business practice and also research - from the analysis of consumer preferences or human resource management, to the history of language. These techniques enable analysts and researchers to uncover hidden patterns in large data sets, such as "customers who order product A often also order product B or C" or "employees who said positive things about initiative X also frequently complain about issue Y but are happy with issue Z." The implementation of the so-called a-priori algorithm (see Agrawal and Swami, 1993; Agrawal and Srikant, 1994; Han and Lakshmanan, 2001; see also Witten and Frank, 2000) allows you to process rapidly huge data sets for such associations, based on predefined "threshold" values for detection. 

How association rules work. The usefulness of this technique to address unique data mining problems is best illustrated in a simple example. Suppose you are collecting data at the check-out cash registers at a large book store. Each customer transaction is logged in a database, and consists of the titles of the books purchased by the respective customer, perhaps additional magazine titles and other gift items that were purchased, and so on. Hence, each record in the database will represent one customer (transaction), and may consist of a single book purchased by that customer, or it may consist of many (perhaps hundreds of) different items that were purchased, arranged in an arbitrary order depending on the order in which the different items (books, magazines, and so on) came down the conveyor belt at the cash register. The purpose of the analysis is to find associations between the items that were purchased, i.e., to derive association rules that identify the items and co-occurrences of different items that appear with the greatest (co-)frequencies. For example, you want to learn which books are likely to be purchased by a customer who you know already purchased (or is about to purchase) a particular book. This type of information could then quickly be used to suggest to the customer those additional titles. You may already be "familiar" with the results of these types of analyses, if you are a customer of various on-line (Web-based) retail businesses; many times when making a purchase on-line, the vendor will suggest similar items (to the ones purchased by you) at the time of "check-out", based on some rules such as "customers who buy book title A are also likely to purchase book title B," and so on. 

Unique data analysis requirements. Crosstabulation tables, and in particular Multiple Response tables can be used to analyze data of this kind. However, in cases when the number of different items (categories) in the data is very large (and not known ahead of time), and when the "factorial degree" of important association rules is not known ahead of time, then these tabulation facilities may be too cumbersome to use, or simply not applicable: Consider once more the simple "bookstore-example" discussed earlier. First, the number of book titles is practically unlimited. In other words, if we would make a table where each book title would represent one dimension, and the purchase of that book (yes/no) would be the classes or categories for each dimension, then the complete crosstabulation table would be huge and sparse (consisting mostly of empty cells). Alternatively, we could construct all possible two-way tables from all items available in the store; this would allow us to detect two-way associations (association rules) between items. However, the number of tables that would have to be constructed would again be huge, most of the two-way tables would be sparse, and worse, if there were any three-way association rules "hiding" in the data, we would miss them completely. The a-priori algorithm implemented in Association Rules will not only automatically detect the relationships ("cross-tabulation tables") that are important (i.e., cross-tabulation tables that are not sparse, not containing mostly zero's), but also determine the factorial degree of the tables that contain the important association rules. 

To summarize, Association Rules will allow you to find rules of the kind If X then (likely) Y where X and Y can be single values, items, words, etc., or conjunctions of values, items, words, etc. (e.g., if (Car=Porsche and Gender=Male and Age<20) then (Risk=High and Insurance=High)). The program can be used to analyze simple categorical variables, dichotomous variables, and/or multiple response variables. The algorithm will determine association rules without requiring the user to specify the number of distinct categories present in the data, or any prior knowledge regarding the maximum factorial degree or complexity of the important associations. In a sense, the algorithm will construct cross-tabulation tables without the need to specify the number of dimensions for the tables, or the number of categories for each dimension. Hence, this technique is particularly well suited for data and text mining of huge databases. 
Computational Procedures and Terminology 
Categorical or class variables. Categorical variables are single variables that contains codes or text values to denote distinct classes; for example, a variable Gender would have the categories Male and Female. 

Multiple response variables. Multiple response variables usually consist of multiple variables (i.e., a list of variables) that can contain, for each observations, codes or text values describing a single "dimension" or transaction. A good example of a multiple response variable would be if a vendor recorded the purchases made by a customer in a single record, where each record could contain one or more items purchased, in arbitrary order. This is a typical format in which customer transaction data would be kept. 

Multiple dichotomies. In this data format, each variable would represent one item or category, and the dichotomous data in each variable would indicate whether or not the respective item or category applies to the respective case. For example, suppose a vendor created a data spreadsheet where each column represented one of the products available for purchase. Each transaction (row of the data spreadsheet) would record whether or not the respective customer did or did not purchase that product, i.e., whether or not the respective transaction involved each item. 

Association Rules: If Body then Head. The A-priori algorithm attempts to derive from the data association rules of the form: If "Body" then "Head", where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High); here the logical conjunction before the then would be the Body, and the logical conjunction following the then would be the Head of the association rule). 

Initial Pass Through the Data: The Support Value. First the program will scan all variables to determine the unique codes or text values (items) found in the variables selected for the analysis. In this initial pass, the relative frequencies with which the individual codes or text values occur in each transaction will also be computed. The probability that a transaction contains a particular code or text value is called Support; the Support value is also computed in consecutive passes through the data, as the joint probability (relative frequency of co-occurrence) of pairs, triplets, etc. of codes or text values (items), i.e., separately for the Body and Head of each association rule. 

Second Pass Through the Data: The Confidence Value; Correlation Value. After the initial pass through the data, all items with a support value less than some predefined minimum support value will be "remembered" for subsequent passes through the data: Specifically, the conditional probabilities will be computed for all pairs of codes or text values that have support values greater than the minimum support value. This conditional probability - that an observation (transaction) that contains a code or text value X also contains a code or text value Y -- is called the Confidence Value. In general (in later passes through the data) the confidence value denotes the conditional probability of the Head of the association rule, given the Body of the association rule. 

In addition, the support value will be computed for each pair of codes or text values, and a Correlation value based on the support values. The correlation value for a pair of codes or text values {X, Y} is computed as the support value for that pair, divided by the square root of the product of the support values for X and Y. After the second pass through the data those pairs of codes or text values that (1) have a confidence value that is greater than some user-defined minimum confidence value, (2) have a support value that is greater than some user-defined minimum support value, and (3) have a correlation value that is greater than some minimum correlation value will be retained. 

Subsequent Passes Through The Data: Maximum Item Size in Body, Head. The data in subsequent steps, the data will be further scanned computing support, confidence, and correlation values for pairs of codes or text values (associations between single codes or text values), triplets of codes or text values, and so on. To reiterate, in general, at each association rules will be derived of the general form if "Body" then "Head", where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items). 

Unless the process stops because no further associations can be found that satisfy the minimum support, confidence, and correlation conditions, the process could continue to build very complex association rules (e.g., if X1 and X2 .. and X20 then Y1 and Y2 ... and Y20). To avoid excessive complexity, additionally, the user can specify the maximum number of codes or text values (items) in the Body and Head of the association rules; this value is referred to as the maximum item set size in the Body and Head of an association rule. 

Tabular Representation of Associations 

Association rules are generated of the general form if Body then Head, where Body and Head stand for single codes or text values (items) or conjunctions of codes or text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High). The major statistics computed for the association rules are Support (relative frequency of the Body or Head of the rule), Confidence (conditional probability of the Head given the Body of the rule), and Correlation (support for Body and Head, divided by the square root of the product of the support for the Body and the support for the Head). These statistics can be summarized in a spreadsheet, as shown below. 
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This results spreadsheet shows an example of how association rules can be applied to text mining tasks. This analysis was performed on the paragraphs (dialog spoken by the characters in the play) in the first scene of Shakespeare's "All's Well That Ends Well," after removing a few very frequent words like is, of, etc. The values for support, confidence, and correlation are expressed in percent. 

Graphical Representation of Associations 

As a result of applying Association Rules data mining techniques to large datasets rules of the form if "Body" then "Head" will be derived, where Body and Head stand for simple codes or text values (items), or the conjunction of codes and text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High)). These rules can be reviewed in textual format or tables, or in graphical format (see below). 
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Association Rules Networks, 2D. For example, consider the data that describe a (fictitious) survey of 100 patrons of sports bars and their preferences for watching various sports on television. This would be an example of simple categorical variables, where each variable represents one sport. For each sport, each respondent indicated how frequently s/he watched the respective type of sport on television. The association rules derived from these data could be summarized as follows: 

In this graph, the support values for the Body and Head portions of each association rule are indicated by the sizes and colors of each. The thickness of each line indicates the confidence value (conditional probability of Head given Body) for the respective association rule; the sizes and colors of the circles in the center, above the Implies label, indicate the joint support (for the co-occurences) of the respective Body and Head components of the respective association rules. Hence, in this graphical summary, the strongest support value was found for Swimming=Sometimes, which was associated Gymnastic=Sometimes, Baseball = Sometimes, and Basketball=Sometimes. Incidentally. Unlike simple frequency and crosstabulation tables, the absolute frequencies with which individual codes or text values (items) occur in the data are often not reflected in the association rules; instead, only those codes or text values (items) are retained that show sufficient values for support, confidence, and correlation, i.e., that co-occur with other codes or text values (items) with sufficient relative (co-)frequency. 

The results that can be summarized in 2D Association Rules networks can be relatively simple, or complex, as illustrated in the network shown to the left. 

This is an example of how association rules can be applied to text mining tasks. This analysis was performed on the paragraphs (dialog spoken by the characters in the play) in the first scene of Shakespeare's "All's Well That Ends Well," after removing a few very frequent words like is, of, etc. Of course, the specific words and phrases removed during the data preparation phase of text (or data) mining projects will depend on the purpose of the research. 

Association Rules Networks, 3D. Association rules can be graphically summarized in 2D Association Networks, as well as 3D Association Networks. Shown below are some (very clear) results from an analysis. Respondents in a survey were asked to list their (up to) 3 favorite fast-foods. The association rules derived from those data are summarized in a 3D Association Network display. 
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As in the 2D Association Network, the support values for the Body and Head portions of each association rule are indicated by the sizes and colors of each circle in the 2D. The thickness of each line indicates the confidence value (joint probability) for the respective association rule; the sizes and colors of the "floating" circles plotted against the (vertical) z-axis indicate the joint support (for the co-occurences) of the respective Body and Head components of the association rules. The plot position of each circle along the vertical z - axis indicates the respective confidence value. Hence, this particular graphical summary clearly shows two simple rules: Respondents who name Pizza as a preferred fast food also mention Hamburger, and vice versa. 

Interpreting and Comparing Results 

When comparing the results of applying association rules to those from simple frequency or cross-tabulation tables, you may notice that in some cases very high-frequency codes or text values (items) are not part of any association rule. This can sometimes be perplexing. 

To illustrate how this pattern of findings can occur, consider this example: Suppose you analyzed data from a survey of insurance rates for different makes of automobiles in America. Simple tabulation would very likely show that many people drive automobiles manufactured by Ford, GM, and Chrysler; however, none of these makes may be associated with particular patterns in insurance rates, i.e., none of these brands may be involved in high-confidence, high-correlation association rules linking them to particular categories of insurance rates. However, when applying association rules methods, automobile makes which occur in the sample with relatively low frequency (e.g., Porsche) may be found to be associated with high insurance rates (allowing you to infer, for example, a rule that if Car=Porsche then Insurance=High). If you only reviewed a simple cross-tabulation table (make of car by insurance rate) this high-confidence association rule may well have gone unnoticed.
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Boosting Trees for Regression and Classification Introductory Overview 

The general computational approach of stochastic gradient boosting is also known by the names TreeNet (TM Salford Systems, Inc.) and MART (TM Jerill, Inc.). Over the past few years, this technique has emerged as one of the most powerful methods for predictive data mining. Some implementations of these powerful algorithms allow them to be used for regression as well as classification problems, with continuous and/or categorical predictors. Detailed technical descriptions of these methods can be found in Friedman (1999a, b) as well as Hastie, Tibshirani, & Friedman (2001). 

Gradient Boosting Trees 

The algorithm for Boosting Trees evolved from the application of boosting methods to regression trees. The general idea is to compute a sequence of (very) simple trees, where each successive tree is built for the prediction residuals of the preceding tree. As described in the General Classification and Regression Trees Introductory Overview, this method will build binary trees, i.e., partition the data into two samples at each split node. Now suppose that you were to limit the complexities of the trees to 3 nodes only: a root node and two child nodes, i.e., a single split. Thus, at each step of the boosting (boosting trees algorithm), a simple (best) partitioning of the data is determined, and the deviations of the observed values from the respective means (residuals for each partition) are computed. The next 3-node tree will then be fitted to those residuals, to find another partition that will further reduce the residual (error) variance for the data, given the preceding sequence of trees. 

It can be shown that such "additive weighted expansions" of trees can eventually produce an excellent fit of the predicted values to the observed values, even if the specific nature of the relationships between the predictor variables and the dependent variable of interest is very complex (nonlinear in nature). Hence, the method of gradient boosting - fitting a weighted additive expansion of simple trees - represents a very general and powerful machine learning algorithm. 
The Problem of Overfitting; Stochastic Gradient Boosting 

One of the major problems of all machine learning algorithms is to "know when to stop," i.e., how to prevent the learning algorithm to fit esoteric aspects of the training data that are not likely to improve the predictive validity of the respective model. This issue is also known as the problem of overfitting. To reiterate, this is a general problem applicable to most machine learning algorithms used in predictive data mining. A general solution to this problem is to evaluate the quality of the fitted model by predicting observations in a test-sample of data that have not been used before to estimate the respective model(s). In this manner, one hopes to gage the predictive accuracy of the solution, and to detect when overfitting has occurred (or is starting to occur). 

A similar approach is for each consecutive simple tree to be built for only a randomly selected subsample of the full data set. In other words, each consecutive tree is built for the prediction residuals (from all preceding trees) of an independently drawn random sample. The introduction of a certain degree of randomness into the analysis in this manner can serve as a powerful safeguard against overfitting (since each consecutive tree is built for a different sample of observations), and yield models (additive weighted expansions of simple trees) that generalize well to new observations, i.e., exhibit good predictive validity. This technique, i.e., performing consecutive boosting computations on independently drawn samples of observations, is knows as stochastic gradient boosting. 

Below is a plot of the prediction error function for the training data over successive trees and also an independently sampled testing data set at each stage. 
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With this graph, you can identify very quickly the point where the model (consisting of a certain number of successive trees) begins to overfit the data. Notice how the prediction error for the training data steadily decreases as more and more additive terms (trees) are added to the model. However, somewhere past 35 trees, the performance for independently sampled testing data actually begins to deteriorate, clearly indicating the point where the model begins to overfit the data. 
Stochastic Gradient Boosting Trees and Classification 

So far, the discussion of boosting trees has exclusively focused on regression problems, i.e., on the prediction of a continuous dependent variable. The technique can easily be expanded to handle classification problems as well (this is described in detail in Friedman, 1999a, section 4.6; in particular, see Algorithm 6): 

First, different boosting trees are built for (fitted to) each category or class of the categorical dependent variable, after creating a coded variable (vector) of values for each class with the values 1 or 0 to indicate whether or not an observation does or does not belong to the respective class. In successive boosting steps, the algorithm will apply the logistic transformation (see also Nonlinear Estimation) to compute the residuals for subsequent boosting steps. To compute the final classification probabilities, the logistic transformation is again applied to the predictions for each 0/1 coded vector (class). This algorithm is described in detail in Friedman (1999a; see also Hastie, Tibshirani, and Freedman, 2001, for a description of this general procedure). 

Large Numbers of Categories 

Note that the procedure for applying this method to classification problems requires that separate sequences of (boosted) trees be built for each category or class. Hence, the computational effort generally becomes larger by a multiple of what it takes to solve a simple regression prediction problem (for a single continuous dependent variable). Therefore, it is not prudent to analyze categorical dependent variables (class variables) with more than, approximately, 100 or so classes; past that point, the computations performed may require an unreasonable amount of effort and time. (For example, a problem with 200 boosting steps and 100 categories or classes for the dependent variable would yield 200 * 100 = 20,000 individual trees!) 
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General Purpose 
There are several measures of correlation to express the relationship between two or more variables. For example, the standard Pearson product moment correlation coefficient (r) measures the extent to which two variables are related; there are various nonparametric measures of relationships that are based on the similarity of ranks in two variables; Multiple Regression allows one to assess the relationship between a dependent variable and a set of independent variables; Multiple Correspondence Analysis is useful for exploring the relationships between a set of categorical variables. 

Canonical Correlation is an additional procedure for assessing the relationship between variables. Specifically, this analysis allows us to investigate the relationship between two sets of variables. For example, an educational researcher may want to compute the (simultaneous) relationship between three measures of scholastic ability with five measures of success in school. A sociologist may want to investigate the relationship between two predictors of social mobility based on interviews, with actual subsequent social mobility as measured by four different indicators. A medical researcher may want to study the relationship of various risk factors to the development of a group of symptoms. In all of these cases, the researcher is interested in the relationship between two sets of variables, and Canonical Correlation would be the appropriate method of analysis. 

In the following topics we will briefly introduce the major concepts and statistics in canonical correlation analysis. We will assume that you are familiar with the correlation coefficient as described in Basic Statistics, and the basic ideas of multiple regression as described in the overview section of Multiple Regression. 
Computational Methods and Results 

Some of the computational issues involved in canonical correlation and the major results that are commonly reported will now be reviewed. 

Eigenvalues. When extracting the canonical roots, you will compute the eigenvalues. These can be interpreted as the proportion of variance accounted for by the correlation between the respective canonical variates. Note that the proportion here is computed relative to the variance of the canonical variates, that is, of the weighted sum scores of the two sets of variables; the eigenvalues do not tell how much variability is explained in either set of variables. You will compute as many eigenvalues as there are canonical roots, that is, as many as the minimum number of variables in either of the two sets. 

Successive eigenvalues will be of smaller and smaller size. First, compute the weights that maximize the correlation of the two sum scores. After this first root has been extracted, you will find the weights that produce the second largest correlation between sum scores, subject to the constraint that the next set of sum scores does not correlate with the previous one, and so on. 

Canonical correlations. If the square root of the eigenvalues is taken, then the resulting numbers can be interpreted as correlation coefficients. Because the correlations pertain to the canonical variates, they are called canonical correlations. Like the eigenvalues, the correlations between successively extracted canonical variates are smaller and smaller. Therefore, as an overall index of the canonical correlation between two sets of variables, it is customary to report the largest correlation, that is, the one for the first root. However, the other canonical variates can also be correlated in a meaningful and interpretable manner (see below). 

Significance of Roots. The significance test of the canonical correlations is straightforward in principle. Simply stated, the different canonical correlations are tested, one by one, beginning with the largest one. Only those roots that are statistically significant are then retained for subsequent interpretation. Actually, the nature of the significance test is somewhat different. First, evaluate the significance of all roots combined, then of the roots remaining after removing the first root, the second root, etc. 

Some authors have criticized this sequential testing procedure for the significance of canonical roots (e.g., Harris, 1976). However, this procedure was "rehabilitated" in a subsequent Monte Carlo study by Mendoza, Markos, and Gonter (1978). 

In short, the results of that study showed that this testing procedure will detect strong canonical correlations most of the time, even with samples of relatively small size (e.g., n = 50). Weaker canonical correlations (e.g., R = .3) require larger sample sizes (n > 200) to be detected at least 50% of the time. Note that canonical correlations of small magnitude are often of little practical value, as they account for very little actual variability in the data. This issue, as well as the sample size issue, will be discussed shortly. 

Canonical weights. After determining the number of significant canonical roots, the question arises as to how to interpret each (significant) root. Remember that each root actually represents two weighted sums, one for each set of variables. One way to interpret the "meaning" of each canonical root would be to look at the weights for each set. These weights are called the canonical weights . 

In general, the larger the weight (i.e., the absolute value of the weight), the greater is the respective variable's unique positive or negative contribution to the sum. To facilitate comparisons between weights, the canonical weights are usually reported for the standardized variables, that is, for the z transformed variables with a mean of 0 and a standard deviation of 1. 

If you are familiar with multiple regression, you may interpret the canonical weights in the same manner as you would interpret the beta weights in a multiple regression equation. In a sense, they represent the partial correlations of the variables with the respective canonical root. If you are familiar with factor analysis, you may interpret the canonical weights in the same manner as you would interpret the factor score coefficients. To summarize, the canonical weights allow the user to understand the "make-up" of each canonical root, that is, it lets the user see how each variable in each set uniquely contributes to the respective weighted sum (canonical variate). 

Canonical Scores. Canonical weights can also be used to compute actual values of the canonical variates; that is, you can simply use the weights to compute the respective sums. Again, remember that the canonical weights are customarily reported for the standardized (z transformed) variables. 

Factor structure. Another way of interpreting the canonical roots is to look at the simple correlations between the canonical variates (or factors) and the variables in each set. These correlations are also called canonical factor loadings. The logic here is that variables that are highly correlated with a canonical variate have more in common with it. Therefore, you should weigh them more heavily when deriving a meaningful interpretation of the respective canonical variate. This method of interpreting canonical variates is identical to the manner in which factors are interpreted in factor analysis. 

Factor structure versus canonical weights. Sometimes, the canonical weights for a variable are nearly zero, but the respective loading for the variable is very high. The opposite pattern of results may also occur. At first, such a finding may seem contradictory; however, remember that the canonical weights pertain to the unique contribution of each variable, while the canonical factor loadings represent simple overall correlations. For example, suppose you included in your satisfaction survey two items which measured basically the same thing, namely: (1) "Are you satisfied with your supervisors?" and (2) "Are you satisfied with your bosses?" Obviously, these items are very redundant. When the program computes the weights for the weighted sums (canonical variates) in each set so that they correlate maximally, it only "needs" to include one of the items to capture the essence of what they measure. Once a large weight is assigned to the first item, the contribution of the second item is redundant; consequently, it will receive a zero or negligibly small canonical weight. Nevertheless, if you then look at the simple correlations between the respective sum score with the two items (i.e., the factor loadings), those may be substantial for both. To reiterate, the canonical weights pertain to the unique contributions of the respective variables with a particular weighted sum or canonical variate; the canonical factor loadings pertain to the overall correlation of the respective variables with the canonical variate. 

Variance extracted. As discussed earlier, the canonical correlation coefficient refers to the correlation between the weighted sums of the two sets of variables. It tells nothing about how much variability (variance) each canonical root explains in the variables. However, you can infer the proportion of variance extracted from each set of variables by a particular root by looking at the canonical factor loadings. Remember that those loadings represent correlations between the canonical variates and the variables in the respective set. If you square those correlations, the resulting numbers reflect the proportion of variance accounted for in each variable. For each root, you can take the average of those proportions across variables to get an indication of how much variability is explained, on the average, by the respective canonical variate in that set of variables. Put another way, you can compute in this manner the average proportion of variance extracted by each root. 

Redundancy. The canonical correlations can be squared to compute the proportion of variance shared by the sum scores (canonical variates) in each set. If you multiply this proportion by the proportion of variance extracted, you arrive at a measure of redundancy, that is, of how redundant one set of variables is, given the other set of variables. In equation form, you may express the redundancy as: 

Redundancyleft = [[image: image18.png]


(loadingsleft2)/p]*Rc2
Redundancyright = [[image: image19.png]


(loadingsright2)/q]*Rc2 

In these equations, p denotes the number of variables in the first (left) set of variables, and q denotes the number of variables in the second (right) set of variables; Rc2 is the respective squared canonical correlation. 

Note that you can compute the redundancy of the first (left) set of variables given the second (right) set, and the redundancy of the second (right) set of variables, given the first (left) set. Because successively extracted canonical roots are uncorrelated, you could sum up the redundancies across all (or only the first significant) roots to arrive at a single index of redundancy (as proposed by Stewart and Love, 1968). 

Practical significance. The measure of redundancy is also useful for assessing the practical significance of canonical roots. With large sample sizes (see below), canonical correlations of magnitude R = .30 may become statistically significant (see above). If you square this coefficient (R-square = .09) and use it in the redundancy formula shown above, it becomes clear that such canonical roots account for only very little variability in the variables. Of course, the final assessment of what does and does not constitute a finding of practical significance is subjective by nature. However, to maintain a realistic appraisal of how much actual variance (in the variables) is accounted for by a canonical root, it is important to always keep in mind the redundancy measure, that is, how much of the actual variability in one set of variables is explained by the other. 

Assumptions 

The following discussion provides only a list of the most important assumptions of canonical correlation analysis, and the major threats to the reliability and validity of results. Distributions. The tests of significance of the canonical correlations is based on the assumption that the distributions of the variables in the population (from which the sample was drawn) are multivariate normal. Little is known about the effects of violations of the multivariate normality assumption. However, with a sufficiently large sample size (see below) the results from canonical correlation analysis are usually quite robust. 

Sample sizes. Stevens (1986) provides a very thorough discussion of the sample sizes that should be used in order to obtain reliable results. As mentioned earlier, if there are strong canonical correlations in the data (e.g., R > .7), then even relatively small samples (e.g., n = 50) will detect them most of the time. However, in order to arrive at reliable estimates of the canonical factor loadings (for interpretation), Stevens recommends that there should be at least 20 times as many cases as variables in the analysis, if one wants to interpret the most significant canonical root only. To arrive at reliable estimates for two canonical roots, Barcikowski and Stevens (1975) recommend, based on a Monte Carlo study, to include 40 to 60 times as many cases as variables. 

Outliers. Outliers can greatly affect the magnitudes of correlation coefficients. Since canonical correlation analysis is based on (computed from) correlation coefficients, they can also seriously affect the canonical correlations. Of course, the larger the sample size, the smaller is the impact of one or two outliers. However, it is a good idea to examine various scatterplots to detect possible outliers (as shown in the example animation below). 
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See also Confidence Ellipse. 

Matrix Ill-Conditioning. One assumption is that the variables in the two sets should not be completely redundant. For example, if you included the same variable twice in one of the sets, then it is not clear how to assign different weights to each of them. Computationally, such complete redundancies will "upset" the canonical correlation analysis. When there are perfect correlations in the correlation matrix, or if any of the multiple correlations between one variable and the others is perfect (R = 1.0), then the correlation matrix cannot be inverted, and the computations for the canonical analysis cannot be performed. Such correlation matrices are said to be ill-conditioned. 

Once again, this assumption appears trivial on the surface; however, it often is "almost" violated when the analysis includes very many highly redundant measures, as is often the case when analyzing questionnaire responses. 
General Ideas 

Suppose you conduct a study in which you measure satisfaction at work with three questionnaire items, and satisfaction in various other domains with an additional seven items. The general question that you may want to answer is how satisfaction at work relates to the satisfaction in those other domains. 

Sum Scores 

A first approach that you might take is simply to add up the responses to the work satisfaction items, and to correlate that sum with the responses to all other satisfaction items. If the correlation between the two sums is statistically significant, we could conclude that work satisfaction is related to satisfaction in other domains. 

In a way this is a rather "crude" conclusion. We still know nothing about the particular domains of satisfaction that are related to work satisfaction. In fact, we could potentially have lost important information by simply adding up items. For example, suppose there were two items, one measuring satisfaction with one's relationship with the spouse, the other measuring satisfaction with one's financial situation. Adding the two together is, obviously, like adding "apples to oranges." Doing so implies that a person who is dissatisfied with her finances but happy with her spouse is comparable overall to a person who is satisfied financially but not happy in the relationship with her spouse. Most likely, people's psychological make-up is not that simple... 

The problem then with simply correlating two sums is that one might lose important information in the process, and, in the worst case, actually "destroy" important relationships between variables by adding "apples to oranges." 

Using a weighted sum. It seems reasonable to correlate some kind of a weighted sum instead, so that the "structure" of the variables in the two sets is reflected in the weights. For example, if satisfaction with one's spouse is only marginally related to work satisfaction, but financial satisfaction is strongly related to work satisfaction, then we could assign a smaller weight to the first item and a greater weight to the second item. We can express this general idea in the following equation: 

a1*y1 + a2*y2 + ... + ap*yp = b1*x1 + b2*x2 + ... + bq*xq 

If we have two sets of variables, the first one containing p variables and the second one containing q variables, then we would like to correlate the weighted sums on each side of the equation with each other. 

Determining the weights. We have now formulated the general "model equation" for canonical correlation. The only problem that remains is how to determine the weights for the two sets of variables. It seems to make little sense to assign weights so that the two weighted sums do not correlate with each other. A reasonable approach to take is to impose the condition that the two weighted sums shall correlate maximally with each other. 
Canonical Roots/Variates 

In the terminology of canonical correlation analysis, the weighted sums define a canonical root or variate. You can think of those canonical variates (weighted sums) as describing some underlying "latent" variables. For example, if for a set of diverse satisfaction items we were to obtain a weighted sum marked by large weights for all items having to do with work, we could conclude that the respective canonical variate measures satisfaction with work. 

Number of Roots 

So far we have pretended as if there is only one set of weights (weighted sum) that can be extracted from the two sets of variables. However, suppose that we had among our work satisfaction items particular questions regarding satisfaction with pay, and questions pertaining to satisfaction with one's social relationships with other employees. It is possible that the pay satisfaction items correlate with satisfaction with one's finances, and that the social relationship satisfaction items correlate with the reported satisfaction with one's spouse. If so, we should really derive two weighted sums to reflect this "complexity" in the structure of satisfaction. 

In fact, the computations involved in canonical correlation analysis will lead to more than one set of weighted sums. To be precise, the number of roots extracted will be equal to the minimum number of variables in either set. For example, if we have three work satisfaction items and seven general satisfaction items, then three canonical roots will be extracted. 

Extraction of Roots 

As mentioned before, you can extract roots so that the resulting correlation between the canonical variates is maximal. When extracting more than one root, each successive root will explain a unique additional proportion of variability in the two sets of variables. Therefore, successively extracted canonical roots will be uncorrelated with each other, and account for less and less variability. 

CHAID Analysis

General CHAID Introductory Overview 

Basic Tree-Building Algorithm: CHAID and Exhaustive CHAID 

General Computation Issues of CHAID 

CHAID, C&RT, and QUEST 

General CHAID Introductory Overview 
The acronym CHAID stands for Chi-squared Automatic Interaction Detector. It is one of the oldest tree classification methods originally proposed by Kass (1980; according to Ripley, 1996, the CHAID algorithm is a descendent of THAID developed by Morgan and Messenger, 1973). CHAID will "build" non-binary trees (i.e., trees where more than two branches can attach to a single root or node), based on a relatively simple algorithm that is particularly well suited for the analysis of larger datasets. Also, because the CHAID algorithm will often effectively yield many multi-way frequency tables (e.g., when classifying a categorical response variable with many categories, based on categorical predictors with many classes), it has been particularly popular in marketing research, in the context of market segmentation studies. 

Both CHAID and C&RT techniques will construct trees, where each (non-terminal) node identifies a split condition, to yield optimum prediction (of continuous dependent or response variables) or classification (for categorical dependent or response variables). Hence, both types of algorithms can be applied to analyze regression-type problems or classification-type. 
Basic Tree-Building Algorithm: CHAID and Exhaustive CHAID 

The acronym CHAID stands for Chi-squared Automatic Interaction Detector. This name derives from the basic algorithm that is used to construct (non-binary) trees, which for classification problems (when the dependent variable is categorical in nature) relies on the Chi-square test to determine the best next split at each step; for regression-type problems (continuous dependent variable) the program will actually compute F-tests. Specifically, the algorithm proceeds as follows: 

Preparing predictors. The first step is to create categorical predictors out of any continuous predictors by dividing the respective continuous distributions into a number of categories with an approximately equal number of observations. For categorical predictors, the categories (classes) are "naturally" defined. 

Merging categories. The next step is to cycle through the predictors to determine for each predictor the pair of (predictor) categories that is least significantly different with respect to the dependent variable; for classification problems (where the dependent variable is categorical as well), it will compute a Chi-square test (Pearson Chi-square); for regression problems (where the dependent variable is continuous), F tests. If the respective test for a given pair of predictor categories is not statistically significant as defined by an alpha-to-merge value, then it will merge the respective predictor categories and repeat this step (i.e., find the next pair of categories, which now may include previously merged categories). If the statistical significance for the respective pair of predictor categories is significant (less than the respective alpha-to-merge value), then (optionally) it will compute a Bonferroni adjusted p-value for the set of categories for the respective predictor. 

Selecting the split variable. The next step is to choose the split the predictor variable with the smallest adjusted p-value, i.e., the predictor variable that will yield the most significant split; if the smallest (Bonferroni) adjusted p-value for any predictor is greater than some alpha-to-split value, then no further splits will be performed, and the respective node is a terminal node. 

Continue this process until no further splits can be performed (given the alpha-to-merge and alpha-to-split values). 

CHAID and Exhaustive CHAID Algorithms. A modification to the basic CHAID algorithm, called Exhaustive CHAID, performs a more thorough merging and testing of predictor variables, and hence requires more computing time. Specifically, the merging of categories continues (without reference to any alpha-to-merge value) until only two categories remain for each predictor. The algorithm then proceeds as described above in the Selecting the split variable step, and selects among the predictors the one that yields the most significant split. For large datasets, and with many continuous predictor variables, this modification of the simpler CHAID algorithm may require significant computing time. 

	To index 


General Computation Issues of CHAID 

Reviewing large trees: Unique analysis management tools. A general issue that arises when applying tree classification or regression methods is that the final trees can become very large. In practice, when the input data are complex and, for example, contain many different categories for classification problems, and many possible predictors for performing the classification, then the resulting trees can become very large. This is not so much a computational problem as it is a problem of presenting the trees in a manner that is easily accessible to the data analyst, or for presentation to the "consumers" of the research. 

Analyzing ANCOVA-like designs. The classic CHAID algorithms can accommodate both continuous and categorical predictor. However, in practice, it is not uncommon to combine such variables into analysis of variance/covariance (ANCOVA) like predictor designs with main effects or interaction effects for categorical and continuous predictors. This method of analyzing coded ANCOVA-like designs is relatively new. However, it is easy to see how the use of coded predictor designs expands these powerful classification and regression techniques to the analysis of data from experimental. 

	To index 


CHAID, C&RT, and QUEST 

For classification-type problems (categorical dependent variable), all three algorithms can be used to build a tree for prediction. QUEST is generally faster than the other two algorithms, however, for very large datasets, the memory requirements are usually larger, so using the QUEST algorithms for classification with very large input data sets may be impractical. 

For regression-type problems (continuous dependent variable), the QUEST algorithm is not applicable, so only CHAID and C&RT can be used. CHAID will build non-binary trees that tend to be "wider". This has made the CHAID method particularly popular in market research applications: CHAID often yields many terminal nodes connected to a single branch, which can be conveniently summarized in a simple two-way table with multiple categories for each variable or dimension of the table. This type of display matches well the requirements for research on market segmentation, for example, it may yield a split on a variable Income, dividing that variable into 4 categories and groups of individuals belonging to those categories that are different with respect to some important consumer-behavior related variable (e.g., types of cars most likely to be purchased). C&RT will always yield binary trees, which can sometimes not be summarized as efficiently for interpretation and/or presentation. 

As far as predictive accuracy is concerned, it is difficult to derive general recommendations, and this issue is still the subject of active research. As a practical matter, it is best to apply different algorithms, perhaps compare them with user-defined interactively derived trees, and decide on the most reasonably and best performing model based on the prediction errors. For a discussion of various schemes for combining predictions from different models, see, for example, Witten and Frank, 2000

Classification and Regression Trees (C&RT)



C&RT Introductory Overview - Basic Ideas 

Computational Details 

Computational Formulas 



Introductory Overview - Basic Ideas 

Overview

C&RT builds classification and regression trees for predicting continuous dependent variables (regression) and categorical predictor variables (classification). The classic C&RT algorithm was popularized by Breiman et al. (Breiman, Friedman, Olshen, & Stone, 1984; see also Ripley, 1996). A general introduction to tree-classifiers, specifically to the QUEST (Quick, Unbiased, Efficient Statistical Trees) algorithm, is also presented in the context of the Classification Trees Analysis facilities, and much of the following discussion presents the same information, in only a slightly different context. Another, similar type of tree building algorithm is CHAID (Chi-square Automatic Interaction Detector; see Kass, 1980).

Classification and Regression Problems

There are numerous algorithms for predicting continuous variables or categorical variables from a set of continuous predictors and/or categorical factor effects. For example, in GLM (General Linear Models) and GRM (General Regression Models), you can specify a linear combination (design) of continuous predictors and categorical factor effects (e.g., with two-way and three-way interaction effects) to predict a continuous dependent variable. In GDA (General Discriminant Function Analysis), you can specify such designs for predicting categorical variables, i.e., to solve classification problems. 

Regression-type problems. Regression-type problems are generally those where one attempts to predict the values of a continuous variable from one or more continuous and/or categorical predictor variables. For example, you may want to predict the selling prices of single family homes (a continuous dependent variable) from various other continuous predictors (e.g., square footage) as well as categorical predictors (e.g., style of home, such as ranch, two-story, etc.; zip code or telephone area code where the property is located, etc.; note that this latter variable would be categorical in nature, even though it would contain numeric values or codes). If you used simple multiple regression, or some general linear model (GLM) to predict the selling prices of single family homes, you would determine a linear equation for these variables that can be used to compute predicted selling prices. There are many different analytic procedures for fitting linear models (GLM, GRM, Regression), various types of nonlinear models (e.g., Generalized Linear/Nonlinear Models (GLZ), Generalized Additive Models (GAM), etc.), or completely custom-defined nonlinear models (see Nonlinear Estimation), where you can type in an arbitrary equation containing parameters to be estimated. CHAID also analyzes regression-type problems, and produces results that are similar (in nature) to those computed by C&RT. Note that various neural network architectures are also applicable to solve regression-type problems.

Classification-type problems. Classification-type problems are generally those where one attempts to predict values of a categorical dependent variable (class, group membership, etc.) from one or more continuous and/or categorical predictor variables. For example, you may be interested in predicting who will or will not graduate from college, or who will or will not renew a subscription. These would be examples of simple binary classification problems, where the categorical dependent variable can only assume two distinct and mutually exclusive values. In other cases one might be interested in predicting which one of multiple different alternative consumer products (e.g., makes of cars) a person decides to purchase, or which type of failure occurs with different types of engines. In those cases there are multiple categories or classes for the categorical dependent variable. There are a number of methods for analyzing classification-type problems and to compute predicted classifications, either from simple continuous predictors (e.g., binomial or multinomial logit regression in GLZ), from categorical predictors (e.g., Log-Linear analysis of multi-way frequency tables), or both (e.g., via ANCOVA-like designs in GLZ or GDA). The CHAID also analyzes classification-type problems, and produces results that are similar (in nature) to those computed by C&RT. Note that various neural network architectures are also applicable to solve classification-type problems.

Classification and Regression Trees (C&RT)

In most general terms, the purpose of the analyses via tree-building algorithms is to determine a set of if-then logical (split) conditions that permit accurate prediction or classification of cases. 

Classification Trees

For example, consider the widely referenced Iris data classification problem introduced by Fisher [1936; see also Discriminant Function Analysis and General Discriminant Analysis (GDA)]. The data file Irisdat reports the lengths and widths of sepals and petals of three types of irises (Setosa, Versicol, and Virginic). The purpose of the analysis is to learn how one can discriminate between the three types of flowers, based on the four measures of width and length of petals and sepals. Discriminant function analysis will estimate several linear combinations of predictor variables for computing classification scores (or probabilities) that allow the user to determine the predicted classification for each observation. A classification tree will determine a set of logical if-then conditions (instead of linear equations) for predicting or classifying cases instead:
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The interpretation of this tree is straightforward: If the petal width is less than or equal to 0.8, the respective flower would be classified as Setosa; if the petal width is greater than 0.8 and less than or equal to 1.75, then the respective flower would be classified as Virginic; else, it belongs to class Versicol. 

Regression Trees

The general approach to derive predictions from few simple if-then conditions can be applied to regression problems as well. This example is based on the data file Poverty, which contains 1960 and 1970 Census figures for a random selection of 30 counties. The research question (for that example) was to determine the correlates of poverty, that is, the variables that best predict the percent of families below the poverty line in a county. A reanalysis of those data, using the regression tree analysis [and v-fold cross-validation, yields the following results:
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Again, the interpretation of these results is rather straightforward: Counties where the percent of households with a phone is greater than 72% have generally a lower poverty rate. The greatest poverty rate is evident in those counties that show less than (or equal to) 72% of households with a phone, and where the population change (from the 1960 census to the 170 census) is less than -8.3 (minus 8.3). These results are straightforward, easily presented, and intuitively clear as well: There are some affluent counties (where most households have a telephone), and those generally have little poverty. Then there are counties that are generally less affluent, and among those the ones that shrunk most showed the greatest poverty rate. A quick review of the scatterplot of observed vs. predicted values shows [image: image195.png]


how the discrimination between the latter two groups is particularly well "explained" by the tree model.

Advantages of Classification and Regression Trees (C&RT) Methods

As mentioned earlier, there are a large number of methods that an analyst can choose from when analyzing classification or regression problems. Tree classification techniques, when they "work" and produce accurate predictions or predicted classifications based on few logical if-then conditions, have a number of advantages over many of those alternative techniques. 

Simplicity of results. In most cases, the interpretation of results summarized in a tree is very simple. This simplicity is useful not only for purposes of rapid classification of new observations (it is much easier to evaluate just one or two logical conditions, than to compute classification scores for each possible group, or predicted values, based on all predictors and using possibly some complex nonlinear model equations), but can also often yield a much simpler "model" for explaining why observations are classified or predicted in a particular manner (e.g., when analyzing business problems, it is much easier to present a few simple if-then statements to management, than some elaborate equations). 

Tree methods are nonparametric and nonlinear. The final results of using tree methods for classification or regression can be summarized in a series of (usually few) logical if-then conditions (tree nodes). Therefore, there is no implicit assumption that the underlying relationships between the predictor variables and the dependent variable are linear, follow some specific non-linear link function [e.g., see Generalized Linear/Nonlinear Models (GLZ)], or that they are even monotonic in nature. For example, some continuous outcome variable of interest could be positively related to a variable Income if the income is less than some certain amount, but negatively related if it is more than that amount (i.e., the tree could reveal multiple splits based on the same variable Income, revealing such a non-monotonic relationship between the variables). Thus, tree methods are particularly well suited for data mining tasks, where there is often little a priori knowledge nor any coherent set of theories or predictions regarding which variables are related and how. In those types of data analyses, tree methods can often reveal simple relationships between just a few variables that could have easily gone unnoticed using other analytic techniques. 

General Computation Issues and Unique Solutions of C&RT

The computational details involved in determining the best split conditions to construct a simple yet useful and informative tree are quite complex. Refer to Breiman et al. (1984) for a discussion of their CART® algorithm to learn more about the general theory of and specific computational solutions for constructing classification and regression trees. An excellent general discussion of tree classification and regression methods, and comparisons with other approaches to pattern recognition and neural networks, is provided in Ripley (1996). 

Avoiding Over-Fitting: Pruning, Crossvalidation, and V-fold Crossvalidation

A major issue that arises when applying regression or classification trees to "real" data with much random error noise concerns the decision when to stop splitting. For example, if you had a data set with 10 cases, and performed 9 splits (determined 9 if-then conditions), you could perfectly predict every single case. In general, if you only split a sufficient number of times, eventually you will be able to "predict" ("reproduce" would be the more appropriate term here) your original data (from which you determined the splits). Of course, it is far from clear whether such complex results (with many splits) will replicate in a sample of new observations; most likely they will not. 

This general issue is also discussed in the literature on tree classification and regression methods, as well as neural networks, under the topic of "overlearning" or "overfitting." If not stopped, the tree algorithm will ultimately "extract" all information from the data, including information that is not and cannot be predicted in the population with the current set of predictors, i.e., random or noise variation. The general approach to addressing this issue is first to stop generating new split nodes when subsequent splits only result in very little overall improvement of the prediction. For example, if you can predict 90% of all cases correctly from 10 splits, and 90.1% of all cases from 11 splits, then it obviously makes little sense to add that 11th split to the tree. There are many such criteria for automatically stopping the splitting (tree-building) process.

Once the tree building algorithm has stopped, it is always useful to further evaluate the quality of the prediction of the current tree in samples of observations that did not participate in the original computations. These methods are used to "prune back" the tree, i.e., to eventually (and ideally) select a simpler tree than the one obtained when the tree building algorithm stopped, but one that is equally as accurate for predicting or classifying "new" observations.

Crossvalidation. One approach is to apply the tree computed from one set of observations (learning sample) to another completely independent set of observations (testing sample). If most or all of the splits determined by the analysis of the learning sample are essentially based on "random noise," then the prediction for the testing sample will be very poor. Hence one can infer that the selected tree is not very good (useful), and not of the "right size." 

V-fold crossvalidation. Continuing further along this line of reasoning (described in the context of crossvalidation above), why not repeat the analysis many times over with different randomly drawn samples from the data, for every tree size starting at the root of the tree, and applying it to the prediction of observations from randomly selected testing samples. Then use (interpret, or accept as your final result) the tree that shows the best average accuracy for cross-validated predicted classifications or predicted values. In most cases, this tree will not be the one with the most terminal nodes, i.e., the most complex tree. This method for pruning a tree, and for selecting a smaller tree from a sequence of trees, can be very powerful, and is particularly useful for smaller data sets. It is an essential step for generating useful (for prediction) tree models, and because it can be computationally difficult to do, this method is often not found in tree classification or regression software. 

Reviewing Large Trees: Unique Analysis Management Tools

Another general issue that arises when applying tree classification or regression methods is that the final trees can become very large. In practice, when the input data are complex and, for example, contain many different categories for classification problems and many possible predictors for performing the classification, then the resulting trees can become very large. This is not so much a computational problem as it is a problem of presenting the trees in a manner that is easily accessible to the data analyst, or for presentation to the "consumers" of the research. 

Analyzing ANCOVA-like Designs

The classic (Breiman et. al., 1984) classification and regression trees algorithms can accommodate both continuous and categorical predictor. However, in practice, it is not uncommon to combine such variables into analysis of variance/covariance (ANCOVA) like predictor designs with main effects or interaction effects for categorical and continuous predictors. This method of analyzing coded ANCOVA-like designs is relatively new and. However, it is easy to see how the use of coded predictor designs expands these powerful classification and regression techniques to the analysis of data from experimental designs (e.g., see for example the detailed discussion of experimental design methods for quality improvement in the context of the Experimental Design module of Industrial Statistics). 

Computational Details 

The process of computing classification and regression trees can be characterized as involving four basic steps: 

Specifying the criteria for predictive accuracy 

Selecting splits 

Determining when to stop splitting 

Selecting the "right-sized" tree. 

These steps are very similar to those discussed in the context of Classification Trees Analysis (see also Breiman et al., 1984, for more details). See also, Computational Formulas. 

Specifying the Criteria for Predictive Accuracy

The classification and regression trees (C&RT) algorithms are generally aimed at achieving the best possible predictive accuracy. Operationally, the most accurate prediction is defined as the prediction with the minimum costs. The notion of costs was developed as a way to generalize, to a broader range of prediction situations, the idea that the best prediction has the lowest misclassification rate. In most applications, the cost is measured in terms of proportion of misclassified cases, or variance. In this context, it follows, therefore, that a prediction would be considered best if it has the lowest misclassification rate or the smallest variance. The need for minimizing costs, rather than just the proportion of misclassified cases, arises when some predictions that fail are more catastrophic than others, or when some predictions that fail occur more frequently than others.

Priors. In the case of a categorical response (classification problem), minimizing costs amounts to minimizing the proportion of misclassified cases when priors are taken to be proportional to the class sizes and when misclassification costs are taken to be equal for every class. 

The a priori probabilities used in minimizing costs can greatly affect the classification of cases or objects. Therefore, care has to be taken while using the priors. If differential base rates are not of interest for the study, or if one knows that there are about an equal number of cases in each class, then one would use equal priors. If the differential base rates are reflected in the class sizes (as they would be, if the sample is a probability sample), then one would use priors estimated by the class proportions of the sample. Finally, if you have specific knowledge about the base rates (for example, based on previous research), then one would specify priors in accordance with that knowledge The general point is that the relative size of the priors assigned to each class can be used to "adjust" the importance of misclassifications for each class. However, no priors are required when one is building a regression tree.

Misclassification costs. Sometimes more accurate classification of the response is desired for some classes than others for reasons not related to the relative class sizes. If the criterion for predictive accuracy is Misclassification costs, then minimizing costs would amount to minimizing the proportion of misclassified cases when priors are considered proportional to the class sizes and misclassification costs are taken to be equal for every class. 

Case weights. Case weights are treated strictly as case multipliers. For example, the misclassification rates from an analysis of an aggregated data set using case weights will be identical to the misclassification rates from the same analysis where the cases are replicated the specified number of times in the data file. 

However, note that the use of case weights for aggregated data sets in classification problems is related to the issue of minimizing costs. Interestingly, as an alternative to using case weights for aggregated data sets, one could specify appropriate priors and/or misclassification costs and produce the same results while avoiding the additional processing required to analyze multiple cases with the same values for all variables. Suppose that in an aggregated data set with two classes having an equal number of cases, there are case weights of 2 for all cases in the first class, and case weights of 3 for all cases in the second class. If you specified priors of .4 and .6, respectively, specified equal misclassification costs, and analyzed the data without case weights, you will get the same misclassification rates as you would get if you specified priors estimated by the class sizes, specified equal misclassification costs, and analyzed the aggregated data set using the case weights. You would also get the same misclassification rates if you specified priors to be equal, specified the costs of misclassifying class 1 cases as class 2 cases to be 2/3 of the costs of misclassifying class 2 cases as class 1 cases, and analyzed the data without case weights.

Selecting Splits

The second basic step in classification and regression trees is to select the splits on the predictor variables that are used to predict membership in classes of the categorical dependent variables, or to predict values of the continuous dependent (response) variable. In general terms, the split at each node will be found that will generate the greatest improvement in predictive accuracy. This is usually measured with some type of node impurity measure, which provides an indication of the relative homogeneity (the inverse of impurity) of cases in the terminal nodes. If all cases in each terminal node show identical values, then node impurity is minimal, homogeneity is maximal, and prediction is perfect (at least for the cases used in the computations; predictive validity for new cases is of course a different matter...).

For classification problems, C&RT gives the user the choice of several impurity measures: The Gini index, Chi-square, or G-square. The Gini index of node impurity is the measure most commonly chosen for classification-type problems. As an impurity measure, it reaches a value of zero when only one class is present at a node. With priors estimated from class sizes and equal misclassification costs, the Gini measure is computed as the sum of products of all pairs of class proportions for classes present at the node; it reaches its maximum value when class sizes at the node are equal; the Gini index is equal to zero if all cases in a node belong to the same class. The Chi-square measure is similar to the standard Chi-square value computed for the expected and observed classifications (with priors adjusted for misclassification cost), and the G-square measure is similar to the maximum-likelihood Chi-square (as for example computed in the Log-Linear module). For regression-type problems, a least-squares deviation criterion (similar to what is computed in least squares regression) is automatically used. Computational Formulas provides further computational details.

Determining When to Stop Splitting

As discussed in Basic Ideas, in principal, splitting could continue until all cases are perfectly classified or predicted. However, this wouldn't make much sense since one would likely end up with a tree structure that is as complex and "tedious" as the original data file (with many nodes possibly containing single observations), and that would most likely not be very useful or accurate for predicting new observations. What is required is some reasonable stopping rule. In C&RT, two options are available that can be used to keep a check on the splitting process; namely Minimum n and Fraction of objects.

Minimum n. One way to control splitting is to allow splitting to continue until all terminal nodes are pure or contain no more than a specified minimum number of cases or objects. In C&RT this is done by using the option Minimum n that allows you to specify the desired minimum number of cases as a check on the splitting process. This option can be used when Prune on misclassification error, Prune on deviance, or Prune on variance is active as the Stopping rule for the analysis. 

Fraction of objects. Another way to control splitting is to allow splitting to continue until all terminal nodes are pure or contain no more cases than a specified minimum fraction of the sizes of one or more classes (in the case of classification problems, or all cases in regression problems). This option can be used when FACT-style direct stopping has been selected as the Stopping rule for the analysis. In C&RT, the desired minimum fraction can be specified as the Fraction of objects. For classification problems, if the priors used in the analysis are equal and class sizes are equal as well, then splitting will stop when all terminal nodes containing more than one class have no more cases than the specified fraction of the class sizes for one or more classes. Alternatively, if the priors used in the analysis are not equal, splitting will stop when all terminal nodes containing more than one class have no more cases than the specified fraction for one or more classes. See Loh and Vanichestakul, 1988 for details. 

Pruning and Selecting the "Right-Sized" Tree

The size of a tree in the classification and regression trees analysis is an important issue, since an unreasonably big tree can only make the interpretation of results more difficult. Some generalizations can be offered about what constitutes the "right-sized" tree. It should be sufficiently complex to account for the known facts, but at the same time it should be as simple as possible. It should exploit information that increases predictive accuracy and ignore information that does not. It should, if possible, lead to greater understanding of the phenomena it describes. The options available in C&RT allow the use of either, or both, of two different strategies for selecting the "right-sized" tree from among all the possible trees. One strategy is to grow the tree to just the right size, where the right size is determined by the user, based on the knowledge from previous research, diagnostic information from previous analyses, or even intuition. The other strategy is to use a set of well-documented, structured procedures developed by Breiman et al. (1984) for selecting the "right-sized" tree. These procedures are not foolproof, as Breiman et al. (1984) readily acknowledge, but at least they take subjective judgment out of the process of selecting the "right-sized" tree.

FACT-style direct stopping. We will begin by describing the first strategy, in which the user specifies the size to grow the tree. This strategy is followed by selecting FACT-style direct stopping as the stopping rule for the analysis, and by specifying the Fraction of objects which allows the tree to grow to the desired size. C&RT provides several options for obtaining diagnostic information to determine the reasonableness of the choice of size for the tree. Specifically, three options are available for performing cross-validation of the selected tree; namely Test sample, V-fold, and Minimal cost-complexity. 

Test sample cross-validation. The first, and most preferred type of cross-validation is the test sample cross-validation. In this type of cross-validation, the tree is computed from the learning sample, and its predictive accuracy is tested by applying it to predict the class membership in the test sample. If the costs for the test sample exceed the costs for the learning sample, then this is an indication of poor cross-validation. In that case, a different sized tree might cross-validate better. The test and learning samples can be formed by collecting two independent data sets, or if a large learning sample is available, by reserving a randomly selected proportion of the cases, say a third or a half, for use as the test sample. 

In the C&RT module, test sample cross-validation is performed by specifying a sample identifier variable which contains codes for identifying the sample (learning or test) to which each case or object belongs. 

V-fold cross-validation. The second type of cross-validation available in C&RT is V-fold cross-validation. This type of cross-validation is useful when no test sample is available and the learning sample is too small to have the test sample taken from it. The user-specified 'v' value for v-fold cross-validation (its default value is 3) determines the number of random subsamples, as equal in size as possible, that are formed from the learning sample. A tree of the specified size is computed 'v' times, each time leaving out one of the subsamples from the computations, and using that subsample as a test sample for cross-validation, so that each subsample is used (v - 1) times in the learning sample and just once as the test sample. The CV costs (cross-validation cost) computed for each of the 'v' test samples are then averaged to give the v-fold estimate of the CV costs.

Minimal cost-complexity cross-validation pruning. In C&RT, minimal cost-complexity cross-validation pruning is performed, if Prune on misclassification error has been selected as the Stopping rule. On the other hand, if Prune on deviance has been selected as the Stopping rule, then minimal deviance-complexity cross-validation pruning is performed. The only difference in the two options is the measure of prediction error that is used. Prune on misclassification error uses the costs that equals the misclassification rate when priors are estimated and misclassification costs are equal, while Prune on deviance uses a measure, based on maximum-likelihood principles, called the deviance (see Ripley, 1996). For details about the algorithms used in C&RT to implement Minimal cost-complexity cross-validation pruning, see also the Introductory Overview and Computational Methods sections of Classification Trees Analysis.
The sequence of trees obtained by this algorithm have a number of interesting properties. They are nested, because the successively pruned trees contain all the nodes of the next smaller tree in the sequence. Initially, many nodes are often pruned going from one tree to the next smaller tree in the sequence, but fewer nodes tend to be pruned as the root node is approached. The sequence of largest trees is also optimally pruned, because for every size of tree in the sequence, there is no other tree of the same size with lower costs. Proofs and/or explanations of these properties can be found in Breiman et al. (1984). 

Tree selection after pruning. The pruning, as discussed above, often results in a sequence of optimally pruned trees. So the next task is to use an appropriate criterion to select the "right-sized" tree from this set of optimal trees. A natural criterion would be the CV costs (cross-validation costs). While there is nothing wrong with choosing the tree with the minimum CV costs as the "right-sized" tree, oftentimes there will be several trees with CV costs close to the minimum. Following Breiman et al. (1984) one could use the "automatic" tree selection procedure and choose as the "right-sized" tree the smallest-sized (least complex) tree whose CV costs do not differ appreciably from the minimum CV costs. In particular, they proposed a "1 SE rule" for making this selection, i.e., choose as the "right-sized" tree the smallest-sized tree whose CV costs do not exceed the minimum CV costs plus 1 times the standard error of the CV costs for the minimum CV costs tree. In C&RT, a multiple other than the 1 (the default) can also be specified for the SE rule. Thus, specifying a value of 0.0 would result in the minimal CV cost tree being selected as the "right-sized" tree. Values greater than 1.0 could lead to trees much smaller than the minimal CV cost tree being selected as the "right-sized" tree. One distinct advantage of the "automatic" tree selection procedure is that it helps to avoid "over fitting" and "under fitting" of the data. 

As can be been seen, minimal cost-complexity cross-validation pruning and subsequent "right-sized" tree selection is a truly "automatic" process. The algorithms make all the decisions leading to the selection of the "right-sized" tree, except for, perhaps, specification of a value for the SE rule. V-fold cross-validation allows you to evaluate how well each tree "performs" when repeatedly cross-validated in different samples randomly drawn from the data. 

Computational Formulas 

In Classification and Regression Trees, estimates of accuracy are computed by different formulas for categorical and continuous dependent variables (classification and regression-type problems). For classification-type problems (categorical dependent variable) accuracy is measured in terms of the true classification rate of the classifier, while in the case of regression (continuous dependent variable) accuracy is measured in terms of mean squared error of the predictor.

In addition to measuring accuracy, the following measures of node impurity are used for classification problems: The Gini measure, generalized Chi-square measure, and generalized G-square measure. The Chi-square measure is similar to the standard Chi-square value computed for the expected and observed classifications (with priors adjusted for misclassification cost), and the G-square measure is similar to the maximum-likelihood Chi-square (as for example computed in the Log-Linear module). The Gini measure is the one most often used for measuring purity in the context of classification problems, and it is described below.

For continuous dependent variables (regression-type problems), the least squared deviation (LSD) measure of impurity is automatically applied.

Estimation of Accuracy in Classification

In classification problems (categorical dependent variable), three estimates of the accuracy are used: resubstitution estimate, test sample estimate, and v-fold cross-validation. These estimates are defined here.

Resubstitution estimate. Resubstitution estimate is the proportion of cases that are misclassified by the classifier constructed from the entire sample. This estimate is computed in the following manner:
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where X is the indicator function;

X = 1, if the statement [image: image22.png]X(d(x,) # Jy)



is true
X = 0, if the statement [image: image23.png]X(d(x,) # Jy)



is false
and d (x) is the classifier.

The resubstitution estimate is computed using the same data as used in constructing the classifier d .

Test sample estimate. The total number of cases are divided into two subsamples 1 and . The test sample estimate is the proportion of cases in the subsample  which are misclassified by the classifier constructed from the subsample 1. This estimate is computed in the following way.

Let the learning sample  of size N be partitioned into subsamples 1 and  of sizes N and N2, respectively.
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where  is the sub sample that is not used for constructing the classifier. 

v-fold crossvalidation. The total number of cases are divided into v sub samples 1, , ..., v of almost equal sizes. v-fold cross validation estimate is the proportion of cases in the subsample  that are misclassified by the classifier constructed from the subsample  v. This estimate is computed in the following way.

Let the learning sample  of size N be partitioned into v sub samples 1, , ..., v of almost sizes N1, N, ..., Nv, respectively.
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is computed from the sub sample  v .
Estimation of Accuracy in Regression

In the regression problem (continuous dependent variable) three estimates of the accuracy are used: resubstitution estimate, test sample estimate, and v-fold cross-validation. These estimates are defined here.

Resubstitution estimate. The resubstitution estimate is the estimate of the expected squared error using the predictor  of the continuous dependent variable. This estimate is computed in the following way.
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where  the learning sample  consists of (xi,yi),i = 1,2,...,N. The resubstitution estimate is computed using the same data as used in constructing the predictor d . 

Test sample estimate. The total number of cases are divided into two subsamples 1 and . The test sample estimate of the mean squared error is computed in the following way: 

Let the learning sample  of size N be partitioned into subsamples 1 and  of sizes N and N2, respectively.
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where  is the sub-sample that is not used for constructing the predictor. 

v-fold cross-validation. The total number of cases are divided into v sub samples 1, , ..., v of almost equal sizes. The subsample  v is used to construct the predictor d. Then  v-fold cross validation estimate is computed from the subsample v in the following way:

Let the learning sample  of size N be partitioned into v sub samples 1, , ..., v of almost sizes N1, N, ..., Nv, respectively.
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is computed from the sub sample  v .
Estimation of Node Impurity: Gini Measure

The Gini measure is the measure of impurity of a node and is commonly used when the dependent variable is a categorical variable, defined as:
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if costs of misclassification are not specified,
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if costs of misclassification are specified,

where the sum extends over all k categories. p( j / t) is the probability of category j at the node t and C(i / j ) is the probability of misclassifying a category  j case as category i.

Estimation of Node Impurity: Least-Squared Deviation 

Least-squared deviation (LSD) is used as the measure of impurity of a node when the response variable is continuous, and is computed as:
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where Nw(t) is the weighted number of cases in node t, wi is the value of the weighting variable for case i,  fi is the value of the frequency variable,  yi is the value of the response variable, and y(t)  is the weighted mean for node t.
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EM (Expectation Maximization) Clustering 

Introductory Overview 

The EM Algorithm 

Finding the Right Number of Clusters in k-Means and EM Clustering: v-Fold Cross-Validation 

General Purpose 
The term cluster analysis (first used by Tryon, 1939) encompasses a number of different algorithms and methods for grouping objects of similar kind into respective categories. A general question facing researchers in many areas of inquiry is how to organize observed data into meaningful structures, that is, to develop taxonomies. In other words cluster analysis is an exploratory data analysis tool which aims at sorting different objects into groups in a way that the degree of association between two objects is maximal if they belong to the same group and minimal otherwise. Given the above, cluster analysis can be used to discover structures in data without providing an explanation/interpretation. In other words, cluster analysis simply discovers structures in data without explaining why they exist. 

We deal with clustering in almost every aspect of daily life. For example, a group of diners sharing the same table in a restaurant may be regarded as a cluster of people. In food stores items of similar nature, such as different types of meat or vegetables are displayed in the same or nearby locations. There is a countless number of examples in which clustering playes an important role. For instance, biologists have to organize the different species of animals before a meaningful description of the differences between animals is possible. According to the modern system employed in biology, man belongs to the primates, the mammals, the amniotes, the vertebrates, and the animals. Note how in this classification, the higher the level of aggregation the less similar are the members in the respective class. Man has more in common with all other primates (e.g., apes) than it does with the more "distant" members of the mammals (e.g., dogs), etc. For a review of the general categories of cluster analysis methods, see Joining (Tree Clustering), Two-way Joining (Block Clustering), and k-Means Clustering. In short, whatever the nature of your business is, sooner or later you will run into a clustering problem of one form or another. 

Statistical Significance Testing 
Note that the above discussions refer to clustering algorithms and do not mention anything about statistical significance testing. In fact, cluster analysis is not as much a typical statistical test as it is a "collection" of different algorithms that "put objects into clusters according to well defined similarity rules." The point here is that, unlike many other statistical procedures, cluster analysis methods are mostly used when we do not have any a priori hypotheses, but are still in the exploratory phase of our research. In a sense, cluster analysis finds the "most significant solution possible." Therefore, statistical significance testing is really not appropriate here, even in cases when p-levels are reported (as in k-means clustering). 

Area of Application 
Clustering techniques have been applied to a wide variety of research problems. Hartigan (1975) provides an excellent summary of the many published studies reporting the results of cluster analyses. For example, in the field of medicine, clustering diseases, cures for diseases, or symptoms of diseases can lead to very useful taxonomies. In the field of psychiatry, the correct diagnosis of clusters of symptoms such as paranoia, schizophrenia, etc. is essential for successful therapy. In archeology, researchers have attempted to establish taxonomies of stone tools, funeral objects, etc. by applying cluster analytic techniques. In general, whenever one needs to classify a "mountain" of information into manageable meaningful piles, cluster analysis is of great utility. 
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Joining (Tree Clustering) 
Hierarchical Tree 

Distance Measures 

Amalgamation or Linkage Rules 

General Logic 
The example in the General Purpose Introduction illustrates the goal of the joining or tree clustering algorithm. The purpose of this algorithm is to join together objects (e.g., animals) into successively larger clusters, using some measure of similarity or distance. A typical result of this type of clustering is the hierarchical tree. 

Hierarchical Tree 
Consider a Horizontal Hierarchical Tree Plot (see graph below), on the left of the plot, we begin with each object in a class by itself. Now imagine that, in very small steps, we "relax" our criterion as to what is and is not unique. Put another way, we lower our threshold regarding the decision when to declare two or more objects to be members of the same cluster. 
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As a result we link more and more objects together and aggregate (amalgamate) larger and larger clusters of increasingly dissimilar elements. Finally, in the last step, all objects are joined together. In these plots, the horizontal axis denotes the linkage distance (in Vertical Icicle Plots, the vertical axis denotes the linkage distance). Thus, for each node in the graph (where a new cluster is formed) we can read off the criterion distance at which the respective elements were linked together into a new single cluster. When the data contain a clear "structure" in terms of clusters of objects that are similar to each other, then this structure will often be reflected in the hierarchical tree as distinct branches. As the result of a successful analysis with the joining method, one is able to detect clusters (branches) and interpret those branches. 

Distance Measures 
The joining or tree clustering method uses the dissimilarities (similarities) or distances between objects when forming the clusters. Similarities are a set of rules that serve as criteria for grouping or separating items. In the previous example the rule for grouping a number of dinners was whether they shared the same table or not. These distances (similarities) can be based on a single dimension or multiple dimensions, with each dimension representing a rule or condition for grouping objects. For example, if we were to cluster fast foods, we could take into account the number of calories they contain, their price, subjective ratings of taste, etc. The most straightforward way of computing distances between objects in a multi-dimensional space is to compute Euclidean distances. If we had a two- or three-dimensional space this measure is the actual geometric distance between objects in the space (i.e., as if measured with a ruler). However, the joining algorithm does not "care" whether the distances that are "fed" to it are actual real distances, or some other derived measure of distance that is more meaningful to the researcher; and it is up to the researcher to select the right method for his/her specific application. 

Euclidean distance. This is probably the most commonly chosen type of distance. It simply is the geometric distance in the multidimensional space. It is computed as: 

distance(x,y) = {[image: image35.png]
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Note that Euclidean (and squared Euclidean) distances are usually computed from raw data, and not from standardized data. This method has certain advantages (e.g., the distance between any two objects is not affected by the addition of new objects to the analysis, which may be outliers). However, the distances can be greatly affected by differences in scale among the dimensions from which the distances are computed. For example, if one of the dimensions denotes a measured length in centimeters, and you then convert it to millimeters (by multiplying the values by 10), the resulting Euclidean or squared Euclidean distances (computed from multiple dimensions) can be greatly affected (i.e., biased by those dimensions which have a larger scale), and consequently, the results of cluster analyses may be very different. Generally, it is good practice to transform the dimensions so they have similar scales. 

Squared Euclidean distance. You may want to square the standard Euclidean distance in order to place progressively greater weight on objects that are further apart. This distance is computed as (see also the note in the previous paragraph): 
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City-block (Manhattan) distance. This distance is simply the average difference across dimensions. In most cases, this distance measure yields results similar to the simple Euclidean distance. However, note that in this measure, the effect of single large differences (outliers) is dampened (since they are not squared). The city-block distance is computed as: 

distance(x,y) = [image: image37.png]
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Chebychev distance. This distance measure may be appropriate in cases when one wants to define two objects as "different" if they are different on any one of the dimensions. The Chebychev distance is computed as: 

distance(x,y) = Maximum|xi - yi| 

Power distance. Sometimes one may want to increase or decrease the progressive weight that is placed on dimensions on which the respective objects are very different. This can be accomplished via the power distance. The power distance is computed as: 

distance(x,y) = ([image: image38.png]
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where r and p are user-defined parameters. A few example calculations may demonstrate how this measure "behaves." Parameter p controls the progressive weight that is placed on differences on individual dimensions, parameter r controls the progressive weight that is placed on larger differences between objects. If r and p are equal to 2, then this distance is equal to the Euclidean distance. 

Percent disagreement. This measure is particularly useful if the data for the dimensions included in the analysis are categorical in nature. This distance is computed as: 

distance(x,y) = (Number of xi [image: image39.png]
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Amalgamation or Linkage Rules 
At the first step, when each object represents its own cluster, the distances between those objects are defined by the chosen distance measure. However, once several objects have been linked together, how do we determine the distances between those new clusters? In other words, we need a linkage or amalgamation rule to determine when two clusters are sufficiently similar to be linked together. There are various possibilities: for example, we could link two clusters together when any two objects in the two clusters are closer together than the respective linkage distance. Put another way, we use the "nearest neighbors" across clusters to determine the distances between clusters; this method is called single linkage. This rule produces "stringy" types of clusters, that is, clusters "chained together" by only single objects that happen to be close together. Alternatively, we may use the neighbors across clusters that are furthest away from each other; this method is called complete linkage. There are numerous other linkage rules such as these that have been proposed. 

Single linkage (nearest neighbor). As described above, in this method the distance between two clusters is determined by the distance of the two closest objects (nearest neighbors) in the different clusters. This rule will, in a sense, string objects together to form clusters, and the resulting clusters tend to represent long "chains." 

Complete linkage (furthest neighbor). In this method, the distances between clusters are determined by the greatest distance between any two objects in the different clusters (i.e., by the "furthest neighbors"). This method usually performs quite well in cases when the objects actually form naturally distinct "clumps." If the clusters tend to be somehow elongated or of a "chain" type nature, then this method is inappropriate. 

Unweighted pair-group average. In this method, the distance between two clusters is calculated as the average distance between all pairs of objects in the two different clusters. This method is also very efficient when the objects form natural distinct "clumps," however, it performs equally well with elongated, "chain" type clusters. Note that in their book, Sneath and Sokal (1973) introduced the abbreviation UPGMA to refer to this method as unweighted pair-group method using arithmetic averages. 

Weighted pair-group average. This method is identical to the unweighted pair-group average method, except that in the computations, the size of the respective clusters (i.e., the number of objects contained in them) is used as a weight. Thus, this method (rather than the previous method) should be used when the cluster sizes are suspected to be greatly uneven. Note that in their book, Sneath and Sokal (1973) introduced the abbreviation WPGMA to refer to this method as weighted pair-group method using arithmetic averages. 

Unweighted pair-group centroid. The centroid of a cluster is the average point in the multidimensional space defined by the dimensions. In a sense, it is the center of gravity for the respective cluster. In this method, the distance between two clusters is determined as the difference between centroids. Sneath and Sokal (1973) use the abbreviation UPGMC to refer to this method as unweighted pair-group method using the centroid average. 

Weighted pair-group centroid (median). This method is identical to the previous one, except that weighting is introduced into the computations to take into consideration differences in cluster sizes (i.e., the number of objects contained in them). Thus, when there are (or one suspects there to be) considerable differences in cluster sizes, this method is preferable to the previous one. Sneath and Sokal (1973) use the abbreviation WPGMC to refer to this method as weighted pair-group method using the centroid average. 

Ward's method. This method is distinct from all other methods because it uses an analysis of variance approach to evaluate the distances between clusters. In short, this method attempts to minimize the Sum of Squares (SS) of any two (hypothetical) clusters that can be formed at each step. Refer to Ward (1963) for details concerning this method. In general, this method is regarded as very efficient, however, it tends to create clusters of small size. 

For an overview of the other two methods of clustering, see Two-way Joining and k-Means Clustering. 
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Two-way Joining 

Introductory Overview 

Two-way Joining 

Introductory Overview 
Previously, we have discussed this method in terms of "objects" that are to be clustered (see Joining (Tree Clustering)). In all other types of analyses the research question of interest is usually expressed in terms of cases (observations) or variables. It turns out that the clustering of both may yield useful results. For example, imagine a study where a medical researcher has gathered data on different measures of physical fitness (variables) for a sample of heart patients (cases). The researcher may want to cluster cases (patients) to detect clusters of patients with similar syndromes. At the same time, the researcher may want to cluster variables (fitness measures) to detect clusters of measures that appear to tap similar physical abilities. 

Two-way Joining 
Given the discussion in the paragraph above concerning whether to cluster cases or variables, one may wonder why not cluster both simultaneously? Two-way joining is useful in (the relatively rare) circumstances when one expects that both cases and variables will simultaneously contribute to the uncovering of meaningful patterns of clusters. 
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For example, returning to the example above, the medical researcher may want to identify clusters of patients that are similar with regard to particular clusters of similar measures of physical fitness. The difficulty with interpreting these results may arise from the fact that the similarities between different clusters may pertain to (or be caused by) somewhat different subsets of variables. Thus, the resulting structure (clusters) is by nature not homogeneous. This may seem a bit confusing at first, and, indeed, compared to the other clustering methods described (see Joining (Tree Clustering) and k-Means Clustering), two-way joining is probably the one least commonly used. However, some researchers believe that this method offers a powerful exploratory data analysis tool (for more information you may want to refer to the detailed description of this method in Hartigan, 1975). 
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k-Means Clustering 
Example 

Computations 

Interpretation of results 

General logic 
This method of clustering is very different from the Joining (Tree Clustering) and Two-way Joining. Suppose that you already have hypotheses concerning the number of clusters in your cases or variables. You may want to "tell" the computer to form exactly 3 clusters that are to be as distinct as possible. This is the type of research question that can be addressed by the k- means clustering algorithm. In general, the k-means method will produce exactly k different clusters of greatest possible distinction. It should be mentioned that the best number of clusters k leading to the greatest separation (distance) is not known as a priori and must be computed from the data (see Finding the Right Number of Clusters). 

Example 
In the physical fitness example (see Two-way Joining), the medical researcher may have a "hunch" from clinical experience that her heart patients fall basically into three different categories with regard to physical fitness. She might wonder whether this intuition can be quantified, that is, whether a k-means cluster analysis of the physical fitness measures would indeed produce the three clusters of patients as expected. If so, the means on the different measures of physical fitness for each cluster would represent a quantitative way of expressing the researcher's hypothesis or intuition (i.e., patients in cluster 1 are high on measure 1, low on measure 2, etc.). 

Computations 
Computationally, you may think of this method as analysis of variance (ANOVA) "in reverse." The program will start with k random clusters, and then move objects between those clusters with the goal to 1) minimize variability within clusters and 2) maximize variability between clusters. In other words, the similarity rules will apply maximally to the members of one cluster and minimally to members belonging to the rest of the clusters. This is analogous to "ANOVA in reverse" in the sense that the significance test in ANOVA evaluates the between group variability against the within-group variability when computing the significance test for the hypothesis that the means in the groups are different from each other. In k-means clustering, the program tries to move objects (e.g., cases) in and out of groups (clusters) to get the most significant ANOVA results. 

Interpretation of results 
Usually, as the result of a k-means clustering analysis, we would examine the means for each cluster on each dimension to assess how distinct our k clusters are. Ideally, we would obtain very different means for most, if not all dimensions, used in the analysis. The magnitude of the F values from the analysis of variance performed on each dimension is another indication of how well the respective dimension discriminates between clusters. 
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EM (Expectation Maximization) Clustering 

Introductory Overview 

The EM Algorithm 

Introductory Overview 

The methods described here are similar to the k-Means algorithm described above, and you may want to review that section for a general overview of these techniques and their applications. The general purpose of these techniques is to detect clusters in observations (or variables) and to assign those observations to the clusters. A typical example application for this type of analysis is a marketing research study in which a number of consumer behavior related variables are measured for a large sample of respondents. The purpose of the study is to detect "market segments," i.e., groups of respondents that are somehow more similar to each other (to all other members of the same cluster) when compared to respondents that "belong to" other clusters. In addition to identifying such clusters, it is usually equally of interest to determine how the clusters are different, i.e., determine the specific variables or dimensions that vary and how they vary in regard to members in different clusters. 

k-means clustering. To reiterate, the classic k-Means algorithm was popularized and refined by Hartigan (1975; see also Hartigan and Wong, 1978). The basic operation of that algorithm is relatively simple: Given a fixed number of (desired or hypothesized) k clusters, assign observations to those clusters so that the means across clusters (for all variables) are as different from each other as possible. 

Extensions and generalizations. The EM (expectation maximization) algorithm extends this basic approach to clustering in two important ways: 

Instead of assigning cases or observations to clusters to maximize the differences in means for continuous variables, the EM clustering algorithm computes probabilities of cluster memberships based on one or more probability distributions. The goal of the clustering algorithm then is to maximize the overall probability or likelihood of the data, given the (final) clusters. 

Unlike the classic implementation of k-means clustering, the general EM algorithm can be applied to both continuous and categorical variables (note that the classic k-means algorithm can also be modified to accommodate categorical variables).

The EM Algorithm 

The EM algorithm for clustering is described in detail in Witten and Frank (2001). The basic approach and logic of this clustering method is as follows. Suppose you measure a single continuous variable in a large sample of observations. Further, suppose that the sample consists of two clusters of observations with different means (and perhaps different standard deviations); within each sample, the distribution of values for the continuous variable follows the normal distribution. The resulting distribution of values (in the population) may look like this: 
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Mixtures of distributions. The illustration shows two normal distributions with different means and different standard deviations, and the sum of the two distributions. Only the mixture (sum) of the two normal distributions (with different means and standard deviations) would be observed. The goal of EM clustering is to estimate the means and standard deviations for each cluster so as to maximize the likelihood of the observed data (distribution). Put another way, the EM algorithm attempts to approximate the observed distributions of values based on mixtures of different distributions in different clusters. 

With the implementation of the EM algorithm in some computer programs, you may be able to select (for continuous variables) different distributions such as the normal, log-normal, and Poisson distributions. You can select different distributions for different variables and, thus, derive clusters for mixtures of different types of distributions. 

Categorical variables. The EM algorithm can also accommodate categorical variables. The method will at first randomly assign different probabilities (weights, to be precise) to each class or category, for each cluster. In successive iterations, these probabilities are refined (adjusted) to maximize the likelihood of the data given the specified number of clusters. 

Classification probabilities instead of classifications. The results of EM clustering are different from those computed by k-means clustering. The latter will assign observations to clusters to maximize the distances between clusters. The EM algorithm does not compute actual assignments of observations to clusters, but classification probabilities. In other words, each observation belongs to each cluster with a certain probability. Of course, as a final result you can usually review an actual assignment of observations to clusters, based on the (largest) classification probability. 

	To index 




Finding the Right Number of Clusters in k-Means and EM Clustering: v-Fold Cross-Validation 

An important question that needs to be answered before applying the k-means or EM clustering algorithms is how many clusters there are in the data. This is not known a priori and, in fact, there might be no definite or unique answer as to what value k should take. In other words, k is a nuisance parameter of the clustering model. Luckily, an estimate of k can be obtained from the data using the method of cross-validation. Remember that the k-means and EM methods will determine cluster solutions for a particular user-defined number of clusters. The k-means and EM clustering techniques (described above) can be optimized and enhanced for typical applications in data mining. The general metaphor of data mining implies the situation in which an analyst searches for useful structures and "nuggets" in the data, usually without any strong a priori expectations of what the analysist might find (in contrast to the hypothesis-testing approach of scientific research). In practice, the analyst usually does not know ahead of time how many clusters there might be in the sample. For that reason, some programs include an implementation of a v-fold cross-validation algorithm for automatically determining the number of clusters in the data. 

This unique algorithm is immensely useful in all general "pattern-recognition" tasks - to determine the number of market segments in a marketing research study, the number of distinct spending patterns in studies of consumer behavior, the number of clusters of different medical symptoms, the number of different types (clusters) of documents in text mining, the number of weather patterns in meteorological research, the number of defect patterns on silicon wafers, and so on. 

The v-fold cross-validation algorithm applied to clustering. The v-fold cross-validation algorithm is described in some detail in Classification Trees and General Classification and Regression Trees (GC&RT). The general idea of this method is to divide the overall sample into a number of v folds. The same type of analysis is then successively applied to the observations belonging to the v-1 folds (training sample), and the results of the analyses are applied to sample v (the sample or fold that was not used to estimate the parameters, build the tree, determine the clusters, etc.; this is the testing sample) to compute some index of predictive validity. The results for the v replications are aggregated (averaged) to yield a single measure of the stability of the respective model, i.e., the validity of the model for predicting new observations. 

Cluster analysis is an unsupervised learning technique, and we cannot observe the (real) number of clusters in the data. However, it is reasonable to replace the usual notion (applicable to supervised learning) of "accuracy" with that of "distance." In general, we can apply the v-fold cross-validation method to a range of numbers of clusters in k-means or EM clustering, and observe the resulting average distance of the observations (in the cross-validation or testing samples) from their cluster centers (for k-means clustering); for EM clustering, an appropriate equivalent measure would be the average negative (log-) likelihood computed for the observations in the testing samples. 

Reviewing the results of v-fold cross-validation. The results of v-fold cross-validation are best reviewed in a simple line graph. 
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Shown here is the result of analyzing a data set widely known to contain three clusters of observations (specifically, the well-known Iris data file reported by Fisher, 1936, and widely referenced in the literature on discriminant function analysis). Also shown (in the graph to the right) are the results for analyzing simple normal random numbers. The "real" data (shown to the left) exhibit the characteristic scree-plot pattern (see also Factor Analysis), where the cost function (in this case, 2 times the log-likelihood of the cross-validation data, given the estimated parameters) quickly decreases as the number of clusters increases, but then (past 3 clusters) levels off, and even increases as the data are overfitted. Alternatively, the random numbers show no such pattern, in fact, there is basically no decrease in the cost function at all, and it quickly begins to increase as the number of clusters increases and overfitting occurs. 

It is easy to see from this simple illustration how useful the v-fold cross-validation technique, applied to k-means and EM clustering can be for determining the "right" number of clusters in the data.

Correspondence Analysis

General Purpose 

Supplementary Points 

Multiple Correspondence Analysis 

Burt Tables 

General Purpose 
Correspondence analysis is a descriptive/exploratory technique designed to analyze simple two-way and multi-way tables containing some measure of correspondence between the rows and columns. The results provide information which is similar in nature to those produced by Factor Analysis techniques, and they allow one to explore the structure of categorical variables included in the table. The most common kind of table of this type is the two-way frequency crosstabulation table (see, for example, Basic Statistics or Log-Linear). 

In a typical correspondence analysis, a crosstabulation table of frequencies is first standardized, so that the relative frequencies across all cells sum to 1.0. One way to state the goal of a typical analysis is to represent the entries in the table of relative frequencies in terms of the distances between individual rows and/or columns in a low-dimensional space. This is best illustrated by a simple example, which will be described below. There are several parallels in interpretation between correspondence analysis and Factor Analysis, and some similar concepts will also be pointed out below. 

For a comprehensive description of this method, computational details, and its applications (in the English language), refer to the classic text by Greenacre (1984). These methods were originally developed primarily in France by Jean-Paul Benzérci in the early 1960's and 1970's (e.g., see Benzérci, 1973; see also Lebart, Morineau, and Tabard, 1977), but have only more recently gained increasing popularity in English-speaking countries (see, for example, Carrol, Green, and Schaffer, 1986; Hoffman and Franke, 1986). (Note that similar techniques were developed independently in several countries, where they were known as optimal scaling, reciprocal averaging, optimal scoring, quantification method, or homogeneity analysis). In the following paragraphs, a general introduction to correspondence analysis will be presented. 

Overview. Suppose you collected data on the smoking habits of different employees in a company. The following data set is presented in Greenacre (1984, p. 55). 

	 
	Smoking Category
	 

	Staff
Group
	(1)
None
	(2)
Light
	(3)
Medium
	(4)
Heavy
	Row
Totals

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	  4
  4
25
18
10
	  2
  3
10
24
  6
	  3
  7
12
33
  7
	  2
  4
  4
13
  2
	  11
  18
  51
  88
  25

	Column Totals
	61
	45
	62
	25
	193


One may think of the 4 column values in each row of the table as coordinates in a 4-dimensional space, and one could compute the (Euclidean) distances between the 5 row points in the 4- dimensional space. The distances between the points in the 4-dimensional space summarize all information about the similarities between the rows in the table above. Now suppose one could find a lower-dimensional space, in which to position the row points in a manner that retains all, or almost all, of the information about the differences between the rows. You could then present all information about the similarities between the rows (types of employees in this case) in a simple 1, 2, or 3-dimensional graph. While this may not appear to be particularly useful for small tables like the one shown above, one can easily imagine how the presentation and interpretation of very large tables (e.g., differential preference for 10 consumer items among 100 groups of respondents in a consumer survey) could greatly benefit from the simplification that can be achieved via correspondence analysis (e.g., represent the 10 consumer items in a two- dimensional space). 

Mass. To continue with the simpler example of the two-way table presented above, computationally, the program will first compute the relative frequencies for the frequency table, so that the sum of all table entries is equal to 1.0 (each element will be divided by the total, i.e., 193). One could say that this table now shows how one unit of mass is distributed across the cells. In the terminology of correspondence analysis, the row and column totals of the matrix of relative frequencies are called the row mass and column mass, respectively. 

Inertia. The term inertia in correspondence analysis is used by analogy with the definition in applied mathematics of "moment of inertia," which stands for the integral of mass times the squared distance to the centroid (e.g., Greenacre, 1984, p. 35). Inertia is defined as the total Pearson Chi-square for the two-way divided by the total sum (193 in the present example). 

Inertia and row and column profiles. If the rows and columns in a table are completely independent of each other, the entries in the table (distribution of mass) can be reproduced from the row and column totals alone, or row and column profiles in the terminology of correspondence analysis. According to the well-known formula for computing the Chi-square statistic for two-way tables, the expected frequencies in a table, where the column and rows are independent of each other, are equal to the respective column total times the row total, divided by the grand total. Any deviations from the expected values (expected under the hypothesis of complete independence of the row and column variables) will contribute to the overall Chi-square. Thus, another way of looking at correspondence analysis is to consider it a method for decomposing the overall Chi-square statistic (or Inertia=Chi- square/Total N) by identifying a small number of dimensions in which the deviations from the expected values can be represented. This is similar to the goal of Factor Analysis, where the total variance is decomposed, so as to arrive at a lower-dimensional representation of the variables that allows one to reconstruct most of the variance/covariance matrix of variables. 

Analyzing rows and columns. This simple example began with a discussion of the row-points in the table shown above. However, one may rather be interested in the column totals, in which case one could plot the column points in a small-dimensional space, which satisfactorily reproduces the similarity (and distances) between the relative frequencies for the columns, across the rows, in the table shown above. In fact it is customary to simultaneously plot the column points and the row points in a single graph, to summarize the information contained in a two-way table. 

Reviewing results. Let us now look at some of the results for the table shown above. First, shown below are the so-called singular values , eigenvalues, percentages of inertia explained, cumulative percentages, and the contribution to the overall Chi- square. 

	Eigenvalues and Inertia for all Dimensions
Input Table (Rows x Columns):  5 x 4
Total Inertia = .08519 Chi² = 16.442 

	No. of
Dims
	Singular
Values
	Eigen-
Values
	Perc. of
Inertia
	Cumulatv
Percent
	Chi
Squares

	1
2
3
	.273421
.100086
.020337
	.074759
.010017
.000414
	87.75587
11.75865
.48547
	87.7559
99.5145
100.0000
	14.42851
1.93332
.07982


Note that the dimensions are "extracted" so as to maximize the distances between the row or column points, and successive dimensions (which are independent of or orthogonal to each other) will "explain" less and less of the overall Chi-square value (and, thus, inertia). Thus, the extraction of the dimensions is similar to the extraction of principal components in Factor Analysis. 

First, it appears that, with a single dimension, 87.76% of the inertia can be "explained," that is, the relative frequency values that can be reconstructed from a single dimension can reproduce 87.76% of the total Chi-square value (and, thus, of the inertia) for this two-way table; two dimensions allow you to explain 99.51%. 

Maximum number of dimensions. Since the sums of the frequencies across the columns must be equal to the row totals, and the sums across the rows equal to the column totals, there are in a sense only (no. of columns-1) independent entries in each row, and (no. of rows-1) independent entries in each column of the table (once you know what these entries are, you can fill in the rest based on your knowledge of the column and row marginal totals). Thus, the maximum number of eigenvalues that can be extracted from a two- way table is equal to the minimum of the number of columns minus 1, and the number of rows minus 1. If you choose to extract (i.e., interpret) the maximum number of dimensions that can be extracted, then you can reproduce exactly all information contained in the table. 

Row and column coordinates. Next look at the coordinates for the two-dimensional solution. 

	Row Name
	Dim. 1
	Dim. 2

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	-.065768
.258958
-.380595
.232952
-.201089
	.193737
.243305
.010660
-.057744
-.078911


Of course, you can plot these coordinates in a two-dimensional scatterplot. Remember that the purpose of correspondence analysis is to reproduce the distances between the row and/or column points in a two-way table in a lower-dimensional display; note that, as in Factor Analysis, the actual rotational orientation of the axes is arbitrarily chosen so that successive dimensions "explain" less and less of the overall Chi-square value (or inertia). You could, for example, reverse the signs in each column in the table shown above, thereby effectively rotating the respective axis in the plot by 180 degrees. 

What is important are the distances of the points in the two-dimensional display, which are informative in that row points that are close to each other are similar with regard to the pattern of relative frequencies across the columns. If you have produced this plot you will see that, along the most important first axis in the plot, the Senior employees and Secretaries are relatively close together on the left side of the origin (scale position 0). If you looked at the table of relative row frequencies (i.e., frequencies standardized, so that their sum in each row is equal to 100%), you will see that these two groups of employees indeed show very similar patterns of relative frequencies across the categories of smoking intensity. 

	Percentages of Row Totals

	 
	Smoking Category
	 

	Staff
Group
	(1)
None
	(2)
Light
	(3)
Medium
	(4)
Heavy
	Row
Totals

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	36.36
22.22
49.02
20.45
40.00
	18.18
16.67
19.61
27.27
24.00
	27.27
38.89
23.53
37.50
28.00
	18.18
22.22
  7.84
14.77
  8.00
	100.00
100.00
100.00
100.00
100.00


Obviously the final goal of correspondence analysis is to find theoretical interpretations (i.e., meaning) for the extracted dimensions. One method that may aid in interpreting extracted dimensions is to plot the column points. Shown below are the column coordinates for the first and second dimension. 

	Smoking
category
	 
Dim. 1
	 
Dim. 2

	None
Light
Medium
Heavy
	-.393308
.099456
.196321
.293776
	.030492
-.141064
-.007359
.197766


It appears that the first dimension distinguishes mostly between the different degrees of smoking, and in particular between category None and the others. Thus one can interpret the greater similarity of Senior Managers with Secretaries, with regard to their position on the first axis, as mostly deriving from the relatively large numbers of None smokers in these two groups of employees. 

Compatibility of row and column coordinates. It is customary to summarize the row and column coordinates in a single plot. However, it is important to remember that in such plots, one can only interpret the distances between row points, and the distances between column points, but not the distances between row points and column points. 
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To continue with this example, it would not be appropriate to say that the category None is similar to Senior Employees (the two points are very close in the simultaneous plot of row and column coordinates). However, as was indicated earlier, it is appropriate to make general statements about the nature of the dimensions, based on which side of the origin particular points fall. For example, because category None is the only column point on the left side of the origin for the first axis, and since employee group Senior Employees also falls onto that side of the first axis, one may conclude that the first axis separates None smokers from the other categories of smokers, and that Senior Employees are different from, for example, Junior Employees, in that there are relatively more non-smoking Senior Employees. 

Scaling of the coordinates (standardization options). Another important decision that the analyst must make concerns the scaling of the coordinates. The nature of the choice pertains to whether or not you want to analyze the relative row percentages, column percentages, or both. In the context of the example described above, the row percentages were shown to illustrate how the patterns of those percentages across the columns are similar for points which appear more closely together in the graphical display of the row coordinates. Put another way, the coordinates are based on the analysis of the row profile matrix, where the sum of the table entries in a row, across all columns, is equal to 1.0 (each entry rij in the row profile matrix can be interpreted as the conditional probability that a case belongs to column j, given its membership in row i). Thus, the coordinates are computed so as to maximize the differences between the points with respect to the row profiles (row percentages). The row coordinates are computed from the row profile matrix, the column coordinates are computed from the column profile matrix. 

A fourth option, Canonical standardization (see Gifi, 1981), is also provided, and it amounts to a standardization of the columns and rows of the matrix of relative frequencies. This standardization amounts to a rescaling of the coordinates based on the row profile standardization and the column profile standardization, and this type of standardization is not widely used. Note also that a variety of other custom standardizations can be easily performed if you have the raw eigenvalues and eigenvector matrices. 

Metric of coordinate system. In several places in this introduction, the term distance was (loosely) used to refer to the differences between the pattern of relative frequencies for the rows across the columns, and columns across the rows, which are to be reproduced in a lower-dimensional solution as a result of the correspondence analysis. Actually, these distances represented by the coordinates in the respective space are not simple Euclidean distances computed from the relative row or column frequencies, but rather, they are weighted distances. Specifically, the weighting that is applied is such that the metric in the lower- dimensional space is a Chi-square metric, provided that (1) you are comparing row points, and chose either row-profile standardization or both row- and column-profile standardization, or (2) you are comparing column points, and chose either column-profile standardization or both row- and column-profile standardization. 

In that case (but not if you chose the canonical standardization), the squared Euclidean distance between, for example, two row points i and i' in the respective coordinate system of a given number of dimensions actually approximates a weighted (i.e., Chi-square) distance between the relative frequencies (see Hoffman and Franke, 1986, formula 21): 
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In this formula, dii ' stands for the squared distance between the two points, cj stands for the column total for the j'th column of the standardized frequency table (where the sum of all entries or mass is equal to 1.0), pij stands for the individual cell entries in the standardized frequency table (row i, column j), ri stands for the row total for the i'th column of the relative frequency table, and the summation [image: image45.png]


is over the columns of the table. To reiterate, only the distances between row points, and correspondingly, between column points are interpretable in this manner; the distances between row points and column points cannot be interpreted. 

Judging the quality of a solution. A number of auxiliary statistics are reported, to aid in the evaluation of the quality of the respective chosen numbers of dimensions. The general concern here is that all (or at least most) points are properly represented by the respective solution, that is, that their distances to other points can be approximated to a satisfactory degree. Shown below are all statistics reported for the row coordinates for the example table discussed so far, based on a one-dimensional solution only (i.e., only one dimension is used to reconstruct the patterns of relative frequencies across the columns). 

	Row Coordinates and Contributions to Inertia

	 
Staff Group
	Coordin.
Dim.1
	 
Mass
	 
Quality
	Relative
Inertia
	Inertia
Dim.1
	Cosine²
Dim.1

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	-.065768
.258958
-.380595
.232952
-.201089
	.056995
.093264
.264249
.455959
.129534
	.092232
.526400
.999033
.941934
.865346
	.031376
.139467
.449750
.308354
.071053
	.003298
.083659
.512006
.330974
.070064
	.092232
.526400
.999033
.941934
.865346


Coordinates. The first numeric column shown in the table above contains the coordinates, as discussed in the previous paragraphs. To reiterate, the specific interpretation of these coordinates depends on the standardization chosen for the solution (see above). The number of dimensions is chosen by the user (in this case we chose only one dimension), and coordinate values will be shown for each dimension (i.e., there will be one column with coordinate values for each dimension). 

Mass. The Mass column contains the row totals (since these are the row coordinates) for the table of relative frequencies (i.e., for the table where each entry is the respective mass, as discussed earlier in this section). Remember that the coordinates are computed based on the matrix of conditional probabilities shown in the Mass column. 

Quality. The Quality column contains information concerning the quality of representation of the respective row point in the coordinate system defined by the respective numbers of dimensions, as chosen by the user. In the table shown above, only one dimension was chosen, and the numbers in the Quality column pertain to the quality of representation in the one-dimensional space. To reiterate, computationally, the goal of the correspondence analysis is to reproduce the distances between points in a low-dimensional space. If you extracted (i.e., interpreted) the maximum number of dimensions (which is equal to the minimum of the number of rows and the number of columns, minus 1), you could reconstruct all distances exactly. The Quality of a point is defined as the ratio of the squared distance of the point from the origin in the chosen number of dimensions, over the squared distance from the origin in the space defined by the maximum number of dimensions (remember that the metric here is Chi-square, as described earlier). By analogy to Factor Analysis, the quality of a point is similar in its interpretation to the communality for a variable in factor analysis. 

Note that the Quality measure reported is independent of the chosen method of standardization, and always pertains to the default standardization (i.e., the distance metric is Chi-square, and the quality measure can be interpreted as the "proportion of Chi- square accounted for" for the respective row, given the respective number of dimensions). A low quality means that the current number of dimensions does not well represent the respective row (or column). In the table shown above, the quality for the first row (Senior Managers) is less than .1, indicating that this row point is not well represented by the one- dimensional representation of the points. 

Relative inertia. The Quality of a point (see above) represents the proportion of the contribution of that point to the overall inertia (Chi-square) that can be accounted for by the chosen number of dimensions. However, it does not indicate whether or not, and to what extent, the respective point does in fact contribute to the overall inertia (Chi- square value). The relative inertia represents the proportion of the total inertia accounted for by the respective point, and it is independent of the number of dimensions chosen by the user. Note that a particular solution may represent a point very well (high Quality), but the same point may not contribute much to the overall inertia (e.g., a row point with a pattern of relative frequencies across the columns that is similar to the average pattern across all rows). 

Relative inertia for each dimension. This column contains the relative contribution of the respective (row) point to the inertia "accounted for" by the respective dimension. Thus, this value will be reported for each (row or column) point, for each dimension. 

Cosine² (quality or squared correlations with each dimension). This column contains the quality for each point, by dimension. The sum of the values in these columns across the dimensions is equal to the total Quality value discussed above (since in the example table above, only one dimension was chose, the values in this column are identical to the values in the overall Quality column). This value may also be interpreted as the "correlation" of the respective point with the respective dimension. The term Cosine² refers to the fact that this value is also the squared cosine value of the angle the point makes with the respective dimension (refer to Greenacre, 1984, for details concerning the geometric aspects of correspondence analysis). 

A note about "statistical significance." It should be noted at this point that correspondence analysis is an exploratory technique. Actually, the method was developed based on a philosophical orientation that emphasizes the development of models that fit the data, rather than the rejection of hypotheses based on the lack of fit (Benzecri's "second principle" states that "The model must fit the data, not vice versa;" see Greenacre, 1984, p. 10). Therefore, there are no statistical significance tests that are customarily applied to the results of a correspondence analysis; the primary purpose of the technique is to produce a simplified (low- dimensional) representation of the information in a large frequency table (or tables with similar measures of correspondence). 
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Supplementary Points 
The introductory section provides an overview of how to interpret the coordinates and related statistics computed in a correspondence analysis. An important aid in the interpretation of the results from a correspondence analysis is to include supplementary row or column points, that were not used to perform the original analyses. For example, consider the following results which are based on the example given in the introductory (based on Greenacre, 1984). 

	Row Name
	Dim. 1
	Dim. 2

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	-.065768
.258958
-.380595
.232952
-.201089
	.193737
.243305
.010660
-.057744
-.078911

	National Average
	-.258368
	-.117648


The table above shows the coordinate values (for two dimensions) computed for a frequency table of different types of employees by type of smoking habit. The row labeled National Average contains the coordinate values for the supplementary point, which is the national average (percentages) for the different smoking categories (which make up the columns of the table; those fictitious percentages reported in Greenacre (1984) are: Nonsmokers: 42%, light smokers: 29%, medium smokers, 20%; heavy smokers: 9%). If you plotted these coordinates in a two-dimensional scatterplot, along with the column coordinates, it would be apparent that the National Average supplementary row point is plotted close to the point representing the Secretaries group, and on the same side of the horizontal axis (first dimension) as the Nonsmokers column point. If you refer back to the original two-way table shown in the introductory section, this finding is consistent with the entries in the table of row frequencies, that is, there are relatively more nonsmokers among the Secretaries, and in the National Average. Put another way, the sample represented in the original frequency table contains more smokers than the national average. 

While this type of information could have been easily gleaned from the original frequency table (that was used as the input to the analysis), in the case of very large tables, such conclusions may not be as obvious. 

Quality of representation of supplementary points. Another interesting result for supplementary points concerns the quality of their representation in the chosen number of dimensions (see the introductory section for a more detailed discussion of the concept of quality of representation). To reiterate, the goal of the correspondence analysis is to reproduce the distances between the row or column coordinates (patterns of relative frequencies across the columns or rows, respectively) in a low-dimensional solution. Given such a solution, one may ask whether particular supplementary points of interest can be represented equally well in the final space, that is, whether or not their distances from the other points in the table can also be represented in the chosen numbers of dimensions. Shown below are the summary statistics for the original points, and the supplementary row point National Average, for the two-dimensional solution. 

	 
Staff Group
	 
Quality
	Cosine²
Dim.1
	Cosine²
Dim.2

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	.892568
.991082
.999817
.999810
.998603
	.092232
.526400
.999033
.941934
.865346
	.800336
.464682
.000784
.057876
.133257

	National Average
	.761324
	.630578
	.130746


The statistics reported in the table above are discussed in the introductory section. In short, the Quality of a row or column point is defined as the ratio of the squared distance of the point from the origin in the chosen number of dimensions, over the squared distance from the origin in the space defined by the maximum number of dimensions (remember that the metric here is Chi-square, as described in the introductory section). In a sense, the overall quality is the "proportion of squared distance-from-the-overall-centroid accounted for." The supplementary row point National Average has a quality of .76, indicating that it is reasonably well represented in the two-dimensional solution. The Cosine² statistic is the quality "accounted for" by the respective row point, by the respective dimension (the sum of the Cosine² values over the respective number of dimensions is equal to the total Quality, see also the introductory section). 
Multiple Correspondence Analysis (MCA) 
Multiple correspondence analysis (MCA) may be considered to be an extension of simple correspondence analysis to more than two variables. For an introductory overview of simple correspondence analysis, refer to the introductory section . Multiple correspondence analysis is a simple correspondence analysis carried out on an indicator (or design) matrix with cases as rows and categories of variables as columns. Actually, one usually analyzes the inner product of such a matrix, called the Burt Table in an MCA; this will be discussed later. However, to clarify the interpretation of the results from a multiple correspondence analysis, it is easier to discuss the simple correspondence analysis of an indicator or design matrix. 

Indicator or design matrix. Consider again the simple two-way table presented in the introductory section: 

	 
	Smoking Category
	 

	Staff
Group
	(1)
None
	(2)
Light
	(3)
Medium
	(4)
Heavy
	Row
Totals

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
	  4
  4
25
18
10
	  2
  3
10
24
  6
	  3
  7
12
33
  7
	  2
  4
  4
13
  2
	  11
  18
  51
  88
  25

	Column Totals
	61
	45
	62
	25
	193


Suppose you had entered the data for this table in the following manner, as an indicator or design matrix: 

	 
	Staff Group
	Smoking

	Case
Number
	Senior
Manager
	Junior
Manager
	Senior
Employee
	Junior
Employee
	 
Secretary
	 
None
	 
Light
	 
Medium
	 
Heavy

	1
2
3
4
5
...
...
...
191
192
193
	1
1
1
1
1
.
.
.
0
0
0
	0
0
0
0
0
.
.
.
0
0
0
	0
0
0
0
0
.
.
.
0
0
0
	0
0
0
0
0
.
.
.
0
0
0
	0
0
0
0
0
.
.
.
1
1
1
	1
1
1
1
0
.
.
.
0
0
0
	0
0
0
0
1
.
.
.
0
0
0
	0
0
0
0
0
.
.
.
1
0
0
	0
0
0
0
0
.
.
.
0
1
1


Each one of the 193 total cases in the table is represented by one case in this data file. For each case a 1 is entered into the category where the respective case "belongs," and a 0 otherwise. For example, case 1 represents a Senior Manager who is a None smoker. As can be seen in the table above, there are a total of 4 such cases in the two-way table, and thus there will be four cases like this in the indicator matrix. In all, there will be 193 cases in the indicator or design matrix. 

Analyzing the design matrix. If you now analyzed this data file (design or indicator matrix) shown above as if it were a two-way frequency table, the results of the correspondence analysis would provide column coordinates that would allow you to relate the different categories to each other, based on the distances between the row points, i.e., between the individual cases. In fact, the two-dimensional display you would obtain for the column coordinates would look very similar to the combined display for row and column coordinates, if you had performed the simple correspondence analysis on the two-way frequency table (note that the metric will be different, but the relative positions of the points will be very similar). 

More than two variables. The approach to analyzing categorical data outlined above can easily be extended to more than two categorical variables. For example, the indicator or design matrix could contain two additional variables Male and Female, again coded 0 and 1, to indicate the subjects' gender; and three variables could be added to indicate to which one of three age groups a case belongs. Thus, in the final display, one could represent the relationships (similarities) between Gender, Age, Smoking habits, and Occupation (Staff Groups). 

Fuzzy coding. It is not necessary that each case is assigned exclusively to only one category of each categorical variable. Rather than the 0-or-1 coding scheme, one could enter probabilities for membership in a category, or some other measure that represents a fuzzy rule for group membership. Greenacre (1984) discusses different types of coding schemes of this kind. For example, suppose in the example design matrix shown earlier, you had missing data for a few cases regarding their smoking habits. Instead of discarding those cases entirely from the analysis (or creating a new category Missing data), you could assign to the different smoking categories proportions (which should add to 1.0) to represent the probabilities that the respective case belongs to the respective category (e.g., you could enter proportions based on your knowledge about estimates for the national averages for the different categories). 

Interpretation of coordinates and other results. To reiterate, the results of a multiple correspondence analysis are identical to the results you would obtain for the column coordinates from a simple correspondence analysis of the design or indicator matrix. Therefore, the interpretation of coordinate values, quality values, cosine²'s and other statistics reported as the results from a multiple correspondence analysis can be interpreted in the same manner as described in the context of the simple correspondence analysis (see introductory section), however, these statistics pertain to the total inertia associated with the entire design matrix. 

Supplementary column points and "multiple regression" for categorical variables. Another application of the analysis of design matrices via correspondence analysis techniques is that it allows you to perform the equivalent of a Multiple Regression for categorical variables, by adding supplementary columns to the design matrix. For example, suppose you added to the design matrix shown earlier two columns to indicate whether or not the respective subject had or had not been ill over the past year (i.e., you could add one column Ill and another column Not ill, and again enter 0's and 1's to indicate each subject's health status). If, in a simple correspondence analysis of the design matrix, you added those columns as supplementary columns to the analysis, then (1) the summary statistics for the quality of representation (see the introductory section) for those columns would give you an indication of how well you can "explain" illness as a function of the other variables in the design matrix, and (2) the display of the column points in the final coordinate system would provide an indication of the nature (e.g., direction) of the relationships between the columns in the design matrix and the column points indicating illness; this technique (adding supplementary points to an MCA analysis) is also sometimes called predictive mapping. 

The Burt table. The actual computations in multiple correspondence analysis are not performed on a design or indicator matrix (which, potentially, may be very large if there are many cases), but on the inner product of this matrix; this matrix is also called the Burt matrix. With frequency tables, this amounts to tabulating the stacked categories against each other; for example the Burt for the two-way frequency table presented earlier would look like this. 

	 
	Employee
	Smoking

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(1)
	(2)
	(3)
	(4)

	(1) Senior Managers
(2) Junior Managers
(3) Senior Employees
(4) Junior Employees
(5) Secretaries
(1) Smoking:None
(2) Smoking:Light
(3) Smoking:Medium
(4) Smoking:Heavy
	11
0
0
0
0
4
2
3
2
	0
18
0
0
0
4
3
7
4
	0
0
51
0
0
25
10
12
4
	0
0
0
88
0
18
24
33
13
	0
0
0
0
25
10
6
7
2
	4
4
25
18
10
61
0
0
0
	2
3
10
24
6
0
45
0
0
	3
7
12
33
7
0
0
62
0
	2
4
4
13
2
0
0
0
25


The Burt has a clearly defined structure. In the case of two categorical variables (shown above), it consists of 4 partitions: (1) the crosstabulation of variable Employee against itself, (2) the crosstabulation of variable Employee against variable Smoking, (3), the crosstabulation of variable Smoking against variable Employee, and (4) the crosstabulation of variable Smoking against itself. Note that the matrix is symmetrical, and that the sum of the diagonal elements in each partition representing the crosstabulation of a variable against itself must be the same (e.g., there were a total of 193 observations in the present example, and hence, the diagonal elements in the crosstabulation tables of variable Employee against itself, and Smoking against itself must also be equal to 193). 

Note that the off-diagonal elements in the partitions representing the crosstabulations of a variable against itself are equal to 0 in the table shown above. However, this is not necessarily always the case, for example, when the Burt was derived from a design or indicator matrix that included fuzzy coding of category membership (see above). 
Burt Tables 
The Burt table is the result of the inner product of a design or indicator matrix, and the multiple correspondence analysis results are identical to the results one would obtain for the column points from a simple correspondence analysis of the indicator or design matrix (see also MCA). 

For example, suppose you had entered data concerning the Survival for different Age groups in different Locations like this: 

	 
	SURVIVAL
	AGE
	LOCATION

	Case No.
	NO
	YES
	LESST50
	A50TO69
	OVER69
	TOKYO
	BOSTON
	GLAMORGN

	1
2
3
4
...
...
...
762
763
764
	0
1
0
0
.
.
.
1
0
0
	1
0
1
1
.
.
.
0
1
1
	0
1
0
0
.
.
.
0
1
0
	1
0
1
0
.
.
.
1
0
1
	0
0
0
1
.
.
.
0
0
0
	0
1
0
0
.
.
.
1
0
0
	0
0
1
0
.
.
.
0
1
0
	1
0
0
1
.
.
.
0
0
1


In this data arrangement, for each case a 1 was entered to indicate to which category, of a particular set of categories, a case belongs (e.g., Survival, with the categories No and Yes). For example, case 1 survived (a 0 was entered for variable No, and a 1 was entered for variable Yes), case 1 is between age 50 and 69 (a 1 was entered for variable A50to69), and was observed in Glamorgn). Overall there are 764 observations in the data set. 

[image: image196.png]


If you denote the data (design or indicator matrix) shown above as matrix X, then matrix product X'X is a Burt table); shown below is an example of a Burt table that one might obtain in this manner. 

	 
	SURVIVAL
	AGE
	LOCATION

	
	NO
	YES
	<50
	50-69
	69+
	TOKYO
	BOSTON
	GLAMORGN

	SURVIVAL:NO
SURVIVAL:YES
 
AGE:UNDER_50
AGE:A_50TO69
AGE:OVER_69 
LOCATION:TOKYO
LOCATION:BOSTON
LOCATION:GLAMORGN
	210
0
 
68
93
49
 
60
82
68
	0
554
 
212
258
84
 
230
171
153
	68
212
 
280
0
0
 
151
58
71
	93
258
 
0
351
0
 
120
122
109
	49
84
 
0
0
133
 
19
73
41
	  60
230
 
151
120
  19
 
290
    0
    0
	  82
171
 
  58
122
  73
 
    0
253
    0
	  68
153
 
  71
109
  41
 
    0
    0
221


The Burt table has a clearly defined structure. Overall, the data matrix is symmetrical. In the case of 3 categorical variables (as shown above), the data matrix consists 3 x 3 = 9 partitions, created by each variable being tabulated against itself, and against the categories of all other variables. Note that the sum of the diagonal elements in each diagonal partition (i.e., where the respective variables are tabulated against themselves) is constant (equal to 764 in this case). 

The off-diagonal elements in each diagonal partition in this example are all 0. If the cases in the design or indicator matrix are assigned to categories via fuzzy coding (i.e., if probabilities are used to indicate likelihood of membership in a category, rather than 0/1 coding to indicate actual membership), then the off-diagonal elements of the diagonal partitions are not necessarily equal to 0.
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Data Mining 

Data Mining is an analytic process designed to explore data (usually large amounts of data - typically business or market related) in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data. The ultimate goal of data mining is prediction - and predictive data mining is the most common type of data mining and one that has the most direct business applications. The process of data mining consists of three stages: (1) the initial exploration, (2) model building or pattern identification with validation/verification, and (3) deployment (i.e., the application of the model to new data in order to generate predictions). 

Stage 1: Exploration. This stage usually starts with data preparation which may involve cleaning data, data transformations, selecting subsets of records and - in case of data sets with large numbers of variables ("fields") - performing some preliminary feature selection operations to bring the number of variables to a manageable range (depending on the statistical methods which are being considered). Then, depending on the nature of the analytic problem, this first stage of the process of data mining may involve anywhere between a simple choice of straightforward predictors for a regression model, to elaborate exploratory analyses using a wide variety of graphical and statistical methods (see Exploratory Data Analysis (EDA)) in order to identify the most relevant variables and determine the complexity and/or the general nature of models that can be taken into account in the next stage. 

Stage 2: Model building and validation. This stage involves considering various models and choosing the best one based on their predictive performance (i.e., explaining the variability in question and producing stable results across samples). This may sound like a simple operation, but in fact, it sometimes involves a very elaborate process. There are a variety of techniques developed to achieve that goal - many of which are based on so-called "competitive evaluation of models," that is, applying different models to the same data set and then comparing their performance to choose the best. These techniques - which are often considered the core of predictive data mining - include: Bagging (Voting, Averaging), Boosting, Stacking (Stacked Generalizations), and Meta-Learning. 

Stage 3: Deployment. That final stage involves using the model selected as best in the previous stage and applying it to new data in order to generate predictions or estimates of the expected outcome. 

The concept of Data Mining is becoming increasingly popular as a business information management tool where it is expected to reveal knowledge structures that can guide decisions in conditions of limited certainty. Recently, there has been increased interest in developing new analytic techniques specifically designed to address the issues relevant to business Data Mining (e.g., Classification Trees), but Data Mining is still based on the conceptual principles of statistics including the traditional Exploratory Data Analysis (EDA) and modeling and it shares with them both some components of its general approaches and specific techniques. 

However, an important general difference in the focus and purpose between Data Mining and the traditional Exploratory Data Analysis (EDA) is that Data Mining is more oriented towards applications than the basic nature of the underlying phenomena. In other words, Data Mining is relatively less concerned with identifying the specific relations between the involved variables. For example, uncovering the nature of the underlying functions or the specific types of interactive, multivariate dependencies between variables are not the main goal of Data Mining. Instead, the focus is on producing a solution that can generate useful predictions. Therefore, Data Mining accepts among others a "black box" approach to data exploration or knowledge discovery and uses not only the traditional Exploratory Data Analysis (EDA) techniques, but also such techniques as Neural Networks which can generate valid predictions but are not capable of identifying the specific nature of the interrelations between the variables on which the predictions are based. 

Data Mining is often considered to be "a blend of statistics, AI [artificial intelligence], and data base research" (Pregibon, 1997, p. 8), which until very recently was not commonly recognized as a field of interest for statisticians, and was even considered by some "a dirty word in Statistics" (Pregibon, 1997, p. 8). Due to its applied importance, however, the field emerges as a rapidly growing and major area (also in statistics) where important theoretical advances are being made (see, for example, the recent annual International Conferences on Knowledge Discovery and Data Mining, co-hosted by the American Statistical Association). 

For information on Data Mining techniques, please review the summary topics included below in this chapter of the Electronic Statistics Textbook. There are numerous books that review the theory and practice of data mining; the following books offer a representative sample of recent general books on data mining, representing a variety of approaches and perspectives: 
Berry, M., J., A., & Linoff, G., S., (2000). Mastering data mining. New York: Wiley.
Edelstein, H., A. (1999). Introduction to data mining and knowledge discovery (3rd ed). Potomac, MD: Two Crows Corp.
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in knowledge discovery & data mining. Cambridge, MA: MIT Press.
Han, J., Kamber, M. (2000). Data mining: Concepts and Techniques. New York: Morgan-Kaufman.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning : Data mining, inference, and prediction. New York: Springer.
Pregibon, D. (1997). Data Mining. Statistical Computing and Graphics, 7, 8. 
Weiss, S. M., & Indurkhya, N. (1997). Predictive data mining: A practical guide. New York: Morgan-Kaufman.
Westphal, C., Blaxton, T. (1998). Data mining solutions. New York: Wiley.
Witten, I. H., & Frank, E. (2000). Data mining. New York: Morgan-Kaufmann.
Crucial Concepts in Data Mining 

Bagging (Voting, Averaging)
The concept of bagging (voting for classification, averaging for regression-type problems with continuous dependent variables of interest) applies to the area of predictive data mining, to combine the predicted classifications (prediction) from multiple models, or from the same type of model for different learning data. It is also used to address the inherent instability of results when applying complex models to relatively small data sets. Suppose your data mining task is to build a model for predictive classification, and the dataset from which to train the model (learning data set, which contains observed classifications) is relatively small. You could repeatedly sub-sample (with replacement) from the dataset, and apply, for example, a tree classifier (e.g., C&RT and CHAID) to the successive samples. In practice, very different trees will often be grown for the different samples, illustrating the instability of models often evident with small datasets. One method of deriving a single prediction (for new observations) is to use all trees found in the different samples, and to apply some simple voting: The final classification is the one most often predicted by the different trees. Note that some weighted combination of predictions (weighted vote, weighted average) is also possible, and commonly used. A sophisticated (machine learning) algorithm for generating weights for weighted prediction or voting is the Boosting procedure. 

Boosting
The concept of boosting applies to the area of predictive data mining, to generate multiple models or classifiers (for prediction or classification), and to derive weights to combine the predictions from those models into a single prediction or predicted classification (see also Bagging). 

A simple algorithm for boosting works like this: Start by applying some method (e.g., a tree classifier such as C&RT or CHAID) to the learning data, where each observation is assigned an equal weight. Compute the predicted classifications, and apply weights to the observations in the learning sample that are inversely proportional to the accuracy of the classification. In other words, assign greater weight to those observations that were difficult to classify (where the misclassification rate was high), and lower weights to those that were easy to classify (where the misclassification rate was low). In the context of C&RT for example, different misclassification costs (for the different classes) can be applied, inversely proportional to the accuracy of prediction in each class. Then apply the classifier again to the weighted data (or with different misclassification costs), and continue with the next iteration (application of the analysis method for classification to the re-weighted data). 

Boosting will generate a sequence of classifiers, where each consecutive classifier in the sequence is an "expert" in classifying observations that were not well classified by those preceding it. During deployment (for prediction or classification of new cases), the predictions from the different classifiers can then be combined (e.g., via voting, or some weighted voting procedure) to derive a single best prediction or classification. 

Note that boosting can also be applied to learning methods that do not explicitly support weights or misclassification costs. In that case, random sub-sampling can be applied to the learning data in the successive steps of the iterative boosting procedure, where the probability for selection of an observation into the subsample is inversely proportional to the accuracy of the prediction for that observation in the previous iteration (in the sequence of iterations of the boosting procedure). 

CRISP
See Models for Data Mining. 

Data Preparation (in Data Mining)
Data preparation and cleaning is an often neglected but extremely important step in the data mining process. The old saying "garbage-in-garbage-out" is particularly applicable to the typical data mining projects where large data sets collected via some automatic methods (e.g., via the Web) serve as the input into the analyses. Often, the method by which the data where gathered was not tightly controlled, and so the data may contain out-of-range values (e.g., Income: -100), impossible data combinations (e.g., Gender: Male, Pregnant: Yes), and the like. Analyzing data that has not been carefully screened for such problems can produce highly misleading results, in particular in predictive data mining. 

Data Reduction (for Data Mining)
The term Data Reduction in the context of data mining is usually applied to projects where the goal is to aggregate or amalgamate the information contained in large datasets into manageable (smaller) information nuggets. Data reduction methods can include simple tabulation, aggregation (computing descriptive statistics) or more sophisticated techniques like clustering, principal components analysis, etc. 

See also predictive data mining, drill-down analysis. 

Deployment
The concept of deployment in predictive data mining refers to the application of a model for prediction or classification to new data. After a satisfactory model or set of models has been identified (trained) for a particular application, one usually wants to deploy those models so that predictions or predicted classifications can quickly be obtained for new data. For example, a credit card company may want to deploy a trained model or set of models (e.g., neural networks, meta-learner) to quickly identify transactions which have a high probability of being fraudulent. 

Drill-Down Analysis
The concept of drill-down analysis applies to the area of data mining, to denote the interactive exploration of data, in particular of large databases. The process of drill-down analyses begins by considering some simple break-downs of the data by a few variables of interest (e.g., Gender, geographic region, etc.). Various statistics, tables, histograms, and other graphical summaries can be computed for each group. Next one may want to "drill-down" to expose and further analyze the data "underneath" one of the categorizations, for example, one might want to further review the data for males from the mid-west. Again, various statistical and graphical summaries can be computed for those cases only, which might suggest further break-downs by other variables (e.g., income, age, etc.). At the lowest ("bottom") level are the raw data: For example, you may want to review the addresses of male customers from one region, for a certain income group, etc., and to offer to those customers some particular services of particular utility to that group. 

Feature Selection
One of the preliminary stage in predictive data mining, when the data set includes more variables than could be included (or would be efficient to include) in the actual model building phase (or even in initial exploratory operations), is to select predictors from a large list of candidates. For example, when data are collected via automated (computerized) methods, it is not uncommon that measurements are recorded for thousands or hundreds of thousands (or more) of predictors. The standard analytic methods for predictive data mining, such as neural network analyses, classification and regression trees, generalized linear models, or general linear models become impractical when the number of predictors exceed more than a few hundred variables. 

Feature selection selects a subset of predictors from a large list of candidate predictors without assuming that the relationships between the predictors and the dependent or outcome variables of interest are linear, or even monotone. Therefore, this is used as a pre-processor for predictive data mining, to select manageable sets of predictors that are likely related to the dependent (outcome) variables of interest, for further analyses with any of the other methods for regression and classification. 

Machine Learning
Machine learning, computational learning theory, and similar terms are often used in the context of Data Mining, to denote the application of generic model-fitting or classification algorithms for predictive data mining. Unlike traditional statistical data analysis, which is usually concerned with the estimation of population parameters by statistical inference, the emphasis in data mining (and machine learning) is usually on the accuracy of prediction (predicted classification), regardless of whether or not the "models" or techniques that are used to generate the prediction is interpretable or open to simple explanation. Good examples of this type of technique often applied to predictive data mining are neural networks or meta-learning techniques such as boosting, etc. These methods usually involve the fitting of very complex "generic" models, that are not related to any reasoning or theoretical understanding of underlying causal processes; instead, these techniques can be shown to generate accurate predictions or classification in crossvalidation samples. 

Meta-Learning
The concept of meta-learning applies to the area of predictive data mining, to combine the predictions from multiple models. It is particularly useful when the types of models included in the project are very different. In this context, this procedure is also referred to as Stacking (Stacked Generalization). 

Suppose your data mining project includes tree classifiers, such as C&RT and CHAID, linear discriminant analysis (e.g., see GDA), and Neural Networks. Each computes predicted classifications for a crossvalidation sample, from which overall goodness-of-fit statistics (e.g., misclassification rates) can be computed. Experience has shown that combining the predictions from multiple methods often yields more accurate predictions than can be derived from any one method (e.g., see Witten and Frank, 2000). The predictions from different classifiers can be used as input into a meta-learner, which will attempt to combine the predictions to create a final best predicted classification. So, for example, the predicted classifications from the tree classifiers, linear model, and the neural network classifier(s) can be used as input variables into a neural network meta-classifier, which will attempt to "learn" from the data how to combine the predictions from the different models to yield maximum classification accuracy. 

One can apply meta-learners to the results from different meta-learners to create "meta-meta"-learners, and so on; however, in practice such exponential increase in the amount of data processing, in order to derive an accurate prediction, will yield less and less marginal utility. 

Models for Data Mining
In the business environment, complex data mining projects may require the coordinate efforts of various experts, stakeholders, or departments throughout an entire organization. In the data mining literature, various "general frameworks" have been proposed to serve as blueprints for how to organize the process of gathering data, analyzing data, disseminating results, implementing results, and monitoring improvements. 

One such model, CRISP (Cross-Industry Standard Process for data mining) was proposed in the mid-1990s by a European consortium of companies to serve as a non-proprietary standard process model for data mining. This general approach postulates the following (perhaps not particularly controversial) general sequence of steps for data mining projects:
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Another approach - the Six Sigma methodology - is a well-structured, data-driven methodology for eliminating defects, waste, or quality control problems of all kinds in manufacturing, service delivery, management, and other business activities. This model has recently become very popular (due to its successful implementations) in various American industries, and it appears to gain favor worldwide. It postulated a sequence of, so-called, DMAIC steps - 
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- that grew up from the manufacturing, quality improvement, and process control traditions and is particularly well suited to production environments (including "production of services," i.e., service industries). 

Another framework of this kind (actually somewhat similar to Six Sigma) is the approach proposed by SAS Institute called SEMMA -
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- which is focusing more on the technical activities typically involved in a data mining project. 

All of these models are concerned with the process of how to integrate data mining methodology into an organization, how to "convert data into information," how to involve important stake-holders, and how to disseminate the information in a form that can easily be converted by stake-holders into resources for strategic decision making.

Some software tools for data mining are specifically designed and documented to fit into one of these specific frameworks. 

The general underlying philosophy of StatSoft's STATISTICA Data Miner is to provide a flexible data mining workbench that can be integrated into any organization, industry, or organizational culture, regardless of the general data mining process-model that the organization chooses to adopt. For example, STATISTICA Data Miner can include the complete set of (specific) necessary tools for ongoing company wide Six Sigma quality control efforts, and users can take advantage of its (still optional) DMAIC-centric user interface for industrial data mining tools. It can equally well be integrated into ongoing marketing research, CRM (Customer Relationship Management) projects, etc. that follow either the CRISP or SEMMA approach - it fits both of them perfectly well without favoring either one. Also, STATISTICA Data Miner offers all the advantages of a general data mining oriented "development kit" that includes easy to use tools for incorporating into your projects not only such components as custom database gateway solutions, prompted interactive queries, or proprietary algorithms, but also systems of access privileges, workgroup management, and other collaborative work tools that allow you to design large scale, enterprise-wide systems (e.g., following the CRISP, SEMMA, or a combination of both models) that involve your entire organization. 

Predictive Data Mining
The term Predictive Data Mining is usually applied to identify data mining projects with the goal to identify a statistical or neural network model or set of models that can be used to predict some response of interest. For example, a credit card company may want to engage in predictive data mining, to derive a (trained) model or set of models (e.g., neural networks, meta-learner) that can quickly identify transactions which have a high probability of being fraudulent. Other types of data mining projects may be more exploratory in nature (e.g., to identify cluster or segments of customers), in which case drill-down descriptive and exploratory methods would be applied. Data reduction is another possible objective for data mining (e.g., to aggregate or amalgamate the information in very large data sets into useful and manageable chunks). 

SEMMA
See Models for Data Mining. 

Stacked Generalization 
See Stacking. 

Stacking (Stacked Generalization)
The concept of stacking (short for Stacked Generalization) applies to the area of predictive data mining, to combine the predictions from multiple models. It is particularly useful when the types of models included in the project are very different. 

Suppose your data mining project includes tree classifiers, such as C&RT or CHAID, linear discriminant analysis (e.g., see GDA), and Neural Networks. Each computes predicted classifications for a crossvalidation sample, from which overall goodness-of-fit statistics (e.g., misclassification rates) can be computed. Experience has shown that combining the predictions from multiple methods often yields more accurate predictions than can be derived from any one method (e.g., see Witten and Frank, 2000). In stacking, the predictions from different classifiers are used as input into a meta-learner, which attempts to combine the predictions to create a final best predicted classification. So, for example, the predicted classifications from the tree classifiers, linear model, and the neural network classifier(s) can be used as input variables into a neural network meta-classifier, which will attempt to "learn" from the data how to combine the predictions from the different models to yield maximum classification accuracy. 

Other methods for combining the prediction from multiple models or methods (e.g., from multiple datasets used for learning) are Boosting and Bagging (Voting). 

Text Mining
While Data Mining is typically concerned with the detection of patterns in numeric data, very often important (e.g., critical to business) information is stored in the form of text. Unlike numeric data, text is often amorphous, and difficult to deal with. Text mining generally consists of the analysis of (multiple) text documents by extracting key phrases, concepts, etc. and the preparation of the text processed in that manner for further analyses with numeric data mining techniques (e.g., to determine co-occurrences of concepts, key phrases, names, addresses, product names, etc.). 

Voting
See Bagging. 
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Data Warehousing 

StatSoft defines data warehousing as a process of organizing the storage of large, multivariate data sets in a way that facilitates the retrieval of information for analytic purposes. 
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The most efficient data warehousing architecture will be capable of incorporating or at least referencing all data available in the relevant enterprise-wide information management systems, using designated technology suitable for corporate data base management (e.g., Oracle, Sybase, MS SQL Server. Also, a flexible, high-performance (see the IDP technology), open architecture approach to data warehousing - that flexibly integrates with the existing corporate systems and allows the users to organize and efficiently reference for analytic purposes enterprise repositories of data of practically any complexity - is offered in StatSoft enterprise systems such as SEDAS (STATISTICA Enterprise-wide Data Analysis System) and SEWSS (STATISTICA Enterprise-wide SPC System), which can also work in conjunction with STATISTICA Data Miner and WebSTATISTICA Server Applications. 
	To index 


On-Line Analytic Processing (OLAP) 

The term On-Line Analytic Processing - OLAP (or Fast Analysis of Shared Multidimensional Information - FASMI) refers to technology that allows users of multidimensional databases to generate on-line descriptive or comparative summaries ("views") of data and other analytic queries. Note that despite its name, analyses referred to as OLAP do not need to be performed truly "on-line" (or in real-time); the term applies to analyses of multidimensional databases (that may, obviously, contain dynamically updated information) through efficient "multidimensional" queries that reference various types of data. OLAP facilities can be integrated into corporate (enterprise-wide) database systems and they allow analysts and managers to monitor the performance of the business (e.g., such as various aspects of the manufacturing process or numbers and types of completed transactions at different locations) or the market. The final result of OLAP techniques can be very simple (e.g., frequency tables, descriptive statistics, simple cross-tabulations) or more complex (e.g., they may involve seasonal adjustments, removal of outliers, and other forms of cleaning the data). Although Data Mining techniques can operate on any kind of unprocessed or even unstructured information, they can also be applied to the data views and summaries generated by OLAP to provide more in-depth and often more multidimensional knowledge. In this sense, Data Mining techniques could be considered to represent either a different analytic approach (serving different purposes than OLAP) or as an analytic extension of OLAP. 
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Exploratory Data Analysis (EDA) 

EDA vs. Hypothesis Testing 

As opposed to traditional hypothesis testing designed to verify a priori hypotheses about relations between variables (e.g., "There is a positive correlation between the AGE of a person and his/her RISK TAKING disposition"), exploratory data analysis (EDA) is used to identify systematic relations between variables when there are no (or not complete) a priori expectations as to the nature of those relations. In a typical exploratory data analysis process, many variables are taken into account and compared, using a variety of techniques in the search for systematic patterns. 

Computational EDA techniques 

Computational exploratory data analysis methods include both simple basic statistics and more advanced, designated multivariate exploratory techniques designed to identify patterns in multivariate data sets. 

Basic statistical exploratory methods. The basic statistical exploratory methods include such techniques as examining distributions of variables (e.g., to identify highly skewed or non-normal, such as bi-modal patterns), reviewing large correlation matrices for coefficients that meet certain thresholds (see example above), or examining multi-way frequency tables (e.g., "slice by slice" systematically reviewing combinations of levels of control variables). 
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Multivariate exploratory techniques. Multivariate exploratory techniques designed specifically to identify patterns in multivariate (or univariate, such as sequences of measurements) data sets include: Cluster Analysis, Factor Analysis, Discriminant Function Analysis, Multidimensional Scaling, Log-linear Analysis, Canonical Correlation, Stepwise Linear and Nonlinear (e.g., Logit) Regression, Correspondence Analysis, Time Series Analysis, and Classification Trees. 
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Neural Networks. Neural Networks are analytic techniques modeled after the (hypothesized) processes of learning in the cognitive system and the neurological functions of the brain and capable of predicting new observations (on specific variables) from other observations (on the same or other variables) after executing a process of so-called learning from existing data. 
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For more information, see Neural Networks; see also STATISTICA Neural Networks. 

Graphical (data visualization) EDA techniques 

A large selection of powerful exploratory data analytic techniques is also offered by graphical data visualization methods that can identify relations, trends, and biases "hidden" in unstructured data sets. 

Brushing. Perhaps the most common and historically first widely used technique explicitly identified as graphical exploratory data analysis is brushing, an interactive method allowing one to select on-screen specific data points or subsets of data and identify their (e.g., common) characteristics, or to examine their effects on relations between relevant variables. Those relations between variables can be visualized by fitted functions (e.g., 2D lines or 3D surfaces) and their confidence intervals, thus, for example, one can examine changes in those functions by interactively (temporarily) removing or adding specific subsets of data. For example, one of many applications of the brushing technique is to select (i.e., highlight) in a matrix scatterplot all data points that belong to a certain category (e.g., a "medium" income level, see the highlighted subset in the fourth component graph of the first row in the illustration left) in order to examine how those specific observations contribute to relations between other variables in the same data set (e.g, the correlation between the "debt" and "assets" in the current example). If the brushing facility supports features like "animated brushing" or "automatic function re-fitting", one can define a dynamic brush that would move over the consecutive ranges of a criterion variable (e.g., "income" measured on a continuous scale or a discrete [3-level] scale as on the illustration above) and examine the dynamics of the contribution of the criterion variable to the relations between other relevant variables in the same data set. 
	
	


Other graphical EDA techniques. Other graphical exploratory analytic techniques include function fitting and plotting, data smoothing, overlaying and merging of multiple displays, categorizing data, splitting/merging subsets of data in graphs, aggregating data in graphs, identifying and marking subsets of data that meet specific conditions, icon plots, 
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shading, plotting confidence intervals and confidence areas (e.g., ellipses), 
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generating tessellations, spectral planes, 
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integrated layered compressions, 
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and projected contours, data image reduction techniques, interactive (and continuous) rotation 
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with animated stratification (cross-sections) of 3D displays, and selective highlighting of specific series and blocks of data. 

Verification of results of EDA 

The exploration of data can only serve as the first stage of data analysis and its results can be treated as tentative at best as long as they are not confirmed, e.g., crossvalidated, using a different data set (or and independent subset). If the result of the exploratory stage suggests a particular model, then its validity can be verified by applying it to a new data set and testing its fit (e.g., testing its predictive validity). Case selection conditions can be used to quickly define subsets of data (e.g., for estimation and verification), and for testing the robustness of results. 
Neural Networks
(see also Neural Networks chapter) 

Neural Networks are analytic techniques modeled after the (hypothesized) processes of learning in the cognitive system and the neurological functions of the brain and capable of predicting new observations (on specific variables) from other observations (on the same or other variables) after executing a process of so-called learning from existing data. Neural Networks is one of the Data Mining techniques. 
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The first step is to design a specific network architecture (that includes a specific number of "layers" each consisting of a certain number of "neurons"). The size and structure of the network needs to match the nature (e.g., the formal complexity) of the investigated phenomenon. Because the latter is obviously not known very well at this early stage, this task is not easy and often involves multiple "trials and errors." (Now, there is, however, neural network software that applies artificial intelligence techniques to aid in that tedious task and finds "the best" network architecture.) 

The new network is then subjected to the process of "training." In that phase, neurons apply an iterative process to the number of inputs (variables) to adjust the weights of the network in order to optimally predict (in traditional terms one could say, find a "fit" to) the sample data on which the "training" is performed. After the phase of learning from an existing data set, the new network is ready and it can then be used to generate predictions. 
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The resulting "network" developed in the process of "learning" represents a pattern detected in the data. Thus, in this approach, the "network" is the functional equivalent of a model of relations between variables in the traditional model building approach. However, unlike in the traditional models, in the "network," those relations cannot be articulated in the usual terms used in statistics or methodology to describe relations between variables (such as, for example, "A is positively correlated with B but only for observations where the value of C is low and D is high"). Some neural networks can produce highly accurate predictions; they represent, however, a typical a-theoretical (one can say, "a black box") research approach. That approach is concerned only with practical considerations, that is, with the predictive validity of the solution and its applied relevance and not with the nature of the underlying mechanism or its relevance for any "theory" of the underlying phenomena. 

However, it should be mentioned that Neural Network techniques can also be used as a component of analyses designed to build explanatory models because Neural Networks can help explore data sets in search for relevant variables or groups of variables; the results of such explorations can then facilitate the process of model building. Moreover, now there is neural network software that uses sophisticated algorithms to search for the most relevant input variables, thus potentially contributing directly to the model building process. 

One of the major advantages of neural networks is that, theoretically, they are capable of approximating any continuous function, and thus the researcher does not need to have any hypotheses about the underlying model, or even to some extent, which variables matter. An important disadvantage, however, is that the final solution depends on the initial conditions of the network, and, as stated before, it is virtually impossible to "interpret" the solution in traditional, analytic terms, such as those used to build theories that explain phenomena. 
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Some authors stress the fact that neural networks use, or one should say, are expected to use, massively parallel computation models. For example Haykin (1994) defines neural network as: 

"a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects: (1) Knowledge is acquired by the network through a learning process, and (2) Interneuron connection strengths known as synaptic weights are used to store the knowledge." (p. 2). 
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However, as Ripley (1996) points out, the vast majority of contemporary neural network applications run on single-processor computers and he argues that a large speed-up can be achieved not only by developing software that will take advantage of multiprocessor hardware by also by designing better (more efficient) learning algorithms. 

Neural networks is one of the methods used in Data Mining; see also Exploratory Data Analysis. For more information on neural networks, see Haykin (1994), Masters (1995), Ripley (1996), and Welstead (1994). For a discussion of neural networks as statistical tools, see Warner and Misra (1996). See also, STATISTICA Neural Networks. 
However, as the sample size (of samples used to create the sampling distribution of the mean) increases, the shape of the sampling distribution becomes normal. Note that for n=30, the shape of that distribution is "almost" perfectly normal (see the close match of the fit). This principle is called the central limit theorem (this term was first used by Pólya, 1920; German, "Zentraler Grenzwertsatz"). 

How do we know the consequences of violating the normality assumption? Although many of the statements made in the preceding paragraphs can be proven mathematically, some of them do not have theoretical proofs and can be demonstrated only empirically, via so-called Monte-Carlo experiments. In these experiments, large numbers of samples are generated by a computer following predesigned specifications and the results from such samples are analyzed using a variety of tests. This way we can empirically evaluate the type and magnitude of errors or biases to which we are exposed when certain theoretical assumptions of the tests we are using are not met by our data. Specifically, Monte-Carlo studies were used extensively with normal distribution-based tests to determine how sensitive they are to violations of the assumption of normal distribution of the analyzed variables in the population. The general conclusion from these studies is that the consequences of such violations are less severe than previously thought. Although these conclusions should not entirely discourage anyone from being concerned about the normality assumption, they have increased the overall popularity of the distribution-dependent statistical tests in all areas of research. 
The use of categorical predictor variables. The use of categorical predictor variables or effects in a discriminant function analysis model may be (statistically) questionable. For example, you can use GDA to analyze a 2 by 2 frequency table, by specifying one variable in the 2 by 2 table as the dependent variable, and the other as the predictor. Clearly, the (ab)use of GDA in this manner would be silly (although, interestingly, in most cases you will get results that are generally compatible with those you would get by computing a simple Chi-square test for the 2 by 2 table). On the other hand, if you only consider the parameter estimates computed by GDA as the least squares solution to a set of linear (prediction) equations, then the use of categorical predictors in GDA is fully justified; moreover, it is not uncommon in applied research to be confronted with a mixture of continuous and categorical predictors (e.g., income or age which are continuous, along with occupational status, which is categorical) for predicting a categorical dependent variable. In those cases, it can be very instructive to consider specific models involving the categorical predictors, and possibly interactions between categorical and continuous predictors for classifying observations. However, to reiterate, the use of categorical predictor variables in discriminant function analysis is not widely documented, and you should proceed cautiously before accepting the results of statistical significance tests, and before drawing final conclusions from your analyses. Also remember that there are alternative methods available to perform similar analyses, namely, the multinomial logit models available in Generalized Linear Models (GLZ), and the methods for analyzing multi-way frequency tables in Log-Linear. 
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General Purpose 
Discriminant function analysis is used to determine which variables discriminate between two or more naturally occurring groups. For example, an educational researcher may want to investigate which variables discriminate between high school graduates who decide (1) to go to college, (2) to attend a trade or professional school, or (3) to seek no further training or education. For that purpose the researcher could collect data on numerous variables prior to students' graduation. After graduation, most students will naturally fall into one of the three categories. Discriminant Analysis could then be used to determine which variable(s) are the best predictors of students' subsequent educational choice. 

A medical researcher may record different variables relating to patients' backgrounds in order to learn which variables best predict whether a patient is likely to recover completely (group 1), partially (group 2), or not at all (group 3). A biologist could record different characteristics of similar types (groups) of flowers, and then perform a discriminant function analysis to determine the set of characteristics that allows for the best discrimination between the types. 
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Computational Approach 
Computationally, discriminant function analysis is very similar to analysis of variance (ANOVA). Let us consider a simple example. Suppose we measure height in a random sample of 50 males and 50 females. Females are, on the average, not as tall as males, and this difference will be reflected in the difference in means (for the variable Height). Therefore, variable height allows us to discriminate between males and females with a better than chance probability: if a person is tall, then he is likely to be a male, if a person is short, then she is likely to be a female. 

We can generalize this reasoning to groups and variables that are less "trivial." For example, suppose we have two groups of high school graduates: Those who choose to attend college after graduation and those who do not. We could have measured students' stated intention to continue on to college one year prior to graduation. If the means for the two groups (those who actually went to college and those who did not) are different, then we can say that intention to attend college as stated one year prior to graduation allows us to discriminate between those who are and are not college bound (and this information may be used by career counselors to provide the appropriate guidance to the respective students). 

To summarize the discussion so far, the basic idea underlying discriminant function analysis is to determine whether groups differ with regard to the mean of a variable, and then to use that variable to predict group membership (e.g., of new cases). 

Analysis of Variance. Stated in this manner, the discriminant function problem can be rephrased as a one-way analysis of variance (ANOVA) problem. Specifically, one can ask whether or not two or more groups are significantly different from each other with respect to the mean of a particular variable. To learn more about how one can test for the statistical significance of differences between means in different groups you may want to read the Overview section to ANOVA/MANOVA. However, it should be clear that, if the means for a variable are significantly different in different groups, then we can say that this variable discriminates between the groups. 

In the case of a single variable, the final significance test of whether or not a variable discriminates between groups is the F test. As described in Elementary Concepts and ANOVA /MANOVA, F is essentially computed as the ratio of the between-groups variance in the data over the pooled (average) within-group variance. If the between-group variance is significantly larger then there must be significant differences between means. 

Multiple Variables. Usually, one includes several variables in a study in order to see which one(s) contribute to the discrimination between groups. In that case, we have a matrix of total variances and covariances; likewise, we have a matrix of pooled within-group variances and covariances. We can compare those two matrices via multivariate F tests in order to determined whether or not there are any significant differences (with regard to all variables) between groups. This procedure is identical to multivariate analysis of variance or MANOVA. As in MANOVA, one could first perform the multivariate test, and, if statistically significant, proceed to see which of the variables have significantly different means across the groups. Thus, even though the computations with multiple variables are more complex, the principal reasoning still applies, namely, that we are looking for variables that discriminate between groups, as evident in observed mean differences. 
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Advantages of GDA 

Specifying models for predictor variables and predictor effects. One advantage of applying the general linear model to the discriminant analysis problem is that you can specify complex models for the set of predictor variables. For example, you can specify for a set of continuous predictor variables, a polynomial regression model, response surface model, factorial regression, or mixture surface regression (without an intercept). Thus, you could analyze a constrained mixture experiment (where the predictor variable values must sum to a constant), where the dependent variable of interest is categorical in nature. In fact, GDA does not impose any particular restrictions on the type of predictor variable (categorical or continuous) that can be used, or the models that can be specified. However, when using categorical predictor variables, caution should be used (see "A note of caution for models with categorical predictors, and other advanced techniques" below).

Stepwise and best-subset analyses. In addition to the traditional stepwise analyses for single continuous predictors provided in Discriminant Analysis, General Discriminant Analysis makes available the options for stepwise and best-subset analyses provided in General Regression Models (GRM). Specifically, you can request stepwise and best-subset selection of predictors or sets of predictors (in multiple-degree of freedom effects, involving categorical predictors), based on the F-to-enter and p-to-enter statistics (associated with the multivariate Wilks' Lambda test statistic). In addition, when a cross-validation sample is specified, best-subset selection can also be based on the misclassification rates for the cross-validation sample; in other words, after estimating the discriminant functions for a given set of predictors, the misclassification rates for the cross-validation sample are computed, and the model (subset of predictors) that yields the lowest misclassification rate for the cross-validation sample is chosen. This is a powerful technique for choosing models that may yield good predictive validity, while avoiding overfitting of the data (see also Neural Networks).

Desirability profiling of posterior classification probabilities. Another unique option of General Discriminant Analysis (GDA) is the inclusion of Response/desirability profiler options. These options are described in some detail in the context of Experimental Design (DOE). In short, the predicted response values for each dependent variable are computed, and those values can be combined into a single desirability score. A graphical summary can then be produced to show the "behavior" of the predicted responses and the desirability score over the ranges of values for the predictor variables. In GDA, you can profile both simple predicted values (like in General Regression Models) for the coded dependent variables (i.e., dummy-coded categories of the categorical dependent variable), and you can also profile posterior prediction probabilities. This unique latter option allows you to evaluate how different values for the predictor variables affect the predicted classification of cases, and is particularly useful when interpreting the results for complex models that involve categorical and continuous predictors and their interactions. 

A note of caution for models with categorical predictors, and other advanced techniques. General Discriminant Analysis provides functionality that makes this technique a general tool for classification and data mining. However, most -- if not all -- textbook treatments of discriminant function analysis are limited to simple and stepwise analyses with single degree of freedom continuous predictors. No "experience" (in the literature) exists regarding issues of robustness and effectiveness of these techniques, when they are generalized in the manner provided in this very powerful analysis. The use of best-subset methods, in particular when used in conjunction with categorical predictors or when using the misclassification rates in a cross-validation sample for choosing the best subset of predictors, should be considered a heuristic search method, rather than a statistical analysis technique.
Stepwise Discriminant Analysis 
Probably the most common application of discriminant function analysis is to include many measures in the study, in order to determine the ones that discriminate between groups. For example, an educational researcher interested in predicting high school graduates' choices for further education would probably include as many measures of personality, achievement motivation, academic performance, etc. as possible in order to learn which one(s) offer the best prediction. 

Model. Put another way, we want to build a "model" of how we can best predict to which group a case belongs. In the following discussion we will use the term "in the model" in order to refer to variables that are included in the prediction of group membership, and we will refer to variables as being "not in the model" if they are not included. 

Forward stepwise analysis. In stepwise discriminant function analysis, a model of discrimination is built step-by-step. Specifically, at each step all variables are reviewed and evaluated to determine which one will contribute most to the discrimination between groups. That variable will then be included in the model, and the process starts again. 

Backward stepwise analysis. One can also step backwards; in that case all variables are included in the model and then, at each step, the variable that contributes least to the prediction of group membership is eliminated. Thus, as the result of a successful discriminant function analysis, one would only keep the "important" variables in the model, that is, those variables that contribute the most to the discrimination between groups. 

F to enter, F to remove. The stepwise procedure is "guided" by the respective F to enter and F to remove values. The F value for a variable indicates its statistical significance in the discrimination between groups, that is, it is a measure of the extent to which a variable makes a unique contribution to the prediction of group membership. If you are familiar with stepwise multiple regression procedures, then you may interpret the F to enter/remove values in the same way as in stepwise regression. 

Capitalizing on chance. A common misinterpretation of the results of stepwise discriminant analysis is to take statistical significance levels at face value. By nature, the stepwise procedures will capitalize on chance because they "pick and choose" the variables to be included in the model so as to yield maximum discrimination. Thus, when using the stepwise approach the researcher should be aware that the significance levels do not reflect the true alpha error rate, that is, the probability of erroneously rejecting H0 (the null hypothesis that there is no discrimination between groups). 
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Interpreting a Two-Group Discriminant Function 
In the two-group case, discriminant function analysis can also be thought of as (and is analogous to) multiple regression (see Multiple Regression; the two-group discriminant analysis is also called Fisher linear discriminant analysis after Fisher, 1936; computationally all of these approaches are analogous). If we code the two groups in the analysis as 1 and 2, and use that variable as the dependent variable in a multiple regression analysis, then we would get results that are analogous to those we would obtain via Discriminant Analysis. In general, in the two-group case we fit a linear equation of the type: 

Group = a + b1*x1 + b2*x2 + ... + bm*xm 

where a is a constant and b1 through bm are regression coefficients. The interpretation of the results of a two-group problem is straightforward and closely follows the logic of multiple regression: Those variables with the largest (standardized) regression coefficients are the ones that contribute most to the prediction of group membership. 
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Discriminant Functions for Multiple Groups 
When there are more than two groups, then we can estimate more than one discriminant function like the one presented above. For example, when there are three groups, we could estimate (1) a function for discriminating between group 1 and groups 2 and 3 combined, and (2) another function for discriminating between group 2 and group 3. For example, we could have one function that discriminates between those high school graduates that go to college and those who do not (but rather get a job or go to a professional or trade school), and a second function to discriminate between those graduates that go to a professional or trade school versus those who get a job. The b coefficients in those discriminant functions could then be interpreted as before. 

Canonical analysis. When actually performing a multiple group discriminant analysis, we do not have to specify how to combine groups so as to form different discriminant functions. Rather, you can automatically determine some optimal combination of variables so that the first function provides the most overall discrimination between groups, the second provides second most, and so on. Moreover, the functions will be independent or orthogonal, that is, their contributions to the discrimination between groups will not overlap. Computationally, you will perform a canonical correlation analysis (see also Canonical Correlation) that will determine the successive functions and canonical roots (the term root refers to the eigenvalues that are associated with the respective canonical function). The maximum number of functions will be equal to the number of groups minus one, or the number of variables in the analysis, whichever is smaller. 

Interpreting the discriminant functions. As before, we will get b (and standardized beta) coefficients for each variable in each discriminant (now also called canonical) function, and they can be interpreted as usual: the larger the standardized coefficient, the greater is the contribution of the respective variable to the discrimination between groups. (Note that we could also interpret the structure coefficients; see below.) However, these coefficients do not tell us between which of the groups the respective functions discriminate. We can identify the nature of the discrimination for each discriminant (canonical) function by looking at the means for the functions across groups. We can also visualize how the two functions discriminate between groups by plotting the individual scores for the two discriminant functions (see the example graph below). 
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In this example, Root (function) 1 seems to discriminate mostly between groups Setosa, and Virginic and Versicol combined. In the vertical direction (Root 2), a slight trend of Versicol points to fall below the center line (0) is apparent. 

Factor structure matrix. Another way to determine which variables "mark" or define a particular discriminant function is to look at the factor structure. The factor structure coefficients are the correlations between the variables in the model and the discriminant functions; if you are familiar with factor analysis (see Factor Analysis) you may think of these correlations as factor loadings of the variables on each discriminant function. 

Some authors have argued that these structure coefficients should be used when interpreting the substantive "meaning" of discriminant functions. The reasons given by those authors are that (1) supposedly the structure coefficients are more stable, and (2) they allow for the interpretation of factors (discriminant functions) in the manner that is analogous to factor analysis. However, subsequent Monte Carlo research (Barcikowski & Stevens, 1975; Huberty, 1975) has shown that the discriminant function coefficients and the structure coefficients are about equally unstable, unless the n is fairly large (e.g., if there are 20 times more cases than there are variables). The most important thing to remember is that the discriminant function coefficients denote the unique (partial) contribution of each variable to the discriminant function(s), while the structure coefficients denote the simple correlations between the variables and the function(s). If one wants to assign substantive "meaningful" labels to the discriminant functions (akin to the interpretation of factors in factor analysis), then the structure coefficients should be used (interpreted); if one wants to learn what is each variable's unique contribution to the discriminant function, use the discriminant function coefficients (weights). 

Significance of discriminant functions. One can test the number of roots that add significantly to the discrimination between group. Only those found to be statistically significant should be used for interpretation; non-significant functions (roots) should be ignored. 

Summary. To summarize, when interpreting multiple discriminant functions, which arise from analyses with more than two groups and more than one variable, one would first test the different functions for statistical significance, and only consider the significant functions for further examination. Next, we would look at the standardized b coefficients for each variable for each significant function. The larger the standardized b coefficient, the larger is the respective variable's unique contribution to the discrimination specified by the respective discriminant function. In order to derive substantive "meaningful" labels for the discriminant functions, one can also examine the factor structure matrix with the correlations between the variables and the discriminant functions. Finally, we would look at the means for the significant discriminant functions in order to determine between which groups the respective functions seem to discriminate. 
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Assumptions 
As mentioned earlier, discriminant function analysis is computationally very similar to MANOVA, and all assumptions for MANOVA mentioned in ANOVA/MANOVA apply. In fact, you may use the wide range of diagnostics and statistical tests of assumption that are available to examine your data for the discriminant analysis. 

Normal distribution. It is assumed that the data (for the variables) represent a sample from a multivariate normal distribution. You can examine whether or not variables are normally distributed with histograms of frequency distributions. However, note that violations of the normality assumption are usually not "fatal," meaning, that the resultant significance tests etc. are still "trustworthy." You may use specific tests for normality in addition to graphs. 

Homogeneity of variances/covariances. It is assumed that the variance/covariance matrices of variables are homogeneous across groups. Again, minor deviations are not that important; however, before accepting final conclusions for an important study it is probably a good idea to review the within-groups variances and correlation matrices. In particular a scatterplot matrix can be produced and can be very useful for this purpose. When in doubt, try re-running the analyses excluding one or two groups that are of less interest. If the overall results (interpretations) hold up, you probably do not have a problem. You may also use the numerous tests available to examine whether or not this assumption is violated in your data. However, as mentioned in ANOVA/MANOVA, the multivariate Box M test for homogeneity of variances/covariances is particularly sensitive to deviations from multivariate normality, and should not be taken too "seriously." 

Correlations between means and variances. The major "real" threat to the validity of significance tests occurs when the means for variables across groups are correlated with the variances (or standard deviations). Intuitively, if there is large variability in a group with particularly high means on some variables, then those high means are not reliable. However, the overall significance tests are based on pooled variances, that is, the average variance across all groups. Thus, the significance tests of the relatively larger means (with the large variances) would be based on the relatively smaller pooled variances, resulting erroneously in statistical significance. In practice, this pattern may occur if one group in the study contains a few extreme outliers, who have a large impact on the means, and also increase the variability. To guard against this problem, inspect the descriptive statistics, that is, the means and standard deviations or variances for such a correlation. 

The matrix ill-conditioning problem. Another assumption of discriminant function analysis is that the variables that are used to discriminate between groups are not completely redundant. As part of the computations involved in discriminant analysis, you will invert the variance/covariance matrix of the variables in the model. If any one of the variables is completely redundant with the other variables then the matrix is said to be ill-conditioned, and it cannot be inverted. For example, if a variable is the sum of three other variables that are also in the model, then the matrix is ill-conditioned. 

Tolerance values. In order to guard against matrix ill-conditioning, constantly check the so-called tolerance value for each variable. This tolerance value is computed as 1 minus R-square of the respective variable with all other variables included in the current model. Thus, it is the proportion of variance that is unique to the respective variable. You may also refer to Multiple Regression to learn more about multiple regression and the interpretation of the tolerance value. In general, when a variable is almost completely redundant (and, therefore, the matrix ill-conditioning problem is likely to occur), the tolerance value for that variable will approach 0. 
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Classification 
Another major purpose to which discriminant analysis is applied is the issue of predictive classification of cases. Once a model has been finalized and the discriminant functions have been derived, how well can we predict to which group a particular case belongs? 

A priori and post hoc predictions. Before going into the details of different estimation procedures, we would like to make sure that this difference is clear. Obviously, if we estimate, based on some data set, the discriminant functions that best discriminate between groups, and then use the same data to evaluate how accurate our prediction is, then we are very much capitalizing on chance. In general, one will always get a worse classification when predicting cases that were not used for the estimation of the discriminant function. Put another way, post hoc predictions are always better than a priori predictions. (The trouble with predicting the future a priori is that one does not know what will happen; it is much easier to find ways to predict what we already know has happened.) Therefore, one should never base one's confidence regarding the correct classification of future observations on the same data set from which the discriminant functions were derived; rather, if one wants to classify cases predictively, it is necessary to collect new data to "try out" (cross-validate) the utility of the discriminant functions. 

Classification functions. These are not to be confused with the discriminant functions. The classification functions can be used to determine to which group each case most likely belongs. There are as many classification functions as there are groups. Each function allows us to compute classification scores for each case for each group, by applying the formula: 

Si = ci + wi1*x1 + wi2*x2 + ... + wim*xm 

In this formula, the subscript i denotes the respective group; the subscripts 1, 2, ..., m denote the m variables; ci is a constant for the i'th group, wij is the weight for the j'th variable in the computation of the classification score for the i'th group; xj is the observed value for the respective case for the j'th variable. Si is the resultant classification score. 

We can use the classification functions to directly compute classification scores for some new observations. 

Classification of cases. Once we have computed the classification scores for a case, it is easy to decide how to classify the case: in general we classify the case as belonging to the group for which it has the highest classification score (unless the a priori classification probabilities are widely disparate; see below). Thus, if we were to study high school students' post-graduation career/educational choices (e.g., attending college, attending a professional or trade school, or getting a job) based on several variables assessed one year prior to graduation, we could use the classification functions to predict what each student is most likely to do after graduation. However, we would also like to know the probability that the student will make the predicted choice. Those probabilities are called posterior probabilities, and can also be computed. However, to understand how those probabilities are derived, let us first consider the so-called Mahalanobis distances. 

Mahalanobis distances. You may have read about these distances in other parts of the manual. In general, the Mahalanobis distance is a measure of distance between two points in the space defined by two or more correlated variables. For example, if there are two variables that are uncorrelated, then we could plot points (cases) in a standard two-dimensional scatterplot; the Mahalanobis distances between the points would then be identical to the Euclidean distance; that is, the distance as, for example, measured by a ruler. If there are three uncorrelated variables, we could also simply use a ruler (in a 3-D plot) to determine the distances between points. If there are more than 3 variables, we cannot represent the distances in a plot any more. Also, when the variables are correlated, then the axes in the plots can be thought of as being non-orthogonal; that is, they would not be positioned in right angles to each other. In those cases, the simple Euclidean distance is not an appropriate measure, while the Mahalanobis distance will adequately account for the correlations. 

Mahalanobis distances and classification. For each group in our sample, we can determine the location of the point that represents the means for all variables in the multivariate space defined by the variables in the model. These points are called group centroids. For each case we can then compute the Mahalanobis distances (of the respective case) from each of the group centroids. Again, we would classify the case as belonging to the group to which it is closest, that is, where the Mahalanobis distance is smallest. 

Posterior classification probabilities. Using the Mahalanobis distances to do the classification, we can now derive probabilities. The probability that a case belongs to a particular group is basically proportional to the Mahalanobis distance from that group centroid (it is not exactly proportional because we assume a multivariate normal distribution around each centroid). Because we compute the location of each case from our prior knowledge of the values for that case on the variables in the model, these probabilities are called posterior probabilities. In summary, the posterior probability is the probability, based on our knowledge of the values of other variables, that the respective case belongs to a particular group. Some software packages will automatically compute those probabilities for all cases (or for selected cases only for cross-validation studies). 

A priori classification probabilities. There is one additional factor that needs to be considered when classifying cases. Sometimes, we know ahead of time that there are more observations in one group than in any other; thus, the a priori probability that a case belongs to that group is higher. For example, if we know ahead of time that 60% of the graduates from our high school usually go to college (20% go to a professional school, and another 20% get a job), then we should adjust our prediction accordingly: a priori, and all other things being equal, it is more likely that a student will attend college that choose either of the other two options. You can specify different a priori probabilities, which will then be used to adjust the classification of cases (and the computation of posterior probabilities) accordingly. 

In practice, the researcher needs to ask him or herself whether the unequal number of cases in different groups in the sample is a reflection of the true distribution in the population, or whether it is only the (random) result of the sampling procedure. In the former case, we would set the a priori probabilities to be proportional to the sizes of the groups in our sample, in the latter case we would specify the a priori probabilities as being equal in each group. The specification of different a priori probabilities can greatly affect the accuracy of the prediction. 

Summary of the prediction. A common result that one looks at in order to determine how well the current classification functions predict group membership of cases is the classification matrix. The classification matrix shows the number of cases that were correctly classified (on the diagonal of the matrix) and those that were misclassified. 

Another word of caution. To reiterate, post hoc predicting of what has happened in the past is not that difficult. It is not uncommon to obtain very good classification if one uses the same cases from which the classification functions were computed. In order to get an idea of how well the current classification functions "perform," one must classify (a priori) different cases, that is, cases that were not used to estimate the classification functions. You can include or exclude cases from the computations; thus, the classification matrix can be computed for "old" cases as well as "new" cases. Only the classification of new cases allows us to assess the predictive validity of the classification functions (see also cross-validation); the classification of old cases only provides a useful diagnostic tool to identify outliers or areas where the classification function seems to be less adequate. 

Summary. In general Discriminant Analysis is a very useful tool (1) for detecting the variables that allow the researcher to discriminate between different (naturally occurring) groups, and (2) for classifying cases into different groups with a better than chance accuracy.
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General Purpose 

In some research applications one can formulate hypotheses about the specific distribution of the variable of interest. For example, variables whose values are determined by an infinite number of independent random events will be distributed following the normal distribution: one can think of a person's height as being the result of very many independent factors such as numerous specific genetic predispositions, early childhood diseases, nutrition, etc. (see the animation below for an example of the normal distribution). As a result, height tends to be normally distributed in the U.S. population. On the other hand, if the values of a variable are the result of very rare events, then the variable will be distributed according to the Poisson distribution (sometimes called the distribution of rare events). For example, industrial accidents can be thought of as the result of the intersection of a series of unfortunate (and unlikely) events, and their frequency tends to be distributed according to the Poisson distribution. These and other distributions are described in greater detail in the respective glossary topics. 
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Another common application where distribution fitting procedures are useful is when one wants to verify the assumption of normality before using some parametric test (see General Purpose of Nonparametric Tests). For example, you may want to use the Kolmogorov-Smirnov test for normality or the Shapiro-Wilks' W test to test for normality. 
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Fit of the Observed Distribution 

For predictive purposes it is often desirable to understand the shape of the underlying distribution of the population. To determine this underlying distribution, it is common to fit the observed distribution to a theoretical distribution by comparing the frequencies observed in the data to the expected frequencies of the theoretical distribution (i.e., a Chi-square goodness of fit test). In addition to this type a test, some software packages also allow you to compute Maximum Likelihood tests and Method of Matching Moments (see Fitting Distributions by Moments in the Process Analysis chapter) tests. 

Which Distribution to use. As described above, certain types of variables follow specific distributions. Variables whose values are determined by an infinite number of independent random events will be distributed following the normal distribution, whereas variables whose values are the result of an extremely rare event would follow the Poisson distribution. The major distributions that have been proposed for modeling survival or failure times are the exponential (and linear exponential) distribution, the Weibull distribution of extreme events, and the Gompertz distribution. The section on types of distributions contains a number of distributions generally giving a brief example of what type of data would most commonly follow a specific distribution as well as the probability density functin (pdf) for each distribution. 
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Types of Distributions 

Bernoulli Distribution. This distribution best describes all situations where a "trial" is made resulting in either "success" or "failure," such as when tossing a coin, or when modeling the success or failure of a surgical procedure. The Bernoulli distribution is defined as: 

f(x) = px *(1-p)1-x,    for x  {0,1} 

where 

	p
	is the probability that a particular event (e.g., success) will occur.
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Beta Distribution. The beta distribution arises from a transformation of the F distribution and is typically used to model the distribution of order statistics. Because the beta distribution is bounded on both sides, it is often used for representing processes with natural lower and upper limits. For examples, refer to Hahn and Shapiro (1967). The beta distribution is defined as: 

f(x) = (+)/[()()] * x-1*(1-x)-1,    for 0 < x < 1,  > 0,  > 0 

where 

	
	is the Gamma function

	, 
	are the shape parameters (Shape1 and Shape2, respectively)
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The animation above shows the beta distribution as the two shape parameters change. 
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Binomial Distribution. The binomial distribution is useful for describing distributions of binomial events, such as the number of males and females in a random sample of companies, or the number of defective components in samples of 20 units taken from a production process. The binomial distribution is defined as: 

f(x) = [n!/(x!*(n-x)!)]*px * qn-x,    for x = 0,1,2,...,n 

where 

	p
	is the probability that the respective event will occur

	q
	is equal to 1-p 

	n
	is the maximum number of independent trials. 
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Cauchy Distribution. The Cauchy distribution is interesting for theoretical reasons. Although its mean can be taken as zero, since it is symmetrical about zero, the expectation, variance, higher moments, and moment generating function do not exist. The Cauchy distribution is defined as: 

f(x) = 1/(**{1+[(x- )/ ]2}),    for 0 <  

where 

	
	is the location parameter (median)

	
	is the scale parameter

	
	is the constant Pi (3.1415...)
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The animation above shows the changing shape of the Cauchy distribution when the location parameter equals 0 and the scale parameter equals 1, 2, 3, and 4. 
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Chi-square Distribution. The sum of  independent squared random variables, each distributed following the standard normal distribution, is distributed as Chi-square with  degrees of freedom. This distribution is most frequently used in the modeling of random variables (e.g., representing frequencies) in statistical applications. The Chi-square distribution is defined by: 

f(x) = {1/[2/2* (/2)]} * [x(/2)-1 * e-x/2],    for  = 1, 2, ..., 0 < x 

where 

	
	is the degrees of freedom 

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

	
	(gamma) is the Gamma function. 


[image: image65.png]Densiy Function: Distrbution Functior:

¥= 04
50
di=1





The above animation shows the shape of the Chi-square distribution as the degrees of freedom increase (1, 2, 5, 10, 25 and 50). 
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Exponential Distribution. If T is the time between occurrences of rare events that happen on the average with a rate l per unit of time, then T is distributed exponentially with parameter  (lambda). Thus, the exponential distribution is frequently used to model the time interval between successive random events. Examples of variables distributed in this manner would be the gap length between cars crossing an intersection, life-times of electronic devices, or arrivals of customers at the check-out counter in a grocery store. The exponential distribution function is defined as: 

f(x) = *e-x    for 0  x < ,  > 0 

where 

	
	is an exponential function parameter (an alternative parameterization is scale parameter b=1/)

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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Extreme Value. The extreme value distribution is often used to model extreme events, such as the size of floods, gust velocities encountered by airplanes, maxima of stock marked indices over a given year, etc.; it is also often used in reliability testing, for example in order to represent the distribution of failure times for electric circuits (see Hahn and Shapiro, 1967). The extreme value (Type I) distribution has the probability density function: 

f(x) = 1/b * e^[-(x-a)/b] * e^{-e^[-(x-a)/b]},    for - < x < , b > 0 

where 

	a
	is the location parameter

	b
	is the scale parameter

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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F Distribution. Snedecor's F distribution is most commonly used in tests of variance (e.g., ANOVA). The ratio of two chi-squares divided by their respective degrees of freedom is said to follow an F distribution. The F distribution (for x > 0) has the probability density function (for  = 1, 2, ...;  = 1, 2, ...): 

f(x) = [{(+)/2}]/[(/2)(/2)] * (/)(/2) * x[(/2)-1] * {1+[(/)*x]}[-(+)/2],    for 0  x <  =1,2,..., =1,2,... 

where 

	, 
	are the shape parameters, degrees of freedom

	
	is the Gamma function
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The animation above shows various tail areas (p-values) for an F distribution with both degrees of freedom equal to 10. 
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Gamma Distribution. The probability density function of the exponential distribution has a mode of zero. In many instances, it is known a priori that the mode of the distribution of a particular random variable of interest is not equal to zero (e.g., when modeling the distribution of the life-times of a product such as an electric light bulb, or the serving time taken at a ticket booth at a baseball game). In those cases, the gamma distribution is more appropriate for describing the underlying distribution. The gamma distribution is defined as: 

f(x) = {1/[b(c)]}*[x/b]c-1*e-x/b    for 0  x, c > 0 

where 

	
	is the Gamma function 

	c
	is the Shape parameter

	b
	is the Scale parameter.

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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The animation above shows the gamma distribution as the shape parameter changes from 1 to 6. 
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Geometric Distribution. If independent Bernoulli trials are made until a "success" occurs, then the total number of trials required is a geometric random variable. The geometric distribution is defined as: 

f(x) = p*(1-p)x,    for x = 1,2,... 

where 

	p
	is the probability that a particular event (e.g., success) will occur.
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Gompertz Distribution. The Gompertz distribution is a theoretical distribution of survival times. Gompertz (1825) proposed a probability model for human mortality, based on the assumption that the "average exhaustion of a man's power to avoid death to be such that at the end of equal infinetely small intervals of time he lost equal portions of his remaining power to oppose destruction which he had at the commencement of these intervals" (Johnson, Kotz, Blakrishnan, 1995, p. 25). The resultant hazard function: 

r(x)=Bcx,    for x  0, B > 0, c  1 

is often used in survival analysis. See Johnson, Kotz, Blakrishnan (1995) for additional details. 
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Laplace Distribution. For interesting mathematical applications of the Laplace distribution see Johnson and Kotz (1995). The Laplace (or Double Exponential) distribution is defined as: 

f(x) = 1/(2b) * e[-(|x-a|/b)],    for - < x <  

where 

	a
	is the location parameter (mean)

	b
	is the scale parameter 

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)


[image: image68.png]Density Functior: Distribution Function:

b




The graphic above shows the changing shape of the Laplace distribution when the location parameter equals 0 and the scale parameter equals 1, 2, 3, and 4. 
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Logistic Distribution. The logistic distribution is used to model binary responses (e.g., Gender) and is commonly used in logistic regression. The logistic distribution is defined as: 

f(x) = (1/b) * e[-(x-a)/b] * {1+e[-(x-a)/b]}^-2,    for - < x < , 0 < b 

where 

	a
	is the location parameter (mean)

	b
	is the scale parameter

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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The graphic above shows the changing shape of the logistic distribution when the location parameter equals 0 and the scale parameter equals 1, 2, and 3. 
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Log-normal Distribution. The log-normal distribution is often used in simulations of variables such as personal incomes, age at first marriage, or tolerance to poison in animals. In general, if x is a sample from a normal distribution, then y = ex is a sample from a log-normal distribution. Thus, the log-normal distribution is defined as: 

f(x) = 1/[x(2)1/2] * e-[log(x)-]**2/2**2,    for 0 < x < ,  > 0,  > 0 

where 

	
	is the scale parameter

	
	is the shape parameter

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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The animation above shows the log-normal distribution with mu equal to 0 and sigma equals .10, .30, .50, .70, and .90. 
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Normal Distribution. The normal distribution (the "bell-shaped curve" which is symmetrical about the mean) is a theoretical function commonly used in inferential statistics as an approximation to sampling distributions (see also Elementary Concepts). In general, the normal distribution provides a good model for a random variable, when: 

There is a strong tendency for the variable to take a central value; 

Positive and negative deviations from this central value are equally likely; 

The frequency of deviations falls off rapidly as the deviations become larger. 

As an underlying mechanism that produces the normal distribution, one may think of an infinite number of independent random (binomial) events that bring about the values of a particular variable. For example, there are probably a nearly infinite number of factors that determine a person's height (thousands of genes, nutrition, diseases, etc.). Thus, height can be expected to be normally distributed in the population. The normal distribution function is determined by the following formula: 

f(x) = 1/[(2*)1/2*] * e**{-1/2*[(x-)/]2 },    for - < x <  

where 

	
	is the mean 

	
	is the standard deviation 

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)

	
	is the constant Pi (3.14...)
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The animation above shows several tail areas of the standard normal distribution (i.e., the normal distribution with a mean of 0 and a standard deviation of 1). The standard normal distribution is often used in hypothesis testing. 
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Pareto Distribution. The Pareto distribution is commonly used in monitoring production processes (see Quality Control and Process Analysis). For example, a machine which produces copper wire will occasionally generate a flaw at some point along the wire. The Pareto distribution can be used to model the length of wire between successive flaws. The standard Pareto distribution is defined as: 

f(x) = c/xc+1,    for 1  x, c < 0 

where 

	c
	is the shape parameter
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The animation above shows the Pareto distribution for the shape parameter equal to 1, 2, 3, 4, and 5. 
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Poisson Distribution. The Poisson distribution is also sometimes referred to as the distribution of rare events. Examples of Poisson distributed variables are number of accidents per person, number of sweepstakes won per person, or the number of catastrophic defects found in a production process. It is defined as: 

f(x) = (x*e-)/x!,    for x = 0,1,2,..., 0 <  

where 

	
	(lambda) is the expected value of x (the mean) 

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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Rayleigh Distribution. If two independent variables y1 and y2 are independent from each other and normally distributed with equal variance, then the variable x = (y12+ y22) will follow the Rayleigh distribution. Thus, an example (and appropriate metaphor) for such a variable would be the distance of darts from the target in a dart-throwing game, where the errors in the two dimensions of the target plane are independent and normally distributed. The Rayleigh distribution is defined as: 

f(x) = x/b2 * e^[-(x2/2b2)],    for 0  x < , b > 0 

where 

	b
	is the scale parameter

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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The graphic above shows the changing shape of the Rayleigh distribution when the scale parameter equals 1, 2, and 3. 
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Rectangular Distribution. The rectangular distribution is useful for describing random variables with a constant probability density over the defined range a<b. 

f(x) = 1/(b-a),    for a<x<b
       = 0 ,           elsewhere 

where 

	a<b
	are constants.
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Student's t Distribution. The student's t distribution is symmetric about zero, and its general shape is similar to that of the standard normal distribution. It is most commonly used in testing hypothesis about the mean of a particular population. The student's t distribution is defined as (for n = 1, 2, . . .): 

f(x) = [(+1)/2] / (/2) * (*)-1/2 * [1 + (x2/)-(+1)/2 

where 

	
	is the shape parameter, degrees of freedom

	
	is the Gamma function

	
	is the constant Pi (3.14 . . .)
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The shape of the student's t distribution is determined by the degrees of freedom. As shown in the animation above, its shape changes as the degrees of freedom increase. 
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Weibull Distribution. As described earlier, the exponential distribution is often used as a model of time-to-failure measurements, when the failure (hazard) rate is constant over time. When the failure probability varies over time, then the Weibull distribution is appropriate. Thus, the Weibull distribution is often used in reliability testing (e.g., of electronic relays, ball bearings, etc.; see Hahn and Shapiro, 1967). The Weibull distribution is defined as: 

f(x) = c/b*(x/b)(c-1) * e[-(x/b)^c],    for 0  x < , b > 0, c > 0 

where 

	b
	is the scale parameter

	c
	is the shape parameter

	e
	is the base of the natural logarithm, sometimes called Euler's e (2.71...)
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The animation above shows the Weibull distribution as the shape parameter increases (.5, 1, 2, 3, 4, 5, and 10).
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DOE Overview 

Experiments in Science and Industry 
Experimental methods are widely used in research as well as in industrial settings, however, sometimes for very different purposes. The primary goal in scientific research is usually to show the statistical significance of an effect that a particular factor exerts on the dependent variable of interest (for details concerning the concept of statistical significance see Elementary Concepts). 

In industrial settings, the primary goal is usually to extract the maximum amount of unbiased information regarding the factors affecting a production process from as few (costly) observations as possible. While in the former application (in science) analysis of variance (ANOVA) techniques are used to uncover the interactive nature of reality, as manifested in higher-order interactions of factors, in industrial settings interaction effects are often regarded as a "nuisance" (they are often of no interest; they only complicate the process of identifying important factors). 

Differences in techniques 
These differences in purpose have a profound effect on the techniques that are used in the two settings. If you review a standard ANOVA text for the sciences, for example the classic texts by Winer (1962) or Keppel (1982), you will find that they will primarily discuss designs with up to, perhaps, five factors (designs with more than six factors are usually impractical; see the ANOVA/MANOVA chapter). The focus of these discussions is how to derive valid and robust statistical significance tests. However, if you review standard texts on experimentation in industry (Box, Hunter, and Hunter, 1978; Box and Draper, 1987; Mason, Gunst, and Hess, 1989; Taguchi, 1987) you will find that they will primarily discuss designs with many factors (e.g., 16 or 32) in which interaction effects cannot be evaluated, and the primary focus of the discussion is how to derive unbiased main effect (and, perhaps, two-way interaction) estimates with a minimum number of observations. 

This comparison can be expanded further, however, a more detailed description of experimental design in industry will now be discussed and other differences will become clear. Note that the General Linear Models and ANOVA/MANOVA chapters contain detailed discussions of typical design issues in scientific research; the General Linear Model procedure is a very comprehensive implementation of the general linear model approach to ANOVA/MANOVA (univariate and multivariate ANOVA). There are of course applications in industry where general ANOVA designs, as used in scientific research, can be immensely useful. You may want to read the General Linear Models and ANOVA/MANOVA chapters to gain a more general appreciation of the range of methods encompassed by the term Experimental Design. 

Overview 
The general ideas and principles on which experimentation in industry is based, and the types of designs used will be discussed in the following paragraphs. The following paragraphs are meant to be introductory in nature. However, it is assumed that you are familiar with the basic ideas of analysis of variance and the interpretation of main effects and interactions in ANOVA. Otherwise, it is strongly recommend that you read the Introductory Overview section for ANOVA/MANOVA and the General Linear Models chapter. 

General Ideas 
In general, every machine used in a production process allows its operators to adjust various settings, affecting the resultant quality of the product manufactured by the machine. Experimentation allows the production engineer to adjust the settings of the machine in a systematic manner and to learn which factors have the greatest impact on the resultant quality. Using this information, the settings can be constantly improved until optimum quality is obtained. To illustrate this reasoning, here are a few examples: 

Example 1: Dyestuff manufacture. Box and Draper (1987, page 115) report an experiment concerned with the manufacture of certain dyestuff. Quality in this context can be described in terms of a desired (specified) hue and brightness and maximum fabric strength. Moreover, it is important to know what to change in order to produce a different hue and brightness should the consumers' taste change. Put another way, the experimenter would like to identify the factors that affect the brightness, hue, and strength of the final product. In the example described by Box and Draper, there are 6 different factors that are evaluated in a 2**(6-0) design (the 2**(k-p) notation is explained below). The results of the experiment show that the three most important factors determining fabric strength are the Polysulfide index, Time, and Temperature (see Box and Draper, 1987, page 116). One can summarize the expected effect (predicted means) for the variable of interest (i.e., fabric strength in this case) in a so- called cube-plot. This plot shows the expected (predicted) mean fabric strength for the respective low and high settings for each of the three variables (factors). 
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Example 1.1: Screening designs. In the previous example, 6 different factors were simultaneously evaluated. It is not uncommon, that there are very many (e.g., 100) different factors that may potentially be important. Special designs (e.g., Plackett-Burman designs, see Plackett and Burman, 1946) have been developed to screen such large numbers of factors in an efficient manner, that is, with the least number of observations necessary. For example, you can design and analyze an experiment with 127 factors and only 128 runs (observations); still, you will be able to estimate the main effects for each factor, and thus, you can quickly identify which ones are important and most likely to yield improvements in the process under study. 

Example 2: 3**3 design. Montgomery (1976, page 204) describes an experiment conducted in order identify the factors that contribute to the loss of soft drink syrup due to frothing during the filling of five- gallon metal containers. Three factors where considered: (a) the nozzle configuration, (b) the operator of the machine, and (c) the operating pressure. Each factor was set at three different levels, resulting in a complete 3**(3-0) experimental design (the 3**(k-p) notation is explained below). 
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Moreover, two measurements were taken for each combination of factor settings, that is, the 3**(3-0) design was completely replicated once. 

Example 3: Maximizing yield of a chemical reaction. The yield of many chemical reactions is a function of time and temperature. Unfortunately, these two variables often do not affect the resultant yield in a linear fashion. In other words, it is not so that "the longer the time, the greater the yield" and "the higher the temperature, the greater the yield." Rather, both of these variables are usually related in a curvilinear fashion to the resultant yield. 
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Thus, in this example your goal as experimenter would be to optimize the yield surface that is created by the two variables: time and temperature. 

Example 4: Testing the effectiveness of four fuel additives. Latin square designs are useful when the factors of interest are measured at more than two levels, and the nature of the problem suggests some blocking. For example, imagine a study of 4 fuel additives on the reduction in oxides of nitrogen (see Box, Hunter, and Hunter, 1978, page 263). You may have 4 drivers and 4 cars at your disposal. You are not particularly interested in any effects of particular cars or drivers on the resultant oxide reduction; however, you do not want the results for the fuel additives to be biased by the particular driver or car. Latin square designs allow you to estimate the main effects of all factors in the design in an unbiased manner. With regard to the example, the arrangement of treatment levels in a Latin square design assures that the variability among drivers or cars does not affect the estimation of the effect due to different fuel additives. 

Example 5: Improving surface uniformity in the manufacture of polysilicon wafers. The manufacture of reliable microprocessors requires very high consistency in the manufacturing process. Note that in this instance, it is equally, if not more important to control the variability of certain product characteristics than it is to control the average for a characteristic. For example, with regard to the average surface thickness of the polysilicon layer, the manufacturing process may be perfectly under control; yet, if the variability of the surface thickness on a wafer fluctuates widely, the resultant microchips will not be reliable. Phadke (1989) describes how different characteristics of the manufacturing process (such as deposition temperature, deposition pressure, nitrogen flow, etc.) affect the variability of the polysilicon surface thickness on wafers. However, no theoretical model exists that would allow the engineer to predict how these factors affect the uniformness of wafers. Therefore, systematic experimentation with the factors is required to optimize the process. This is a typical example where Taguchi robust design methods would be applied. 

Example 6: Mixture designs. Cornell (1990, page 9) reports an example of a typical (simple) mixture problem. Specifically, a study was conducted to determine the optimum texture of fish patties as a result of the relative proportions of different types of fish (Mullet, Sheepshead, and Croaker) that made up the patties. Unlike in non-mixture experiments, the total sum of the proportions must be equal to a constant, for example, to 100%. The results of such experiments are usually graphically represented in so-called triangular (or ternary) graphs. 
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In general, the overall constraint -- that the three components must sum to a constant -- is reflected in the triangular shape of the graph (see above). 

Example 6.1: Constrained mixture designs. It is particularly common in mixture designs that the relative amounts of components are further constrained (in addition to the constraint that they must sum to, for example, 100%). For example, suppose we wanted to design the best-tasting fruit punch consisting of a mixture of juices from five fruits. Since the resulting mixture is supposed to be a fruit punch, pure blends consisting of the pure juice of only one fruit are necessarily excluded. Additional constraints may be placed on the "universe" of mixtures due to cost constraints or other considerations, so that one particular fruit cannot, for example, account for more than 30% of the mixtures (otherwise the fruit punch would be too expensive, the shelf-life would be compromised, the punch could not be produced in large enough quantities, etc.). Such so-called constrained experimental regions present numerous problems, which, however, can be addressed. 
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In general, under those conditions, one seeks to design an experiment that can potentially extract the maximum amount of information about the respective response function (e.g., taste of the fruit punch) in the experimental region of interest. 

Computational Problems 
There are basically two general issues to which Experimental Design is addressed: 

How to design an optimal experiment, and 

How to analyze the results of an experiment. 

With regard to the first question, there are different considerations that enter into the different types of designs, and they will be discussed shortly. In the most general terms, the goal is always to allow the experimenter to evaluate in an unbiased (or least biased) way, the consequences of changing the settings of a particular factor, that is, regardless of how other factors were set. In more technical terms, you attempt to generate designs where main effects are unconfounded among themselves, and in some cases, even unconfounded with the interaction of factors. 

Components of Variance, Denominator Synthesis 

There are several statistical methods for analyzing designs with random effects (see Methods for Analysis of Variance). The Variance Components and Mixed Model ANOVA/ANCOVA chapter discusses numerous options for estimating variance components for random effects, and for performing approximate F tests based on synthesized error terms. 

Summary 
Experimental methods are finding increasing use in manufacturing to optimize the production process. Specifically, the goal of these methods is to identify the optimum settings for the different factors that affect the production process. In the discussion so far, the major classes of designs that are typically used in industrial experimentation have been introduced: 2**(k-p) (two-level, multi-factor) designs, screening designs for large numbers of factors, 3**(k-p) (three-level, multi-factor) designs (mixed designs with 2 and 3 level factors are also supported), central composite (or response surface) designs, Latin square designs, Taguchi robust design analysis, mixture designs, and special procedures for constructing experiments in constrained experimental regions. Interestingly, many of these experimental techniques have "made their way" from the production plant into management, and successful implementations have been reported in profit planning in business, cash-flow optimization in banking, etc. (e.g., see Yokyama and Taguchi, 1975). 

These techniques will now be described in greater detail in the following sections: 

2**(k-p) Fractional Factorial Designs 

2**(k-p) Maximally Unconfounded and Minimum Aberration Designs 

3**(k-p) , Box-Behnken, and Mixed 2 and 3 Level Factorial Designs 

Central Composite and Non-Factorial Response Surface Designs 

Latin Square Designs 

Taguchi Methods: Robust Design Experiments 

Mixture designs and triangular surfaces 

Designs for constrained surfaces and mixtures 

Constructing D- and A-optimal designs for surfaces and mixtures 



2**(k-p) Fractional Factorial Designs at 2 Levels 

Basic Idea 
In many cases, it is sufficient to consider the factors affecting the production process at two levels. For example, the temperature for a chemical process may either be set a little higher or a little lower, the amount of solvent in a dyestuff manufacturing process can either be slightly increased or decreased, etc. The experimenter would like to determine whether any of these changes affect the results of the production process. The most intuitive approach to study those factors would be to vary the factors of interest in a full factorial design, that is, to try all possible combinations of settings. This would work fine, except that the number of necessary runs in the experiment (observations) will increase geometrically. For example, if you want to study 7 factors, the necessary number of runs in the experiment would be 2**7 = 128. To study 10 factors you would need 2**10 = 1,024 runs in the experiment. Because each run may require time-consuming and costly setting and resetting of machinery, it is often not feasible to require that many different production runs for the experiment. In these conditions, fractional factorials are used that "sacrifice" interaction effects so that main effects may still be computed correctly. 

Generating the Design 
A technical description of how fractional factorial designs are constructed is beyond the scope of this introduction. Detailed accounts of how to design 2**(k-p) experiments can be found, for example, in Bayne and Rubin (1986), Box and Draper (1987), Box, Hunter, and Hunter (1978), Montgomery (1991), Daniel (1976), Deming and Morgan (1993), Mason, Gunst, and Hess (1989), or Ryan (1989), to name only a few of the many text books on this subject. In general, it will successively "use" the highest-order interactions to generate new factors. For example, consider the following design that includes 11 factors but requires only 16 runs (observations). 

	Design: 2**(11-7), Resolution III

	Run
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
	1
1
1
1
1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
	1
1
1
1
-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
	1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
	1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
	1
1
-1
-1
-1
-1
1
1
-1
-1
1
1
1
1
-1
-1
	1
-1
-1
1
-1
1
1
-1
1
-1
-1
1
-1
1
1
-1
	1
-1
-1
1
1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
	1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
	1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
1
-1
-1
1
	1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
	1
1
-1
-1
1
1
-1
-1
-1
-1
1
1
-1
-1
1
1


Reading the design. The design displayed above should be interpreted as follows. Each column contains +1's or -1's to indicate the setting of the respective factor (high or low, respectively). So for example, in the first run of the experiment, set all factors A through K to the plus setting (e.g., a little higher than before); in the second run, set factors A, B, and C to the positive setting, factor D to the negative setting, and so on. Note that there are numerous options provided to display (and save) the design using notation other than ±1 to denote factor settings. For example, you may use actual values of factors (e.g., 90 degrees Celsius and 100 degrees Celsius) or text labels (Low temperature, High temperature). 

Randomizing the runs. Because many other things may change from production run to production run, it is always a good practice to randomize the order in which the systematic runs of the designs are performed. 

The Concept of Design Resolution 
The design above is described as a 2**(11-7) design of resolution III (three). This means that you study overall k = 11 factors (the first number in parentheses); however, p = 7 of those factors (the second number in parentheses) were generated from the interactions of a full 2**[(11-7) = 4] factorial design. As a result, the design does not give full resolution; that is, there are certain interaction effects that are confounded with (identical to) other effects. In general, a design of resolution R is one where no l-way interactions are confounded with any other interaction of order less than R-l. In the current example, R is equal to 3. Here, no l = 1 level interactions (i.e., main effects) are confounded with any other interaction of order less than R-l = 3-1 = 2. Thus, main effects in this design are confounded with two- way interactions; and consequently, all higher-order interactions are equally confounded. If you had included 64 runs, and generated a 2**(11-5) design, the resultant resolution would have been R = IV (four). You would have concluded that no l=1-way interaction (main effect) is confounded with any other interaction of order less than R-l = 4-1 = 3. In this design then, main effects are not confounded with two-way interactions, but only with three-way interactions. What about the two-way interactions? No l=2-way interaction is confounded with any other interaction of order less than R-l = 4-2 = 2. Thus, the two-way interactions in that design are confounded with each other. 

Plackett-Burman (Hadamard Matrix) Designs for Screening 
When one needs to screen a large number of factors to identify those that may be important (i.e., those that are related to the dependent variable of interest), one would like to employ a design that allows one to test the largest number of factor main effects with the least number of observations, that is to construct a resolution III design with as few runs as possible. One way to design such experiments is to confound all interactions with "new" main effects. Such designs are also sometimes called saturated designs, because all information in those designs is used to estimate the parameters, leaving no degrees of freedom to estimate the error term for the ANOVA. Because the added factors are created by equating (aliasing, see below), the "new" factors with the interactions of a full factorial design, these designs always will have 2**k runs (e.g., 4, 8, 16, 32, and so on). Plackett and Burman (1946) showed how full factorial design can be fractionalized in a different manner, to yield saturated designs where the number of runs is a multiple of 4, rather than a power of 2. These designs are also sometimes called Hadamard matrix designs. Of course, you do not have to use all available factors in those designs, and, in fact, sometimes you want to generate a saturated design for one more factor than you are expecting to test. This will allow you to estimate the random error variability, and test for the statistical significance of the parameter estimates. 

Enhancing Design Resolution via Foldover 
One way in which a resolution III design can be enhanced and turned into a resolution IV design is via foldover (e.g., see Box and Draper, 1987, Deming and Morgan, 1993): Suppose you have a 7-factor design in 8 runs: 

	Design: 2**(7-4) design

	Run
	A
	B
	C
	D
	E
	F
	G

	1
2
3
4
5
6
7
8
	1
1
1
1
-1
-1
-1
-1
	1
1
-1
-1
1
1
-1
-1
	1
-1
1
-1
1
-1
1
-1
	1
1
-1
-1
-1
-1
1
1
	1
-1
1
-1
-1
1
-1
1
	1
-1
-1
1
1
-1
-1
1
	1
-1
-1
1
-1
1
1
-1


This is a resolution III design, that is, the two-way interactions will be confounded with the main effects. You can turn this design into a resolution IV design via the Foldover (enhance resolution) option. The foldover method copies the entire design and appends it to the end, reversing all signs: 

	Design: 2**(7-4) design (+Foldover)

	 
Run
	 
A
	 
B
	 
C
	 
D
	 
E
	 
F
	 
G
	New:
H

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
	1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
	1
1
-1
-1
1
1
-1
-1
-1
-1
1
1
-1
-1
1
1
	1
-1
1
-1
1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
	1
1
-1
-1
-1
-1
1
1
-1
-1
1
1
1
1
-1
-1
	1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
	1
-1
-1
1
1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
	1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
1
-1
-1
1
	1
1
1
1
1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1


Thus, the standard run number 1 was -1, -1, -1, 1, 1, 1, -1; the new run number 9 (the first run of the "folded-over" portion) has all signs reversed: 1, 1, 1, -1, -1, -1, 1. In addition to enhancing the resolution of the design, we also have gained an 8'th factor (factor H), which contains all +1's for the first eight runs, and -1's for the folded-over portion of the new design. Note that the resultant design is actually a 2**(8-4) design of resolution IV (see also Box and Draper, 1987, page 160). 

Aliases of Interactions: Design Generators 
To return to the example of the resolution R = III design, now that you know that main effects are confounded with two-way interactions, you may ask the question, "Which interaction is confounded with which main effect?" 

	 
 
 
Factor
	Fractional Design Generators
2**(11-7) design
(Factors are denoted by numbers)
Alias

	  5
  6
  7
  8
  9
10
11
	   123
  234
  134
  124
1234
    12
    13


Design generators. The design generators shown above are the "key" to how factors 5 through 11 were generated by assigning them to particular interactions of the first 4 factors of the full factorial 2**4 design. Specifically, factor 5 is identical to the 123 (factor 1 by factor 2 by factor 3) interaction. Factor 6 is identical to the 234 interaction, and so on. Remember that the design is of resolution III (three), and you expect some main effects to be confounded with some two-way interactions; indeed, factor 10 (ten) is identical to the 12 (factor 1 by factor 2) interaction, and factor 11 (eleven) is identical to the 13 (factor 1 by factor 3) interaction. Another way in which these equivalencies are often expressed is by saying that the main effect for factor 10 (ten) is an alias for the interaction of 1 by 2. (The term alias was first used by Finney, 1945). 

To summarize, whenever you want to include fewer observations (runs) in your experiment than would be required by the full factorial 2**k design, you "sacrifice" interaction effects and assign them to the levels of factors. The resulting design is no longer a full factorial but a fractional factorial. 

The fundamental identity. Another way to summarize the design generators is in a simple equation. Namely, if, for example, factor 5 in a fractional factorial design is identical to the 123 (factor 1 by factor 2 by factor 3) interaction, then it follows that multiplying the coded values for the 123 interaction by the coded values for factor 5 will always result in +1 (if all factor levels are coded ±1); or: 

I = 1235 

where I stands for +1 (using the standard notation as, for example, found in Box and Draper, 1987). Thus, we also know that factor 1 is confounded with the 235 interaction, factor 2 with the 135, interaction, and factor 3 with the 125 interaction, because, in each instance their product must be equal to 1. The confounding of two-way interactions is also defined by this equation, because the 12 interaction multiplied by the 35 interaction must yield 1, and hence, they are identical or confounded. Therefore, one can summarize all confounding in a design with such a fundamental identity equation. 

Blocking 
In some production processes, units are produced in natural "chunks" or blocks. You want to make sure that these blocks do not bias your estimates of main effects. For example, you may have a kiln to produce special ceramics, but the size of the kiln is limited so that you cannot produce all runs of your experiment at once. In that case you need to break up the experiment into blocks. However, you do not want to run positive settings of all factors in one block, and all negative settings in the other. Otherwise, any incidental differences between blocks would systematically affect all estimates of the main effects of the factors of interest. Rather, you want to distribute the runs over the blocks so that any differences between blocks (i.e., the blocking factor) do not bias your results for the factor effects of interest. This is accomplished by treating the blocking factor as another factor in the design. Consequently, you "lose" another interaction effect to the blocking factor, and the resultant design will be of lower resolution. However, these designs often have the advantage of being statistically more powerful, because they allow you to estimate and control the variability in the production process that is due to differences between blocks. 

Replicating the Design 
It is sometimes desirable to replicate the design, that is, to run each combination of factor levels in the design more than once. This will allow you to later estimate the so-called pure error in the experiment. The analysis of experiments is further discussed below; however, it should be clear that, when replicating the design, one can compute the variability of measurements within each unique combination of factor levels. This variability will give an indication of the random error in the measurements (e.g., due to uncontrolled factors, unreliability of the measurement instrument, etc.), because the replicated observations are taken under identical conditions (settings of factor levels). Such an estimate of the pure error can be used to evaluate the size and statistical significance of the variability that can be attributed to the manipulated factors. 

Partial replications. When it is not possible or feasible to replicate each unique combination of factor levels (i.e., the full design), one can still gain an estimate of pure error by replicating only some of the runs in the experiment. However, one must be careful to consider the possible bias that may be introduced by selectively replicating only some runs. If one only replicates those runs that are most easily repeated (e.g., gathers information at the points where it is "cheapest"), one may inadvertently only choose those combinations of factor levels that happen to produce very little (or very much) random variability -- causing one to underestimate (or overestimate) the true amount of pure error. Thus, one should carefully consider, typically based on your knowledge about the process that is being studied, which runs should be replicated, that is, which runs will yield a good (unbiased) estimate of pure error. 

Adding Center Points 
Designs with factors that are set at two levels implicitly assume that the effect of the factors on the dependent variable of interest (e.g., fabric Strength) is linear. It is impossible to test whether or not there is a non-linear (e.g., quadratic) component in the relationship between a factor A and a dependent variable, if A is only evaluated at two points (.i.e., at the low and high settings). If one suspects that the relationship between the factors in the design and the dependent variable is rather curve-linear, then one should include one or more runs where all (continuous) factors are set at their midpoint. Such runs are called center-point runs (or center points), since they are, in a sense, in the center of the design (see graph). 
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Later in the analysis (see below), one can compare the measurements for the dependent variable at the center point with the average for the rest of the design. This provides a check for curvature (see Box and Draper, 1987): If the mean for the dependent variable at the center of the design is significantly different from the overall mean at all other points of the design, then one has good reason to believe that the simple assumption that the factors are linearly related to the dependent variable, does not hold. 

Analyzing the Results of a 2**(k-p) Experiment 

Analysis of variance. Next, one needs to determine exactly which of the factors significantly affected the dependent variable of interest. For example, in the study reported by Box and Draper (1987, page 115), it is desired to learn which of the factors involved in the manufacture of dyestuffs affected the strength of the fabric. In this example, factors 1 (Polysulfide), 4 (Time), and 6 (Temperature) significantly affected the strength of the fabric. Note that to simplify matters, only main effects are shown below. 

	ANOVA; Var.:STRENGTH; R-sqr = .60614; Adj:.56469 (fabrico.sta)

	 
	2**(6-0) design; MS Residual = 3.62509
DV: STRENGTH

	 
	SS
	df
	MS
	F
	p

	(1)POLYSUFD
(2)REFLUX
(3)MOLES
(4)TIME
(5)SOLVENT
(6)TEMPERTR
Error
Total SS
	48.8252
7.9102
.1702
142.5039
2.7639
115.8314
206.6302
524.6348
	1
1
1
1
1
1
57
63
	48.8252
7.9102
.1702
142.5039
2.7639
115.8314
3.6251
 
	13.46867
2.18206
.04694
39.31044
.76244
31.95269
 
 
	.000536
.145132
.829252
.000000
.386230
.000001
 
 


Pure error and lack of fit. If the experimental design is at least partially replicated, then one can estimate the error variability for the experiment from the variability of the replicated runs. Since those measurements were taken under identical conditions, that is, at identical settings of the factor levels, the estimate of the error variability from those runs is independent of whether or not the "true" model is linear or non-linear in nature, or includes higher-order interactions. The error variability so estimated represents pure error, that is, it is entirely due to unreliabilities in the measurement of the dependent variable. If available, one can use the estimate of pure error to test the significance of the residual variance, that is, all remaining variability that cannot be accounted for by the factors and their interactions that are currently in the model. If, in fact, the residual variability is significantly larger than the pure error variability, then one can conclude that there is still some statistically significant variability left that is attributable to differences between the groups, and hence, that there is an overall lack of fit of the current model. 

	ANOVA; Var.:STRENGTH; R-sqr = .58547; Adj:.56475 (fabrico.sta)

	 
	2**(3-0) design; MS Pure Error = 3.594844
DV: STRENGTH

	 
	SS
	df
	MS
	F
	p

	(1)POLYSUFD
(2)TIME
(3)TEMPERTR
Lack of Fit
Pure Error
Total SS
	48.8252
142.5039
115.8314
16.1631
201.3113
524.6348
	1
1
1
4
56
63
	48.8252
142.5039
115.8314
4.0408
3.5948
 
	13.58200
39.64120
32.22154
1.12405
 
 
	.000517
.000000
.000001
.354464
 
 


For example, the table above shows the results for the three factors that were previously identified as most important in their effect on fabric strength; all other factors where ignored in the analysis. As you can see in the row with the label Lack of Fit, when the residual variability for this model (i.e., after removing the three main effects) is compared against the pure error estimated from the within-group variability, the resulting F test is not statistically significant. Therefore, this result additionally supports the conclusion that, indeed, factors Polysulfide, Time, and Temperature significantly affected resultant fabric strength in an additive manner (i.e., there are no interactions). Or, put another way, all differences between the means obtained in the different experimental conditions can be sufficiently explained by the simple additive model for those three variables. 

Parameter or effect estimates. Now, look at how these factors affected the strength of the fabrics. 

	 
	Effect
	Std.Err.
	t (57)
	p

	Mean/Interc.
(1)POLYSUFD
(2)REFLUX
(3)MOLES
(4)TIME
(5)SOLVENT
(6)TEMPERTR
	11.12344
1.74688
.70313
.10313
2.98438
-.41562
2.69062
	.237996
.475992
.475992
.475992
.475992
.475992
.475992
	46.73794
3.66997
1.47718
.21665
6.26980
-.87318
5.65267
	.000000
.000536
.145132
.829252
.000000
.386230
.000001


The numbers above are the effect or parameter estimates. With the exception of the overall Mean/Intercept, these estimates are the deviations of the mean of the negative settings from the mean of the positive settings for the respective factor. For example, if you change the setting of factor Time from low to high, then you can expect an improvement in Strength by 2.98; if you set the value for factor Polysulfd to its high setting, you can expect a further improvement by 1.75, and so on. 

As you can see, the same three factors that were statistically significant show the largest parameter estimates; thus the settings of these three factors were most important for the resultant strength of the fabric. 

For analyses including interactions, the interpretation of the effect parameters is a bit more complicated. Specifically, the two-way interaction parameters are defined as half the difference between the main effects of one factor at the two levels of a second factor (see Mason, Gunst, and Hess, 1989, page 127); likewise, the three-way interaction parameters are defined as half the difference between the two-factor interaction effects at the two levels of a third factor, and so on. 

Regression coefficients. One can also look at the parameters in the multiple regression model (see Multiple Regression). To continue this example, consider the following prediction equation: 

Strength = const + b1 *x1 +... + b6 *x6 

Here x1 through x6 stand for the 6 factors in the analysis. The Effect Estimates shown earlier also contains these parameter estimates: 

	 
	 
Coeff.
	Std.Err.
Coeff.
	-95.%
Cnf.Limt
	+95.%
Cnf.Limt

	Mean/Interc.
(1)POLYSUFD
(2)REFLUX
(3)MOLES
(4)TIME
(5)SOLVENT
(6)TEMPERTR
	11.12344
.87344
.35156
.05156
1.49219
-.20781
1.34531
	.237996
.237996
.237996
.237996
.237996
.237996
.237996
	10.64686
.39686
-.12502
-.42502
1.01561
-.68439
.86873
	11.60002
1.35002
.82814
.52814
1.96877
.26877
1.82189


Actually, these parameters contain little "new" information, as they simply are one-half of the parameter values (except for the Mean/Intercept) shown earlier. This makes sense since now, the coefficient can be interpreted as the deviation of the high-setting for the respective factors from the center. However, note that this is only the case if the factor values (i.e., their levels) are coded as -1 and +1, respectively. Otherwise, the scaling of the factor values will affect the magnitude of the parameter estimates. In the example data reported by Box and Draper (1987, page 115), the settings or values for the different factors were recorded on very different scales: 

	data file: FABRICO.STA [ 64 cases with 9 variables ]
2**(6-0) Design, Box & Draper, p. 117

	 
	POLYSUFD
	REFLUX
	MOLES
	TIME
	SOLVENT
	TEMPERTR
	STRENGTH
	HUE
	BRIGTHNS

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
. . .
	6
7
6
7
6
7
6
7
6
7
6
7
6
7
6
. . .
	150
150
170
170
150
150
170
170
150
150
170
170
150
150
170
. . .
	1.8
1.8
1.8
1.8
2.4
2.4
2.4
2.4
1.8
1.8
1.8
1.8
2.4
2.4
2.4
. . .
	24
24
24
24
24
24
24
24
36
36
36
36
36
36
36
. . .
	30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
. . .
	120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
. . .
	  3.4
  9.7
  7.4
10.6
  6.5
  7.9
10.3
  9.5
14.3
10.5
  7.8
17.2
  9.4
12.1
  9.5
. . .
	15.0
  5.0
23.0
  8.0
20.0
  9.0
13.0
  5.0
23.0
  1.0
11.0
  5.0
15.0
  8.0
15.0
. . .
	36.0
35.0
37.0
34.0
30.0
32.0
28.0
38.0
40.0
32.0
32.0
28.0
34.0
26.0
30.0
. . .


Shown below are the regression coefficient estimates based on the uncoded original factor values: 

	 
	Regressn
Coeff.
	 
Std.Err.
	 
t (57)
	 
p

	Mean/Interc.
(1)POLYSUFD
(2)REFLUX
(3)MOLES
(4)TIME
(5)SOLVENT
(6)TEMPERTR
	-46.0641
1.7469
.0352
.1719
.2487
-.0346
.2691
	8.109341
.475992
.023800
.793320
.039666
.039666
.047599
	-5.68037
3.66997
1.47718
.21665
6.26980
-.87318
5.65267
	.000000
.000536
.145132
.829252
.000000
.386230
.000001


Because the metric for the different factors is no longer compatible, the magnitudes of the regression coefficients are not compatible either. This is why it is usually more informative to look at the ANOVA parameter estimates (for the coded values of the factor levels), as shown before. However, the regression coefficients can be useful when one wants to make predictions for the dependent variable, based on the original metric of the factors. 

Graph Options 
Diagnostic plots of residuals. To start with, before accepting a particular "model" that includes a particular number of effects (e.g., main effects for Polysulfide, Time, and Temperature in the current example), one should always examine the distribution of the residual values. These are computed as the difference between the predicted values (as predicted by the current model) and the observed values. You can compute the histogram for these residual values, as well as probability plots (as shown below). 
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The parameter estimates and ANOVA table are based on the assumption that the residuals are normally distributed (see also Elementary Concepts). The histogram provides one way to check (visually) whether this assumption holds. The so-called normal probability plot is another common tool to assess how closely a set of observed values (residuals in this case) follows a theoretical distribution. In this plot the actual residual values are plotted along the horizontal X-axis; the vertical Y-axis shows the expected normal values for the respective values, after they were rank-ordered. If all values fall onto a straight line, then one can be satisfied that the residuals follow the normal distribution. 

Pareto chart of effects. The Pareto chart of effects is often an effective tool for communicating the results of an experiment, in particular to laymen. 
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In this graph, the ANOVA effect estimates are sorted from the largest absolute value to the smallest absolute value. The magnitude of each effect is represented by a column, and often, a line going across the columns indicates how large an effect has to be (i.e., how long a column must be) to be statistically significant. 

Normal probability plot of effects. Another useful, albeit more technical summary graph, is the normal probability plot of the estimates. As in the normal probability plot of the residuals, first the effect estimates are rank ordered, and then a normal z score is computed based on the assumption that the estimates are normally distributed. This z score is plotted on the Y-axis; the observed estimates are plotted on the X-axis (as shown below). 
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Square and cube plots. These plots are often used to summarize predicted values for the dependent variable, given the respective high and low setting of the factors. The square plot (see below) will show the predicted values (and, optionally, their confidence intervals) for two factors at a time. The cube plot will show the predicted values (and, optionally, confidence intervals) for three factors at a time. 

[image: image85.png]



Interaction plots. A general graph for showing the means is the standard interaction plot, where the means are indicated by points connected by lines. This plot (see below) is particularly useful when there are significant interaction effects in the model. 

[image: image86.png]



Surface and contour plots. When the factors in the design are continuous in nature, it is often also useful to look at surface and contour plots of the dependent variable as a function of the factors. 
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These types of plots will further be discussed later in this section, in the context of 3**(k-p), and central composite and response surface designs. 

Summary 
2**(k-p) designs are the "workhorse" of industrial experiments. The impact of a large number of factors on the production process can simultaneously be assessed with relative efficiency (i.e., with few experimental runs). The logic of these types of experiments is straightforward (each factor has only two settings). 

Disadvantages. The simplicity of these designs is also their major flaw. As mentioned before, underlying the use of two-level factors is the belief that the resultant changes in the dependent variable (e.g., fabric strength) are basically linear in nature. This is often not the case, and many variables are related to quality characteristics in a non-linear fashion. In the example above, if you were to continuously increase the temperature factor (which was significantly related to fabric strength), you would of course eventually hit a "peak," and from there on the fabric strength would decrease as the temperature increases. While this types of curvature in the relationship between the factors in the design and the dependent variable can be detected if the design included center point runs, one cannot fit explicit nonlinear (e.g., quadratic) models with 2**(k-p) designs (however, central composite designs will do exactly that). 

Another problem of fractional designs is the implicit assumption that higher-order interactions do not matter; but sometimes they do, for example, when some other factors are set to a particular level, temperature may be negatively related to fabric strength. Again, in fractional factorial designs, higher-order interactions (greater than two-way) particularly will escape detection. 
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2**(k-p) Maximally Unconfounded and Minimum Aberration Designs 

Basic Idea 

2**(k-p) fractional factorial designs are often used in industrial experimentation because of the economy of data collection that they provide. For example, suppose an engineer needed to investigate the effects of varying 11 factors, each with 2 levels, on a manufacturing process. Let us call the number of factors k, which would be 11 for this example. An experiment using a full factorial design, where the effects of every combination of levels of each factor are studied, would require 2**(k) experimental runs, or 2048 runs for this example. To minimize the data collection effort, the engineer might decide to forego investigation of higher-order interaction effects of the 11 factors, and focus instead on identifying the main effects of the 11 factors and any low-order interaction effects that could be estimated from an experiment using a smaller, more reasonable number of experimental runs. There is another, more theoretical reason for not conducting huge, full factorial 2 level experiments. In general, it is not logical to be concerned with identifying higher-order interaction effects of the experimental factors, while ignoring lower-order nonlinear effects, such as quadratic or cubic effects, which cannot be estimated if only 2 levels of each factor are employed. So althrough practical considerations often lead to the need to design experiments with a reasonably small number of experimental runs, there is a logical justification for such experiments. 

The alternative to the 2**(k) full factorial design is the 2**(k-p) fractional factorial design, which requires only a "fraction" of the data collection effort required for full factorial designs. For our example with k=11 factors, if only 64 experimental runs can be conducted, a 2**(11-5) fractional factorial experiment would be designed with 2**6 = 64 experimental runs. In essence, a k-p = 6 way full factorial experiment is designed, with the levels of the p factors being "generated" by the levels of selected higher order interactions of the other 6 factors. Fractional factorials "sacrifice" higher order interaction effects so that lower order effects may still be computed correctly. However, different criteria can be used in choosing the higher order interactions to be used as generators, with different criteria sometimes leading to different "best" designs. 

2**(k-p) fractional factorial designs can also include blocking factors. In some production processes, units are produced in natural "chunks" or blocks. To make sure that these blocks do not bias your estimates of the effects for the k factors, blocking factors can be added as additional factors in the design. Consequently, you may "sacrifice" additional interaction effects to generate the blocking factors, but these designs often have the advantage of being statistically more powerful, because they allow you to estimate and control the variability in the production process that is due to differences between blocks. 

Design Criteria 

Many of the concepts discussed in this overview are also addressed in the Overview of 2**(k-p) Fractional factorial designs. However, a technical description of how fractional factorial designs are constructed is beyond the scope of either introductory overview. Detailed accounts of how to design 2**(k-p) experiments can be found, for example, in Bayne and Rubin (1986), Box and Draper (1987), Box, Hunter, and Hunter (1978), Montgomery (1991), Daniel (1976), Deming and Morgan (1993), Mason, Gunst, and Hess (1989), or Ryan (1989), to name only a few of the many text books on this subject. 

In general, the 2**(k-p) maximally unconfounded and minimum aberration designs techniques will successively select which higher-order interactions to use as generators for the p factors. For example, consider the following design that includes 11 factors but requires only 16 runs (observations). 

	Design: 2**(11-7), Resolution III

	Run
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
	1
1
1
1
1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
	1
1
1
1
-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
	1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
	1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
	1
1
-1
-1
-1
-1
1
1
-1
-1
1
1
1
1
-1
-1
	1
-1
-1
1
-1
1
1
-1
1
-1
-1
1
-1
1
1
-1
	1
-1
-1
1
1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
	1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
	1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
1
-1
-1
1
	1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
	1
1
-1
-1
1
1
-1
-1
-1
-1
1
1
-1
-1
1
1


Interpreting the design. The design displayed in the Scrollsheet above should be interpreted as follows. Each column contains +1's or -1's to indicate the setting of the respective factor (high or low, respectively). So for example, in the first run of the experiment, all factors A through K are set to the higher level, and in the second run, factors A, B, and C are set to the higher level, but factor D is set to the lower level, and so on. Notice that the settings for each experimental run for factor E can be produced by multiplying the respective settings for factors A, B, and C. The A x B x C interaction effect therefore cannot be estimated independently of the factor E effect in this design because these two effects are confounded. Likewise, the settings for factor F can be produced by multiplying the respective settings for factors B, C, and D. We say that ABC and BCD are the generators for factors E and F, respectively. 

The maximum resolution design criterion. In the Scrollsheet shown above, the design is described as a 2**(11-7) design of resolution III (three). This means that you study overall k = 11 factors, but p = 7 of those factors were generated from the interactions of a full 2**[(11-7) = 4] factorial design. As a result, the design does not give full resolution; that is, there are certain interaction effects that are confounded with (identical to) other effects. In general, a design of resolution R is one where no l-way interactions are confounded with any other interaction of order less than R - l. In the current example, R is equal to 3. Here, no l = 1-way interactions (i.e., main effects) are confounded with any other interaction of order less than R - l = 3 -1 = 2. Thus, main effects in this design are unconfounded with each other, but are confounded with two-factor interactions; and consequently, with other higher-order interactions. One obvious, but nevertheless very important overall design criterion is that the higher-order interactions to be used as generators should be chosen such that the resolution of the design is as high as possible. 

The maximum unconfounding design criterion. Maximizing the resolution of a design, however, does not by itself ensure that the selected generators produce the "best" design. Consider, for example, two different resolution IV designs. In both designs, main effects would be unconfounded with each other and 2-factor interactions would be unconfounded with main effects, i.e, no l = 2-way interactions are confounded with any other interaction of order less than R - l = 4 - 2 = 2. The two designs might be different, however, with regard to the degree of confounding for the 2-factor interactions. For resolution IV designs, the "crucial order," in which confounding of effects first appears, is for 2-factor interactions. In one design, none of the "crucial order," 2-factor interactions might be unconfounded with all other 2-factor interactions, while in the other design, virtually all of the 2-factor interactions might be unconfounded with all of the other 2-factor interactions. The second "almost resolution V" design would be preferable to the first "just barely resolution IV" design. This suggests that even though the maximum resolution design criterion should be the primary criterion, a subsidiary criterion might be that generators should be chosen such that the maximum number of interactions of less than or equal to the crucial order, given the resolution, are unconfounded with all other interactions of the crucial order. This is called the maximum unconfounding design criterion, and is one of the optional, subsidiary design criterion to use in a search for a 2**(k-p) design. 

The minimum aberration design criterion. The miniminum aberration design criterion is another optional, subsidiary criterion to use in a search for a 2**(k-p) design. In some respects, this criterion is similar to the maximum unconfounding design criterion. Technically, the minimum aberration design is defined as the design of maximum resolution "which minimizes the number of words in the defining relation that are of minimum length" (Fries & Hunter, 1980). Less technically, the criterion apparently operates by choosing generators that produce the smallest number of pairs of confounded interactions of the crucial order. For example, the minimum aberration resolution IV design would have the minimum number of pairs of confounded 2-factor interactions. 

To illustrate the difference between the maximum unconfounding and minimum aberration criteria, consider the maximally unconfounded 2**(9-4) design and the minimum aberration 2**(9-4) design, as for example, listed in Box, Hunter, and Hunter (1978). If you compare these two designs, you will find that in the maximally unconfounded design, 15 of the 36 2-factor interactions are unconfounded with any other 2-factor interactions, while in the minimum aberration design, only 8 of the 36 2-factor interactions are unconfounded with any other 2-factor interactions. The minimum aberration design, however, produces 18 pairs of confounded interactions, while the maximally unconfounded design produces 21 pairs of confounded interactions. So, the two criteria lead to the selection of generators producing different "best" designs. 

Fortunately, the choice of whether to use the maximum unconfounding criterion or the minimum aberration criterion makes no difference in the design which is selected (except for, perhaps, relabeling of the factors) when there are 11 or fewer factors, with the single exception of the 2**(9-4) design described above (see Chen, Sun, & Wu, 1993). For designs with more than 11 factors, the two criteria can lead to the selection of very different designs, and for lack of better advice, we suggest using both criteria, comparing the designs that are produced, and choosing the design that best suits your needs. We will add, editorially, that maximizing the number of totally unconfounded effects often makes more sense than minimizing the number of pairs of confounded effects. 

Summary 

2**(k-p) fractional factorial designs are probably the most frequently used type of design in industrial experimentation. Things to consider in designing any 2**(k-p) fractional factorial experiment include the number of factors to be investigated, the number of experimental runs, and whether there will be blocks of experimental runs. Beyond these basic considerations, one should also take into account whether the number of runs will allow a design of the required resolution and degree of confounding for the crucial order of interactions, given the resolution. 
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3**(k-p), Box-Behnken, and Mixed 2 and 3 Level Factorial Designs 

Overview 
In some cases, factors that have more than 2 levels have to be examined. For example, if one suspects that the effect of the factors on the dependent variable of interest is not simply linear, then, as discussed earlier (see 2**(k-p) designs), one needs at least 3 levels in order to test for the linear and quadratic effects (and interactions) for those factors. Also, sometimes some factors may be categorical in nature, with more than 2 categories. For example, you may have three different machines that produce a particular part. 

Designing 3**(k-p) Experiments 
The general mechanism of generating fractional factorial designs at 3 levels (3**(k-p) designs) is very similar to that described in the context of 2**(k-p) designs. Specifically, one starts with a full factorial design, and then uses the interactions of the full design to construct "new" factors (or blocks) by making their factor levels identical to those for the respective interaction terms (i.e., by making the new factors aliases of the respective interactions). 

For example, consider the following simple 3**(3-1) factorial design: 

	3**(3-1) fractional factorial
design, 1 block , 9 runs

	Standard
Run
	 
A
	 
B
	 
C

	1
2
3
4
5
6
7
8
9
	0
0
0
1
1
1
2
2
2
	0
1
2
0
1
2
0
1
2
	0
2
1
2
1
0
1
0
2


As in the case of 2**(k-p) designs, the design is constructed by starting with the full 3-1=2 factorial design; those factors are listed in the first two columns (factors A and B). Factor C is constructed from the interaction AB of the first two factors. Specifically, the values for factor C are computed as 

C = 3 - mod3 (A+B) 

Here, mod3(x) stands for the so-called modulo-3 operator, which will first find a number y that is less than or equal to x, and that is evenly divisible by 3, and then compute the difference (remainder) between number y and x. For example, mod3(0) is equal to 0, mod3(1) is equal to 1, mod3(3) is equal to 0, mod3(5) is equal to 2 (3 is the largest number that is less than or equal to 5, and that is evenly divisible by 3; finally, 5-3=2), and so on. 

Fundamental identity. If you apply this function to the sum of columns A and B shown above, you will obtain the third column C. Similar to the case of 2**(k-p) designs (see 2**(k-p) designs for a discussion of the fundamental identity in the context of 2**(k-p) designs), this confounding of interactions with "new" main effects can be summarized in an expression: 

0 = mod3 (A+B+C) 

If you look back at the 3**(3-1) design shown earlier, you will see that, indeed, if you add the numbers in the three columns they will all sum to either 0, 3, or 6, that is, values that are evenly divisible by 3 (and hence: mod3(A+B+C)=0). Thus, one could write as a shortcut notation ABC=0, in order to summarize the confounding of factors in the fractional 3**(k-p) design. 

Some of the designs will have fundamental identities that contain the number 2 as a multiplier; e.g., 

0 = mod3 (B+C*2+D+E*2+F) 

This notation can be interpreted exactly as before, that is, the modulo3 of the sum B+2*C+D+2*E+F must be equal to 0. The next example shows such an identity. 

An Example 3**(4-1) Design in 9 Blocks 
Here is the summary for a 4-factor 3-level fractional factorial design in 9 blocks, that requires only 27 runs. 

SUMMARY: 3**(4-1) fractional factorial
Design generators: ABCD
Block generators: AB,AC2
Number of factors (independent variables): 4
Number of runs (cases, experiments): 27
Number of blocks: 9

This design will allow you to test for linear and quadratic main effects for 4 factors in 27 observations, which can be gathered in 9 blocks of 3 observations each. The fundamental identity or design generator for the design is ABCD, thus the modulo3 of the sum of the factor levels across the four factors is equal to 0. The fundamental identity also allows you to determine the confounding of factors and interactions in the design (see McLean and Anderson, 1984, for details). 

	Unconfounded Effects (experi3.sta)

	EXPERIM.
DESIGN
	List of uncorrelated factors and interactions
3**(4-1) fractional factorial design, 9 blocks, 27 runs

	
	Unconf. Effects
(excl. blocks)
	Unconfounded if
blocks included?

	1
2
3
4
5
6
7
8
	(1)A     (L)
     A    (Q)
(2)B     (L)
     B    (Q)
(3)C     (L)
     C    (Q)
(4)D     (L)
     D    (Q)
	Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes


As you can see, in this 3**(4-1) design the main effects are not confounded with each other, even when the experiment is run in 9 blocks. 

Box-Behnken Designs 
In the case of 2**(k-p) designs, Plackett and Burman (1946) developed highly fractionalized designs to screen the maximum number of (main) effects in the least number of experimental runs. The equivalent in the case of 3**(k-p) designs are the so-called Box-Behnken designs (Box and Behnken, 1960; see also Box and Draper, 1984). These designs do not have simple design generators (they are constructed by combining two-level factorial designs with incomplete block designs), and have complex confounding of interaction. However, the designs are economical and therefore particularly useful when it is expensive to perform the necessary experimental runs. 

Analyzing the 3**(k-p) Design 
The analysis of these types of designs proceeds basically in the same way as was described in the context of 2**(k-p) designs. However, for each effect, one can now test for the linear effect and the quadratic (non-linear effect). For example, when studying the yield of chemical process, then temperature may be related in a non-linear fashion, that is, the maximum yield may be attained when the temperature is set at the medium level. Thus, non-linearity often occurs when a process performs near its optimum. 

ANOVA Parameter Estimates 
To estimate the ANOVA parameters, the factors levels for the factors in the analysis are internally recoded so that one can test the linear and quadratic components in the relationship between the factors and the dependent variable. Thus, regardless of the original metric of factor settings (e.g., 100 degrees C, 110 degrees C, 120 degrees C), you can always recode those values to -1, 0, and +1 to perform the computations. The resultant ANOVA parameter estimates can be interpreted analogously to the parameter estimates for 2**(k-p) designs. 

For example, consider the following ANOVA results: 

	Factor
	Effect
	Std.Err.
	t (69)
	p

	Mean/Interc.
BLOCKS(1)
BLOCKS(2)
(1)TEMPERAT (L)
TEMPERAT     (Q)
(2)TIME (L)
TIME     (Q)
(3)SPEED (L)
SPEED     (Q)
     1L by 2L
     1L by 2Q
     1Q by 2L
     1Q by 2Q
	103.6942
.8028
-1.2307
-.3245
-.5111
.0017
.0045
-10.3073
-3.7915
3.9256
.4384
.4747
-2.7499
	.390591
1.360542
1.291511
.977778
.809946
.977778
.809946
.977778
.809946
1.540235
1.371941
1.371941
.995575
	265.4805
.5901
-.9529
-.3319
-.6311
.0018
.0056
-10.5415
-4.6812
2.5487
.3195
.3460
-2.7621
	0.000000
.557055
.343952
.740991
.530091
.998589
.995541
.000000
.000014
.013041
.750297
.730403
.007353


Main-effect estimates. By default, the Effect estimate for the linear effects (marked by the L next to the factor name) can be interpreted as the difference between the average response at the low and high settings for the respective factors. The estimate for the quadratic (non-linear) effect (marked by the Q next to the factor name) can be interpreted as the difference between the average response at the center (medium) settings and the combined high and low settings for the respective factors. 

Interaction effect estimates. As in the case of 2**(k-p) designs, the linear-by-linear interaction effect can be interpreted as half the difference between the linear main effect of one factor at the high and low settings of another. Analogously, the interactions by the quadratic components can be interpreted as half the difference between the quadratic main effect of one factor at the respective settings of another; that is, either the high or low setting (quadratic by linear interaction), or the medium or high and low settings combined (quadratic by quadratic interaction). 

In practice, and from the standpoint of "interpretability of results," one would usually try to avoid quadratic interactions. For example, a quadratic-by-quadratic A-by-B interaction indicates that the non- linear effect of factor A is modified in a nonlinear fashion by the setting of B. This means that there is a fairly complex interaction between factors present in the data that will make it difficult to understand and optimize the respective process. Sometimes, performing nonlinear transformations (e.g., performing a log transformation) of the dependent variable values can remedy the problem. 

Centered and non-centered polynomials. As mentioned above, the interpretation of the effect estimates applies only when you use the default parameterization of the model. In that case, you would code the quadratic factor interactions so that they become maximally "untangled" from the linear main effects. 

Graphical Presentation of Results 
The same diagnostic plots (e.g., of residuals) are available for 3**(k-p) designs as were described in the context of 2**(k-p) designs. Thus, before interpreting the final results, one should always first look at the distribution of the residuals for the final fitted model. The ANOVA assumes that the residuals (errors) are normally distributed. 

Plot of means. When an interaction involves categorical factors (e.g., type of machine, specific operator of machine, and some distinct setting of the machine), then the best way to understand interactions is to look at the respective interaction plot of means. 
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Surface plot. When the factors in an interaction are continuous in nature, you may want to look at the surface plot that shows the response surface applied by the fitted model. Note that this graph also contains the prediction equation (in terms of the original metric of factors), that produces the respective response surface. 

Designs for Factors at 2 and 3 Levels 
You can also generate standard designs with 2 and 3 level factors. Specifically, you can generate the standard designs as enumerated by Connor and Young for the US National Bureau of Standards (see McLean and Anderson, 1984). The technical details of the method used to generate these designs are beyond the scope of this introduction. However, in general the technique is, in a sense, a combination of the procedures described in the context of 2**(k-p) and 3**(k-p) designs. It should be noted however, that, while all of these designs are very efficient, they are not necessarily orthogonal with respect to all main effects. This is, however, not a problem, if one uses a general algorithm for estimating the ANOVA parameters and sums of squares, that does not require orthogonality of the design. 

The design and analysis of these experiments proceeds along the same lines as discussed in the context of 2**(k-p) and 3**(k-p) experiments. 
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Central Composite and Non-Factorial Response Surface Designs 

Overview 
The 2**(k-p) and 3**(k-p) designs all require that the levels of the factors are set at, for example, 2 or 3 levels. In many instances, such designs are not feasible, because, for example, some factor combinations are constrained in some way (e.g., factors A and B cannot be set at their high levels simultaneously). Also, for reasons related to efficiency, which will be discussed shortly, it is often desirable to explore the experimental region of interest at particular points that cannot be represented by a factorial design. 

The designs (and how to analyze them) discussed in this section all pertain to the estimation (fitting) of response surfaces, following the general model equation: 

y = b0 +b1 *x1 +...+bk *xk + b12 *x1 *x2 +b13 *x1 *x3 +...+bk-1,k *xk-1 *xk + b11 *x1² +...+bkk *xk² 

Put into words, one is fitting a model to the observed values of the dependent variable y, that include (1) main effects for factors x1 , ..., xk, (2) their interactions (x1*x2, x1*x3, ... ,xk-1*xk), and (3) their quadratic components (x1**2, ..., xk**2). No assumptions are made concerning the "levels" of the factors, and you can analyze any set of continuous values for the factors. 

There are some considerations concerning design efficiency and biases, which have led to standard designs that are ordinarily used when attempting to fit these response surfaces, and those standard designs will be discussed shortly (e.g., see Box, Hunter, and Hunter, 1978; Box and Draper, 1987; Khuri and Cornell, 1987; Mason, Gunst, and Hess, 1989; Montgomery, 1991). But, as will be discussed later, in the context of constrained surface designs and D- and A-optimal designs, these standard designs can sometimes not be used for practical reasons. However, the central composite design analysis options do not make any assumptions about the structure of your data file, that is, the number of distinct factor values, or their combinations across the runs of the experiment, and, hence, these options can be used to analyze any type of design, to fit to the data the general model described above. 

Design Considerations 

Orthogonal designs. One desirable characteristic of any design is that the main effect and interaction estimates of interest are independent of each other. For example, suppose you had a two- factor experiments, with both factors at two levels. Your design consists of four runs: 

	 
	A
	B

	Run 1
Run 2
Run 3
Run 4
	1
1
-1
-1
	1
1
-1
-1


For the first two runs, both factors A and B are set at their high levels (+1). In the last two runs, both are set at their low levels (-1). Suppose you wanted to estimate the independent contributions of factors A and B to the prediction of the dependent variable of interest. Clearly this is a silly design, because there is no way to estimate the A main effect and the B main effect. One can only estimate one effect -- the difference between Runs 1+2 vs. Runs 3+4 -- which represents the combined effect of A and B. 

The point here is that, in order to assess the independent contributions of the two factors, the factor levels in the four runs must be set so that the "columns" in the design (under A and B in the illustration above) are independent of each other. Another way to express this requirement is to say that the columns of the design matrix (with as many columns as there are main effect and interaction parameters that one wants to estimate) should be orthogonal (this term was first used by Yates, 1933). For example, if the four runs in the design are arranged as follows: 

	 
	A
	B

	Run 1
Run 2
Run 3
Run 4
	1
1
-1
-1
	1
-1
1
-1


then the A and B columns are orthogonal. Now you can estimate the A main effect by comparing the high level for A within each level of B, with the low level for A within each level of B; the B main effect can be estimated in the same way. 

Technically, two columns in a design matrix are orthogonal if the sum of the products of their elements within each row is equal to zero. In practice, one often encounters situations, for example due to loss of some data in some runs or other constraints, where the columns of the design matrix are not completely orthogonal. In general, the rule here is that the more orthogonal the columns are, the better the design, that is, the more independent information can be extracted from the design regarding the respective effects of interest. Therefore, one consideration for choosing standard central composite designs is to find designs that are orthogonal or near-orthogonal. 

Rotatable designs. The second consideration is related to the first requirement, in that it also has to do with how best to extract the maximum amount of (unbiased) information from the design, or specifically, from the experimental region of interest. Without going into details (see Box, Hunter, and Hunter, 1978; Box and Draper, 1987, Chapters 14; see also Deming and Morgan, 1993, Chapter 13), it can be shown that the standard error for the prediction of dependent variable values is proportional to: 

(1 + f(x)' * (X'X)¨¹ * f(x))**½ 

where f(x) stands for the (coded) factor effects for the respective model (f(x) is a vector, f(x)' is the transpose of that vector), and X is the design matrix for the experiment, that is, the matrix of coded factor effects for all runs; X'X**-1 is the inverse of the crossproduct matrix. Deming and Morgan (1993) refer to this expression as the normalized uncertainty; this function is also related to the variance function as defined by Box and Draper (1987). The amount of uncertainty in the prediction of dependent variable values depends on the variability of the design points, and their covariance over the runs. (Note that it is inversely proportional to the determinant of X'X; this issue is further discussed in the section on D- and A-optimal designs). 

The point here is that, again, one would like to choose a design that extracts the most information regarding the dependent variable, and leaves the least amount of uncertainty for the prediction of future values. It follows, that the amount of information (or normalized information according to Deming and Morgan, 1993) is the inverse of the normalized uncertainty. 

For the simple 4-run orthogonal experiment shown earlier, the information function is equal to 

Ix = 4/(1 + x1² + x2²) 

where x1 and x2 stand for the factor settings for factors A and B, respectively (see Box and Draper, 1987). 
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Inspection of this function in a plot (see above) shows that it is constant on circles centered at the origin. Thus any kind of rotation of the original design points will generate the same amount of information, that is, generate the same information function. Therefore, the 2-by-2 orthogonal design in 4 runs shown earlier is said to be rotatable. 

As pointed out before, in order to estimate the second order, quadratic, or non-linear component of the relationship between a factor and the dependent variable, one needs at least 3 levels for the respective factors. What does the information function look like for a simple 3-by-3 factorial design, for the second-order quadratic model as shown at the beginning of this section? 
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As it turns out (see Box and Draper, 1987 and Montgomery, 1991; refer also to the manual), this function looks more complex, contains "pockets" of high-density information at the edges (which are probably of little particular interest to the experimenter), and clearly it is not constant on circles around the origin. Therefore, it is not rotatable, meaning different rotations of the design points will extract different amounts of information from the experimental region. 

Star-points and rotatable second-order designs. It can be shown that by adding so-called star- points to the simple (square or cube) 2-level factorial design points, one can achieve rotatable, and often orthogonal or nearly orthogonal designs. For example, adding to the simple 2-by-2 orthogonal design shown earlier the following points, will produce a rotatable design. 

	 
	A
	B

	Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
	 1
 1
-1
-1
-1.414
 1.414
 0
 0
 0
 0
	 1
-1
 1
-1
 0
 0
-1.414
 1.414
 0
 0


The first four runs in this design are the previous 2-by-2 factorial design points (or square points or cube points); runs 5 through 8 are the so-called star points or axial points, and runs 9 and 10 are center points. 
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The information function for this design for the second-order (quadratic) model is rotatable, that is, it is constant on the circles around the origin. 

Alpha for Rotatability and Orthogonality 
The two design characteristics discussed so far -- orthogonality and rotatability -- depend on the number of center points in the design and on the so-called axial distance[image: image92.png]


 (alpha), which is the distance of the star points from the center of the design (i.e., 1.414 in the design shown above). It can be shown (e.g., see Box, Hunter, and Hunter, 1978; Box and Draper, 1987, Khuri and Cornell, 1987; Montgomery, 1991) that a design is rotatable if: 
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= ( nc )¼ 

where nc stands for the number of cube points in the design (i.e., points in the factorial portion of the design). 

A central composite design is orthogonal, if one chooses the axial distance so that: 

[image: image94.png]


= {[( nc + ns + n0 )½ - nc½]² * nc/4}¼ 

where
nc  is the number of cube points in the design
ns  is the number of star points in the design
n0  is the number of center points in the design

To make a design both (approximately) orthogonal and rotatable, one would first choose the axial distance for rotatability, and then add center points (see Kkuri and Cornell, 1987), so that: 

n0 [image: image95.png]


4*nc½ + 4 - 2k 

where k stands for the number of factors in the design. 

Finally, if blocking is involved, Box and Draper (1987) give the following formula for computing the axial distance to achieve orthogonal blocking, and in most cases also reasonable information function contours, that is, contours that are close to spherical: 

[image: image96.png]


= [k*(l+ns0/ns)/(1+nc0/nc)]½ 

where
ns0  is the number of center points in the star portion of the design
ns   is the number of non-center star points in the design
nc0  is the number of center points in the cube portion of the design
nc   is the number of non-center cube points in the design

Available Standard Designs 
The standard central composite designs are usually constructed from a 2**(k-p) design for the cube portion of the design, which is augmented with center points and star points. Box and Draper (1987) list a number of such designs. 

Small composite designs. In the standard designs, the cube portion of the design is typically of resolution V (or higher). This is, however, not necessary, and in cases when the experimental runs are expensive, or when it is not necessary to perform a statistically powerful test of model adequacy, then one could choose for the cube portion designs of resolution III. For example, it could be constructed from highly fractionalized Plackett-Burman designs. Hartley (1959) described such designs. 

Analyzing Central Composite Designs 
The analysis of central composite designs proceeds in much the same way as for the analysis of 3**(k-p) designs. You fit to the data the general model described above; for example, for two variables you would fit the model: 

y = b0 + b1*x1 + b2*x2 + b12*x1*x2 + b11*x12 + b22*x22 

The Fitted Response Surface 
The shape of the fitted overall response can best be summarized in graphs and you can generate both contour plots and response surface plots (see examples below) for the fitted model. 
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Categorized Response Surfaces 
You can fit 3D surfaces to your data, categorized by some other variable. For example, if you replicated a standard central composite design 4 times, it may be very informative to see how similar the surfaces are when fitted to each replication. 
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This would give you a graphical indication of the reliability of the results and where (e.g., in which region of the surface) deviations occur.

[image: image99.png]



Clearly, the third replication produced a different surface. In replications 1, 2, and 4, the fitted surfaces are very similar to each other. Thus, one should investigate what could have caused this noticeable difference in the third replication of the design. 
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Latin Square Designs 

Overview 
Latin square designs (the term Latin square was first used by Euler, 1782) are used when the factors of interest have more than two levels and you know ahead of time that there are no (or only negligible) interactions between factors. For example, if you wanted to examine the effect of 4 fuel additives on reduction in oxides of nitrogen and had 4 cars and 4 drivers at your disposal, then you could of course run a full 4 x 4 x 4 factorial design, resulting in 64 experimental runs. However, you are not really interested in any (minor) interactions between the fuel additives and drivers, fuel additives and cars, or cars and drivers. You are mostly interested in estimating main effects, in particular the one for the fuel additives factor. At the same time, you want to make sure that the main effects for drivers and cars do not affect (bias) your estimate of the main effect for the fuel additive. 

If you labeled the additives with the letters A, B, C, and D, the Latin square design that would allow you to derive unconfounded main effects estimates could be summarized as follows (see also Box, Hunter, and Hunter, 1978, page 263): 

	 
	Car

	Driver
	1
	2
	3
	4

	1
2
3
4
	A
D
B
C
	B
C
D
A
	D
A
C
B
	C
B
A
D


Latin Square Designs 
The example shown above is actually only one of the three possible arrangements in effect estimates. These "arrangements" are also called Latin square. The example above constitutes a 4 x 4 Latin square; and rather than requiring the 64 runs of the complete factorial, you can complete the study in only 16 runs. 

Greco-Latin square. A nice feature of Latin Squares is that they can be superimposed to form what are called Greco-Latin squares (this term was first used by Fisher and Yates, 1934). For example, the following two 3 x 3 Latin squares can be superimposed to form a Greco-Latin square: 
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In the resultant Greco-Latin square design, you can evaluate the main effects of four 3-level factors (row factor, column factor, Roman letters, Greek letters) in only 9 runs. 

Hyper-Greco Latin square. For some numbers of levels, there are more than two possible Latin square arrangements. For example, there are three possible arrangements for 4-level Latin squares. If all three of them are superimposed, you get a Hyper-Greco Latin square design. In that design you can estimate the main effects of all five 4-level factors with only 16 runs in the experiment. 

Analyzing the Design 
Analyzing Latin square designs is straightforward. Also, plots of means can be produced to aid in the interpretation of results. 

Very Large Designs, Random Effects, Unbalanced Nesting 

Note that there are several other statistical methods that can also analyze these types of designs; see the section on Methods for Analysis of Variance for details. In particular the Variance Components and Mixed Model ANOVA/ANCOVA chapter discusses very efficient methods for analyzing designs with unbalanced nesting (when the nested factors have different numbers of levels within the levels of the factors in which they are nested), very large nested designs (e.g., with more than 200 levels overall), or hierarchically nested designs (with or without random factors). 
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Taguchi Methods: Robust Design Experiments 

Overview 

Applications. Taguchi methods have become increasingly popular in recent years. The documented examples of sizable quality improvements that resulted from implementations of these methods (see, for example, Phadke, 1989; Noori, 1989) have added to the curiosity among American manufacturers. In fact, some of the leading manufacturers in this country have begun to use these methods with usually great success. For example, AT&T is using these methods in the manufacture of very large scale integrated (VLSI) circuits; also, Ford Motor Company has gained significant quality improvements due to these methods (American Supplier Institute, 1984 to 1988). However, as the details of these methods are becoming more widely known, critical appraisals are also beginning to appear (for example, Bhote, 1988; Tribus and Szonyi, 1989). 

Overview. Taguchi robust design methods are set apart from traditional quality control procedures (see Quality Control and Process Analysis) and industrial experimentation in various respects. Of particular importance are: 

The concept of quality loss functions, 

The use of signal-to-noise (S/N) ratios, and 

The use of orthogonal arrays. 

These basic aspects of robust design methods will be discussed in the following sections. Several books have recently been published on these methods, for example, Peace (1993), Phadke (1989), Ross (1988), and Roy (1990), to name a few, and it is recommended that you refer to those books for further specialized discussions. Introductory overviews of Taguchi's ideas about quality and quality improvement can also be found in Barker (1986), Garvin (1987), Kackar (1986), and Noori (1989). 

Quality and Loss Functions 

What is quality. Taguchi's analysis begins with the question of how to define quality. It is not easy to formulate a simple definition of what constitutes quality; however, when your new car stalls in the middle of a busy intersection -- putting yourself and other motorists at risk -- you know that your car is not of high quality. Put another way, the definition of the inverse of quality is rather straightforward: it is the total loss to you and society due to functional variations and harmful side effects associated with the respective product. Thus, as an operational definition, you can measure quality in terms of this loss, and the greater the quality loss the lower the quality. 

Discontinuous (step-shaped) loss function. You can formulate hypotheses about the general nature and shape of the loss function. Assume a specific ideal point of highest quality; for example, a perfect car with no quality problems. It is customary in statistical process control (SPC; see also Process Analysis) to define tolerances around the nominal ideal point of the production process. According to the traditional view implied by common SPC methods, as long as you are within the manufacturing tolerances you do not have a problem. Put another way, within the tolerance limits the quality loss is zero; once you move outside the tolerances, the quality loss is declared to be unacceptable. Thus, according to traditional views, the quality loss function is a discontinuous step function: as long as you are within the tolerance limits, quality loss is negligible; when you step outside those tolerances, quality loss becomes unacceptable. 

Quadratic loss function. Is the step function implied by common SPC methods a good model of quality loss? Return to the "perfect automobile" example. Is there a difference between a car that, within one year after purchase, has nothing wrong with it, and a car where minor rattles develop, a few fixtures fall off, and the clock in the dashboard breaks (all in-warranty repairs, mind you...)? If you ever bought a new car of the latter kind, you know very well how annoying those admittedly minor quality problems can be. The point here is that it is not realistic to assume that, as you move away from the nominal specification in your production process, the quality loss is zero as long as you stay within the set tolerance limits. Rather, if you are not exactly "on target," then loss will result, for example in terms of customer satisfaction. Moreover, this loss is probably not a linear function of the deviation from nominal specifications, but rather a quadratic function (inverted U). A rattle in one place in your new car is annoying, but you would probably not get too upset about it; add two more rattles, and you might declare the car "junk." Gradual deviations from the nominal specifications do not produce proportional increments in loss, but rather squared increments. 

Conclusion: Controlling variability. If, in fact, quality loss is a quadratic function of the deviation from a nominal value, then the goal of your quality improvement efforts should be to minimize the squared deviations or variance of the product around nominal (ideal) specifications, rather than the number of units within specification limits (as is done in traditional SPC procedures). 

Signal-to-Noise (S/N) Ratios 

Measuring quality loss. Even though you have concluded that the quality loss function is probably quadratic in nature, you still do not know precisely how to measure quality loss. However, you know that whatever measure you decide upon should reflect the quadratic nature of the function. 

Signal, noise, and control factors. The product of ideal quality should always respond in exactly the same manner to the signals provided by the user. When you turn the key in the ignition of your car you expect that the starter motor turns and the engine starts. In the ideal-quality car, the starting process would always proceed in exactly the same manner -- for example, after three turns of the starter motor the engine comes to life. If, in response to the same signal (turning the ignition key) there is random variability in this process, then you have less than ideal quality. For example, due to such uncontrollable factors as extreme cold, humidity, engine wear, etc. the engine may sometimes start only after turning over 20 times and finally not start at all. This example illustrates the key principle in measuring quality according to Taguchi: You want to minimize the variability in the product's performance in response to noise factors while maximizing the variability in response to signal factors. 

Noise factors are those that are not under the control of the operator of a product. In the car example, those factors include temperature changes, different qualities of gasoline, engine wear, etc. Signal factors are those factors that are set or controlled by the operator of the product to make use of its intended functions (turning the ignition key to start the car). 

Finally, the goal of your quality improvement effort is to find the best settings of factors under your control that are involved in the production process, in order to maximize the S/N ratio; thus, the factors in the experiment represent control factors. 

S/N ratios. The conclusion of the previous paragraph is that quality can be quantified in terms of the respective product's response to noise factors and signal factors. The ideal product will only respond to the operator's signals and will be unaffected by random noise factors (weather, temperature, humidity, etc.). Therefore, the goal of your quality improvement effort can be stated as attempting to maximize the signal-to-noise (S/N) ratio for the respective product. The S/N ratios described in the following paragraphs have been proposed by Taguchi (1987). 

Smaller-the-better. In cases where you want to minimize the occurrences of some undesirable product characteristics, you would compute the following S/N ratio: 

Eta = -10 * log10 [(1/n) * [image: image101.png]


(yi2)]     for i = 1 to no. vars     see outer arrays 

Here, Eta is the resultant S/N ratio; n is the number of observations on the particular product, and y is the respective characteristic. For example, the number of flaws in the paint on an automobile could be measured as the y variable and analyzed via this S/N ratio. The effect of the signal factors is zero, since zero flaws is the only intended or desired state of the paint on the car. Note how this S/N ratio is an expression of the assumed quadratic nature of the loss function. The factor 10 ensures that this ratio measures the inverse of "bad quality;" the more flaws in the paint, the greater is the sum of the squared number of flaws, and the smaller (i.e., more negative) the S/N ratio. Thus, maximizing this ratio will increase quality. 

Nominal-the-best. Here, you have a fixed signal value (nominal value), and the variance around this value can be considered the result of noise factors: 

Eta = 10 * log10 (Mean2/Variance) 

This signal-to-noise ratio could be used whenever ideal quality is equated with a particular nominal value. For example, the size of piston rings for an automobile engine must be as close to specification as possible to ensure high quality. 

Larger-the-better. Examples of this type of engineering problem are fuel economy (miles per gallon) of an automobile, strength of concrete, resistance of shielding materials, etc. The following S/N ratio should be used: 

Eta = -10 * log10 [(1/n) * [image: image102.png]


(1/yi2)]     for i = 1 to no. vars     see outer arrays 

Signed target. This type of S/N ratio is appropriate when the quality characteristic of interest has an ideal value of 0 (zero), and both positive and negative values of the quality characteristic may occur. For example, the dc offset voltage of a differential operational amplifier may be positive or negative (see Phadke, 1989). The following S/N ratio should be used for these types of problems: 

Eta = -10 * log10(s2)     for i = 1 to no. vars     see outer arrays
where s2 stands for the variance of the quality characteristic across the measurements (variables). 

Fraction defective. This S/N ratio is useful for minimizing scrap, minimizing the percent of patients who develop side-effects to a drug, etc. Taguchi also refers to the resultant Eta values as Omegas; note that this S/N ratio is identical to the familiar logit transformation (see also Nonlinear Estimation): 

Eta = -10 * log10[p/(1-p)] 

where
p is the proportion defective

Ordered categories (the accumulation analysis). In some cases, measurements on a quality characteristic can only be obtained in terms of categorical judgments. For example, consumers may rate a product as excellent, good, average, or below average. In that case, you would attempt to maximize the number of excellent or good ratings. Typically, the results of an accumulation analysis are summarized graphically in a stacked bar plot. 

Orthogonal Arrays 
The third aspect of Taguchi robust design methods is the one most similar to traditional techniques. Taguchi has developed a system of tabulated designs (arrays) that allow for the maximum number of main effects to be estimated in an unbiased (orthogonal) manner, with a minimum number of runs in the experiment. Latin square designs, 2**(k-p) designs (Plackett-Burman designs, in particular), and Box-Behnken designs main are also aimed at accomplishing this goal. In fact, many of the standard orthogonal arrays tabulated by Taguchi are identical to fractional two-level factorials, Plackett-Burman designs, Box-Behnken designs, Latin square, Greco-Latin squares, etc. 

Analyzing Designs 
Most analyses of robust design experiments amount to a standard ANOVA of the respective S/N ratios, ignoring two-way or higher-order interactions. However, when estimating error variances, one customarily pools together main effects of negligible size. 

Analyzing S/N ratios in standard designs. It should be noted at this point that, of course, all of the designs discussed up to this point (e.g., 2**(k-p),

 HYPERLINK "http://www.statsoft.com/textbook/stexdes.html" \l "3#3"  3**(k-p), mixed 2 and 3 level factorials, Latin squares, central composite designs) can be used to analyze S/N ratios that you computed. In fact, the many additional diagnostic plots and other options available for those designs (e.g., estimation of quadratic components, etc.) may prove very useful when analyzing the variability (S/N ratios) in the production process. 

Plot of means. A visual summary of the experiment is the plot of the average Eta (S/N ratio) by factor levels. In this plot, the optimum setting (i.e., largest S/N ratio) for each factor can easily be identified. 

Verification experiments. For prediction purposes, you can compute the expected S/N ratio given a user-defined combination of settings of factors (ignoring factors that were pooled into the error term). These predicted S/N ratios can then be used in a verification experiment, where the engineer actually sets the machine accordingly and compares the resultant observed S/N ratio with the predicted S/N ratio from the experiment. If major deviations occur, one must conclude that the simple main effect model is not appropriate. 

In those cases, Taguchi (1987) recommends transforming the dependent variable to accomplish additivity of factors, that is, to "make" the main effects model fit. Phadke (1989, Chapter 6) also discusses in detail methods for achieving additivity of factors. 

Accumulation Analysis 
When analyzing ordered categorical data, ANOVA is not appropriate. Rather, you produce a cumulative plot of the number of observations in a particular category. For each level of each factor, you plot the cumulative proportion of the number of defectives. Thus, this graph provides valuable information concerning the distribution of the categorical counts across the different factor settings. 

Summary 
To briefly summarize, when using Taguchi methods you first need to determine the design or control factors that can be set by the designer or engineer. Those are the factors in the experiment for which you will try different levels. Next, you decide to select an appropriate orthogonal array for the experiment. Next, you need to decide on how to measure the quality characteristic of interest. Remember that most S/N ratios require that multiple measurements are taken in each run of the experiment; for example, the variability around the nominal value cannot otherwise be assessed. Finally, you conduct the experiment and identify the factors that most strongly affect the chosen S/N ratio, and you reset your machine or production process accordingly. 
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Mixture Designs and Triangular Surfaces 

Overview 
Special issues arise when analyzing mixtures of components that must sum to a constant. For example, if you wanted to optimize the taste of a fruit-punch, consisting of the juices of 5 fruits, then the sum of the proportions of all juices in each mixture must be 100%. Thus, the task of optimizing mixtures commonly occurs in food-processing, refining, or the manufacturing of chemicals. A number of designs have been developed to address specifically the analysis and modeling of mixtures (see, for example, Cornell, 1990a, 1990b; Cornell and Khuri, 1987; Deming and Morgan, 1993; Montgomery, 1991). 

Triangular Coordinates 

The common manner in which mixture proportions can be summarized is via triangular (ternary) graphs. For example, suppose you have a mixture that consists of 3 components A, B, and C. Any mixture of the three components can be summarized by a point in the triangular coordinate system defined by the three variables. 

For example, take the following 6 different mixtures of the 3 components. 

	A
	B
	C

	1
0
0
0.5
0.5
0
	0
1
0
0.5
0
0.5
	0
0
1
0
0.5
0.5


The sum for each mixture is 1.0, so the values for the components in each mixture can be interpreted as proportions. If you graph these data in a regular 3D scatterplot, it becomes apparent that the points form a triangle in the 3D space. Only the points inside the triangle where the sum of the component values is equal to 1 are valid mixtures. Therefore, one can simply plot only the triangle to summarize the component values (proportions) for each mixture. 
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To read-off the coordinates of a point in the triangular graph, you would simply "drop" a line from each respective vertex to the side of the triangle below. 
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At the vertex for the particular factor, there is a pure blend, that is, one that only contains the respective component. Thus, the coordinates for the vertex point is 1 (or 100%, or however else the mixtures are scaled) for the respective component, and 0 (zero) for all other components. At the side opposite to the respective vertex, the value for the respective component is 0 (zero), and .5 (or 50%, etc.) for the other components. 

Triangular Surfaces and Contours 
One can now add to the triangle a fourth dimension, that is perpendicular to the first three. Using that dimension, one could plot the values for a dependent variable, or function (surface) that was fit to the dependent variable. Note that the response surface can either be shown in 3D, where the predicted response (Taste rating) is indicated by the distance of the surface from the triangular plane, or it can be indicated in a contour plot where the contours of constant height are plotted on the 2D triangle. 
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It should be mentioned at this point that you can produce categorized ternary graphs. These are very useful, because they allow you to fit to a dependent variable (e.g., Taste) a response surface, for different levels of a fourth component. 

The Canonical Form of Mixture Polynomials 
Fitting a response surface to mixture data is, in principle, done in the same manner as fitting surfaces to, for example, data from central composite designs. However, there is the issue that mixture data are constrained, that is, the sum of all component values must be constant. 

Consider the simple case of two factors A and B. One may want to fit the simple linear model: 

y = b0 + bA*xA + bB*xB 

Here y stands for the dependent variable values, bA and bB stand for the regression coefficients, xA and xB stand for the values of the factors. Suppose that xA and xB must sum to 1; you can multiple b0 by 1=(xA + xB): 

y = (b0*xA + b0*xB) + bA*xA + bB*xB 

or: 

y = b'A*xA + b'B*xB 

where b'A = b0 + bA and b'B = b0 + bB. Thus, the estimation of this model comes down to fitting a no- intercept multiple regression model. (See also Multiple Regression, for details concerning multiple regression.) 

Common Models for Mixture Data 
The quadratic and cubic model can be similarly simplified (as illustrated for the simple linear model above), yielding four standard models that are customarily fit to the mixture data. Here are the formulas for the 3-variable case for those models (see Cornell, 1990, for additional details). 

Linear model:

y = b1*x1 + b2*x2 + b3*x3 

Quadratic model:

y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x3 

Special cubic model:

y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x3 + b123*x1*x2*x3 

Full cubic model:

y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x3 + d12*x1*x2*(x1 - x2) + d13*x1*x3*(x1 - x3) + d23*x2*x3*(x2 - x3) + b123*x1*x2*x3 

(Note that the dij's are also parameters of the model.) 

Standard Designs for Mixture Experiments 
Two different types of standard designs are commonly used for experiments with mixtures. Both of them will evaluate the triangular response surface at the vertices (i.e., the corners of the triangle) and the centroids (sides of the triangle). Sometimes, those designs are enhanced with additional interior points. 

Simplex-lattice designs. In this arrangement of design points, m+1 equally spaced proportions are tested for each factor or component in the model: 

xi = 0, 1/m, 2/m, ..., 1     i = 1,2,...,q 

and all combinations of factor levels are tested. The resulting design is called a {q,m} simplex lattice design. For example, a {q=3, m=2} simplex lattice design will include the following mixtures: 

	A
	B
	C

	1
0
0
.5
.5
0
	0
1
0
.5
0
.5
	0
0
1
0
.5
.5


A {q=3,m=3} simplex lattice design will include the points: 

	A
	B
	C

	1
0
0
1/3
1/3
0
2/3
2/3
0
1/3
	0
1
0
2/3
0
1/3
1/3
0
2/3
1/3
	0
0
1
0
2/3
2/3
0
1/3
1/3
1/3


Simplex-centroid designs. An alternative arrangement of settings introduced by Scheffé (1963) is the so-called simplex-centroid design. Here the design points correspond to all permutations of the pure blends (e.g., 1 0 0; 0 1 0; 0 0 1), the permutations of the binary blends (½ ½ 0; ½ 0 ½; 0 ½ ½), the permutations of the blends involving three components, and so on. For example, for 3 factors the simplex centroid design consists of the points: 

	A
	B
	C

	1
0
0
1/2
1/2
0
1/3
	0
1
0
1/2
0
1/2
1/3
	0
0
1
0
1/2
1/2
1/3


Adding interior points. These designs are sometimes augmented with interior points (see Khuri and Cornell, 1987, page 343; Mason, Gunst, Hess; 1989; page 230). For example, for 3 factors one could add the interior points: 

	A
	B
	C

	2/3
1/6
1/6
	1/6
2/3
1/6
	1/6
1/6
2/3


If you plot these points in a scatterplot with triangular coordinates; one can see how these designs evenly cover the experimental region defined by the triangle. 

Lower Constraints 
The designs described above all require vertex points, that is, pure blends consisting of only one ingredient. In practice, those points may often not be valid, that is, pure blends cannot be produced because of cost or other constraints. For example, suppose you wanted to study the effect of a food- additive on the taste of the fruit-punch. The additional ingredient may only be varied within small limits, for example, it may not exceed a certain percentage of the total. Clearly, a fruit punch that is a pure blend, consisting only of the additive, would not be a fruit punch at all, or worse, may be toxic. These types of constraints are very common in many applications of mixture experiments. 

Let us consider a 3-component example, where component A is constrained so that xA[image: image106.png]


.3. The total of the 3-component mixture must be equal to 1. This constraint can be visualized in a triangular graph by a line at the triangular coordinate for xA=.3, that is, a line that is parallel to the triangle's edge opposite to the A vertex point. 
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One can now construct the design as before, except that one side of the triangle is defined by the constraint. Later, in the analysis, one can review the parameter estimates for the so-called pseudo-components, treating the constrained triangle as if it were a full triangle. 

Multiple constraints. Multiple lower constraints can be treated analogously, that is, you can construct the sub-triangle within the full triangle, and then place the design points in that sub-triangle according to the chosen design. 

Upper and Lower Constraints 
When there are both upper and lower constraints (as is often the case in experiments involving mixtures), then the standard simplex-lattice and simplex-centroid designs can no longer be constructed, because the subregion defined by the constraints is no longer a triangle. There is a general algorithm for finding the vertex and centroid points for such constrained designs. 
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Note that you can still analyze such designs by fitting the standard models to the data. 

Analyzing Mixture Experiments 
The analysis of mixture experiments amounts to a multiple regression with the intercept set to zero. As explained earlier, the mixture constraint -- that the sum of all components must be constant -- can be accommodated by fitting multiple regression models that do not include an intercept term. If you are not familiar with multiple regression, you may want to review at this point Multiple Regression. 

The specific models that are usually considered were described earlier. To summarize, one fits to the dependent variable response surfaces of increasing complexity, that is, starting with the linear model, then the quadratic model, special cubic model, and full cubic model. Shown below is a table with the number of terms or parameters in each model, for a selected number of components (see also Table 4, Cornell, 1990): 

	 
	Model (Degree of Polynomial)

	No. of
Comp.
	 
Linear
	 
Quadr.
	Special
Cubic
	Full
Cubic

	2
3
4
5
6
7
8
	2
3
4
5
6
7
8
	  3
  6
10
15
21
28
36
	  --
  7
14
25
41
63
92
	  --
  10
  20
  35
  56
  84
120


Analysis of Variance 
To decide which of the models of increasing complexity provides a sufficiently good fit to the observed data, one usually compares the models in a hierarchical, stepwise fashion. For example, consider a 3- component mixture to which the full cubic model was fitted. 

	ANOVA; Var.:DV (mixt4.sta)

	 
	3 Factor mixture design; Mixture total=1., 14 Runs
Sequential fit of models of increasing complexity

	 
Model
	SS
Effect
	df
Effect
	MS
Effect
	SS
Error
	df
Error
	MS
Error
	 
F
	 
p
	 
R-sqr
	R-sqr
Adj.

	Linear
Quadratic
Special Cubic
Cubic
Total Adjusted
	44.755
30.558
.719
8.229
91.627
	2
3
1
3
13
	22.378
10.186
.719
2.743
7.048
	46.872
16.314
15.596
7.367
 
	11
8
7
4
 
	4.2611
2.0393
2.2279
1.8417
 
	5.2516
4.9949
.3225
1.4893
 
	.0251
.0307
.5878
.3452
 
	.4884
.8220
.8298
.9196
 
	.3954
.7107
.6839
.7387
 


First, the linear model was fit to the data. Even though this model has 3 parameters, one for each component, this model has only 2 degrees of freedom. This is because of the overall mixture constraint, that the sum of all component values is constant. The simultaneous test for all parameters of this model is statistically significant (F(2,11)=5.25; p<.05). The addition of the 3 quadratic model parameters (b12*x1*x2, b13*x1*x3, b23*x2*x3) further significantly improves the fit of the model (F(3,8)=4.99; p<.05). However, adding the parameters for the special cubic and cubic models does not significantly improve the fit of the surface. Thus one could conclude that the quadratic model provides an adequate fit to the data (of course, pending further examination of the residuals for outliers, etc.). 

R-square. The R-square value can be interpreted as the proportion of variability around the mean for the dependent variable, that can be accounted for by the respective model. (Note that for non- intercept models, some multiple regression programs will only compute the R-square value pertaining to the proportion of variance around 0 (zero) accounted for by the independent variables; for more information, see Kvalseth, 1985; Okunade, Chang, and Evans, 1993.) 

Pure error and lack of fit. The usefulness of the estimate of pure error for assessing the overall lack of fit was discussed in the context of central composite designs. If some runs in the design were replicated, then one can compute an estimate of error variability based only on the variability between replicated runs. This variability provides a good indication of the unreliability in the measurements, independent of the model that was fit to the data, since it is based on identical factor settings (or blends in this case). One can test the residual variability after fitting the current model against this estimate of pure error. If this test is statistically significant, that is, if the residual variability is significantly larger than the pure error variability, then one can conclude that, most likely, there are additional significant differences between blends that cannot be accounted for by the current model. Thus, there may be an overall lack of fit of the current model. In that case, try a more complex model, perhaps by only adding individual terms of the next higher-order model (e.g., only the b13*x1*x3 to the linear model). 

Parameter Estimates 
Usually, after fitting a particular model, one would next review the parameter estimates. Remember that the linear terms in mixture models are constrained, that is, the sum of the components must be constant. Hence, independent statistical significance tests for the linear components cannot be performed. 

Pseudo-Components 
To allow for scale-independent comparisons of the parameter estimates, during the analysis, the component settings are customarily recoded to so-called pseudo-components so that (see also Cornell, 1993, Chapter 3): 

x'i = (xi-Li)/(Total-L) 

Here, x'i stands for the i'th pseudo-component, xi stands for the original component value, Li stands for the lower constraint (limit) for the i'th component, L stands for the sum of all lower constraints (limits) for all components in the design, and Total is the mixture total. 

The issue of lower constraints was also discussed earlier in this section. If the design is a standard simplex-lattice or simplex-centroid design (see above), then this transformation amounts to a rescaling of factors so as to form a sub-triangle (sub-simplex) as defined by the lower constraints. However, you can compute the parameter estimates based on the original (untransformed) metric of the components in the experiment. If you want to use the fitted parameter values for prediction purposes (i.e., to predict dependent variable values), then the parameters for the untransformed components are often more convenient to use. Note that the results dialog for mixture experiments contains options to make predictions for the dependent variable for user-defined values of the components, in their original metric. 

Graph Options 

Surface and contour plots. The respective fitted model can be visualized in triangular surface plots or contour plots, which, optionally, can also include the respective fitted function. 
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Note that the fitted function displayed in the surface and contour plots always pertains to the parameter estimates for the pseudo-components. 

Categorized surface plots. If your design involves replications (and the replications are coded in your data file), then you can use 3D Ternary Plots to look at the respective fit, replication by replication. 

[image: image110.png]



Of course, if you have other categorical variables in your study (e.g., operator or experimenter; machine, etc.) you can also categorize the 3D surface plot by those variables. 

Trace plots. One aid for interpreting the triangular response surface is the so-called trace plot. Suppose you looked at the contour plot of the response surface for three components. Then, determine a reference blend for two of the components, for example, hold the values for A and B at 1/3 each. Keeping the relative proportions of A and B constant (i.e., equal proportions in this case), you can then plot the estimated response (values for the dependent variable) for different values of C. 
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If the reference blend for A and B is 1:1, then the resulting line or response trace is the axis for factor C; that is, the line from the C vertex point connecting with the opposite side of the triangle at a right angle. However, trace plots for other reference blends can also be produced. Typically, the trace plot contains the traces for all components, given the current reference blend. 

Residual plots. Finally, it is important, after deciding on a model, to review the prediction residuals, in order to identify outliers or regions of misfit-fit. In addition, one should review the standard normal probability plot of residuals and the scatterplot of observed versus predicted values. Remember that the multiple regression analysis (i.e., the process of fitting the surface) assumes that the residuals are normally distributed, and one should carefully review the residuals for any apparent outliers. 
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Designs for Constrained Surfaces and Mixtures 

Overview 
As mentioned in the context of mixture designs, it often happens in real-world studies that the experimental region of interest is constrained, that is, that not all factors settings can be combined with all settings for the other factors in the study. There is an algorithm suggested by Piepel (1988) and Snee (1985) for finding the vertices and centroids for such constrained regions. 

Designs for Constrained Experimental Regions 
When in an experiment with many factors, there are constraints concerning the possible values of those factors and their combinations, it is not clear how to proceed. A reasonable approach is to include in the experiments runs at the extreme vertex points and centroid points of the constrained region, which should usually provide good coverage of the constrained experimental region (e.g., see Piepel, 1988; Snee, 1975). In fact, the mixture designs reviewed in the previous section provide examples for such designs, since they are typically constructed to include the vertex and centroid points of the constrained region that consists of a triangle (simplex). 

Linear Constraints 
One general way in which one can summarize most constraints that occur in real world experimentation is in terms of a linear equation (see Piepel, 1988): 

A1x1 + A2x2 + ... + Aqxq + A0 [image: image112.png]


0 

Here, A0, .., Aq are the parameters for the linear constraint on the q factors, and x1,.., xq stands for the factor values (levels) for the q factors. This general formula can accommodate even very complex constraints. For example, suppose that in a two-factor experiment the first factor must always be set at least twice as high as the second, that is, x1 [image: image113.png]


2*x2. This simple constraint can be rewritten as x1-2*x2 [image: image114.png]


0. The ratio constraint 2*x1 /x2[image: image115.png]


 1 can be rewritten as 2*x1 - x2 [image: image116.png]


0, and so on. 

The problem of multiple upper and lower constraints on the component values in mixtures was discussed earlier, in the context of mixture experiments. For example, suppose in a three-component mixture of fruit juices, the upper and lower constraints on the components are (see example 3.2, in Cornell 1993): 

40% [image: image117.png]


Watermelon (x1) [image: image118.png]


80%
10% [image: image119.png]


Pineapple (x2) [image: image120.png]


50%
10% [image: image121.png]


Orange (x3) [image: image122.png]


30%

These constraints can be rewritten as linear constraints into the form: 

	Watermelon:
 
	x1-40[image: image123.png]


0
-x1+80[image: image124.png]


0

	Pineapple:
 
	x2-10[image: image125.png]


0
-x2+50[image: image126.png]


0

	Orange:
 
	x3-10[image: image127.png]


0
-x3+30[image: image128.png]


0


Thus, the problem of finding design points for mixture experiments with components with multiple upper and lower constraints is only a special case of general linear constraints. 

The Piepel & Snee Algorithm 
For the special case of constrained mixtures, algorithms such as the XVERT algorithm (see, for example, Cornell, 1990) are often used to find the vertex and centroid points of the constrained region (inside the triangle of three components, tetrahedron of four components, etc.). The general algorithm proposed by Piepel (1988) and Snee (1979) for finding vertices and centroids can be applied to mixtures as well as non-mixtures. The general approach of this algorithm is described in detail by Snee (1979). 

Specifically, it will consider one-by-one each constraint, written as a linear equation as described above. Each constraint represents a line (or plane) through the experimental region. For each successive constraint you will evaluate whether or not the current (new) constraint crosses into the current valid region of the design. If so, new vertices will be computed which define the new valid experimental region, updated for the most recent constraint. It will then check whether or not any of the previously processed constraints have become redundant, that is, define lines or planes in the experimental region that are now entirely outside the valid region. After all constraints have been processed, it will then compute the centroids for the sides of the constrained region (of the order requested by the user). For the two-dimensional (two-factor) case, one can easily recreate this process by simply drawing lines through the experimental region, one for each constraint; what is left is the valid experimental region. 
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For more information, see Piepel (1988) or Snee (1979). 

Choosing Points for the Experiment 
Once the vertices and centroids have been computed, you may face the problem of having to select a subset of points for the experiment. If each experimental run is costly, then it may not be feasible to simply run all vertex and centroid points. In particular, when there are many factors and constraints, then the number of centroids can quickly get very large. 

If you are screening a large number of factors, and are not interested in non-linear effects, then choosing the vertex points only will usually yield good coverage of the experimental region. To increase statistical power (to increase the degrees of freedom for the ANOVA error term), you may also want to include a few runs with the factors set at the overall centroid of the constrained region. 

If you are considering a number of different models that you might fit once the data have been collected, then you may want to use the D- and A-optimal design options. Those options will help you select the design points that will extract the maximum amount of information from the constrained experimental region, given your models. 

Analyzing Designs for Constrained Surfaces and Mixtures 
As mentioned in the section on central composite designs and mixture designs, once the constrained design points have been chosen for the final experiment, and the data for the dependent variables of interest have been collected, the analysis of these designs can proceed in the standard manner. 

For example, Cornell (1990, page 68) describes an experiment of three plasticizers, and their effect on resultant vinyl thickness (for automobile seat covers). The constraints for the three plasticizers components x1, x2, and x3 are: 

.409 [image: image130.png]


x1 [image: image131.png]


.849
.000 [image: image132.png]


x2 [image: image133.png]


.252
.151 [image: image134.png]


x3 [image: image135.png]


.274
(Note that these values are already rescaled, so that the total for each mixture must be equal to 1.) The vertex and centroid points generated are: 

	x1
	x2
	x3

	.8490
.7260
.4740
.5970
.6615
.7875
.6000
.5355
.7230
	.0000
.0000
.2520
.2520
.1260
.0000
.1260
.2520
.1260
	.1510
.2740
.2740
.1510
.2125
.2125
.2740
.2125
.1510
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Constructing D- and A-Optimal Designs 

Overview 
In the sections on standard factorial designs (see 2**(k-p) Fractional Factorial Designs and 3**(k-p), Box Behnken, and Mixed 2 and 3 Level Factorial Designs) and Central Composite Designs, the property of orthogonality of factor effects was discussed. In short, when the factor level settings for two factors in an experiment are uncorrelated, that is, when they are varied independently of each other, then they are said to be orthogonal to each other. (If you are familiar with matrix and vector algebra, two column vectors X1 and X2 in the design matrix are orthogonal if X1'*X2= 0). Intuitively, it should be clear that one can extract the maximum amount of information regarding a dependent variable from the experimental region (the region defined by the settings of the factor levels), if all factor effects are orthogonal to each other. Conversely, suppose one ran a four-run experiment for two factors as follows: 

	 
	x1
	x2

	Run 1
Run 2
Run 3
Run 4
	 1
 1
-1
-1
	 1
 1
-1
-1


Now the columns of factor settings for X1 and X2 are identical to each other (their correlation is 1), and there is no way in the results to distinguish between the main effect for X1 and X2. 

The D- and A-optimal design procedures provide various options to select from a list of valid (candidate) points (i.e., combinations of factor settings) those points that will extract the maximum amount of information from the experimental region, given the respective model that you expect to fit to the data. You need to supply the list of candidate points, for example the vertex and centroid points computed by the Designs for constrained surface and mixtures option, specify the type of model you expect to fit to the data, and the number of runs for the experiment. It will then construct a design with the desired number of cases, that will provide as much orthogonality between the columns of the design matrix as possible. 

The reasoning behind D- and A-optimality is discussed, for example, in Box and Draper (1987, Chapter 14). The different algorithms used for searching for optimal designs are described in Dykstra (1971), Galil and Kiefer (1980), and Mitchell (1974a, 1974b). A detailed comparison study of the different algorithms is discussed in Cook and Nachtsheim (1980). 

Basic Ideas 
A technical discussion of the reasoning (and limitations) of D- and A-optimal designs is beyond the scope of this introduction. However, the general ideas are fairly straight-forward. Consider again the simple two-factor experiment in four runs. 

	 
	x1
	x2

	Run 1
Run 2
Run 3
Run 4
	 1
 1
-1
-1
	 1
 1
-1
-1


As mentioned above, this design, of course, does not allow one to test, independently, the statistical significance of the two variables' contribution to the prediction of the dependent variable. If you computed the correlation matrix for the two variables, they would correlate at 1: 

	 
	x1
	x2

	x1
x2
	1.0
1.0
	1.0
1.0


Normally, one would run this experiment so that the two factors are varied independently of each other: 

	 
	x1
	x2

	Run 1
Run 2
Run 3
Run 4
	 1
 1
-1
-1
	 1
-1
 1
-1


Now the two variables are uncorrelated, that is, the correlation matrix for the two factors is: 

	 
	x1
	x2

	x1
x2
	1.0
0.0
	0.0
1.0


Another term that is customarily used in this context is that the two factors are orthogonal. Technically, if the sum of the products of the elements of two columns (vectors) in the design (design matrix) is equal to 0 (zero), then the two columns are orthogonal. 

The determinant of the design matrix. The determinant D of a square matrix (like the 2-by-2 correlation matrices shown above) is a specific numerical value, that reflects the amount of independence or redundancy between the columns and rows of the matrix. For the 2-by-2 case, it is simply computed as the product of the diagonal elements minus the off-diagonal elements of the matrix (for larger matrices the computations are more complex). For example, for the two matrices shown above, the determinant D is: 

	D1 =
 
	|1.0 1.0|
|1.0 1.0|
	= 1*1 - 1*1 = 0
 

	D2 =
 
	|1.0 0.0|
|0.0 1.0|
	= 1*1 - 0*0 = 1
 


Thus, the determinant for the first matrix computed from completely redundant factor settings is equal to 0. The determinant for the second matrix, when the factors are orthogonal, is equal to 1. 

D-optimal designs. This basic relationship extends to larger design matrices, that is, the more redundant the vectors (columns) of the design matrix, the closer to 0 (zero) is the determinant of the correlation matrix for those vectors; the more independent the columns, the larger is the determinant of that matrix. Thus, finding a design matrix that maximizes the determinant D of this matrix means finding a design where the factor effects are maximally independent of each other. This criterion for selecting a design is called the D-optimality criterion. 

Matrix notation. Actually, the computations are commonly not performed on the correlation matrix of vectors, but on the simple cross-product matrix. In matrix notation, if the design matrix is denoted by X, then the quantity of interest here is the determinant of X'X (X- transposed times X). Thus, the search for D-optimal designs aims to maximize |X'X|, where the vertical lines (|..|) indicate the determinant. 

A-optimal designs. Looking back at the computations for the determinant, another way to look at the issue of independence is to maximize the diagonal elements of the X'X matrix, while minimizing the off-diagonal elements. The so-called trace criterion or A-optimality criterion expresses this idea. Technically, the A-criterion is defined as: 

A = trace(X'X)-1 

where trace stands for the sum of the diagonal elements (of the (X'X)-1 matrix). 

The information function. It should be mentioned at this point that D-optimal designs minimize the expected prediction error for the dependent variable, that is, those designs will maximize the precision of prediction, and thus the information (which is defined as the inverse of the error) that is extracted from the experimental region of interest. 

Measuring Design Efficiency 
A number of standard measures have been proposed to summarize the efficiency of a design. 

D-efficiency. This measure is related to the D-optimality criterion: 

D-efficiency = 100 * (|X'X|1/p/N) 

Here, p is the number of factor effects in the design (columns in X), and N is the number of requested runs. This measure can be interpreted as the relative number of runs (in percent) that would be required by an orthogonal design to achieve the same value of the determinant |X'X|. However, remember that an orthogonal design may not be possible in many cases, that is, it is only a theoretical "yard-stick." Therefore, you should use this measure rather as a relative indicator of efficiency, to compare other designs of the same size, and constructed from the same design points candidate list. Also note that this measure is only meaningful (and will only be reported) if you chose to recode the factor settings in the design (i.e., the factor settings for the design points in the candidate list), so that they have a minimum of -1 and a maximum of +1. 

A-efficiency. This measure is related to the A-optimality criterion: 

A-efficiency = 100 * p/trace(N*(X'X)-1) 

Here, p stands for the number of factor effects in the design, N is the number of requested runs, and trace stands for the sum of the diagonal elements (of (N*(X'X)-1) ). This measure can be interpreted as the relative number of runs (in percent) that would be required by an orthogonal design to achieve the same value of the trace of (X'X)-1. However, again you should use this measure as a relative indicator of efficiency, to compare other designs of the same size and constructed from the same design points candidate list; also this measure is only meaningful if you chose to recode the factor settings in the design to the -1 to +1 range. 

G-efficiency. This measure is computed as: 

G-efficiency = 100 * square root(p/N)/[image: image137.png]


M 

Again, p stands for the number of factor effects in the design and N is the number of requested runs; [image: image138.png]


M (sigmaM) stands for the maximum standard error for prediction across the list of candidate points. This measure is related to the so-called G- optimality criterion; G-optimal designs are defined as those that will minimize the maximum value of the standard error of the predicted response. 

Constructing Optimal Designs 
The optimal design facilities will "search for" optimal designs, given a list of "candidate points." Put another way, given a list of points that specifies which regions of the design are valid or feasible, and given a user-specified number of runs for the final experiment, it will select points to optimize the respective criterion. This "searching for" the best design is not an exact method, but rather an algorithmic procedure that employs certain search strategies to find the best design (according to the respective optimality criterion). 

The search procedures or algorithms that have been proposed are described below (for a review and detailed comparison, see Cook and Nachtsheim, 1980). They are reviewed here in the order of speed, that is, the Sequential or Dykstra method is the fastest method, but often most likely to fail, that is, to yield a design that is not optimal (e.g., only locally optimal; this issue will be discussed shortly). 

Sequential or Dykstra method. This algorithm is due to Dykstra (1971). Starting with an empty design, it will search through the candidate list of points, and choose in each step the one that maximizes the chosen criterion. There are no iterations involved, they will simply pick the requested number of points sequentially. Thus, this method is the fastest of the ones discussed. Also, by default, this method is used to construct the initial designs for the remaining methods. 

Simple exchange (Wynn-Mitchell) method. This algorithm is usually attributed to Mitchell and Miller (1970) and Wynn (1972). The method starts with an initial design of the requested size (by default constructed via the sequential search algorithm described above). In each iteration, one point (run) in the design will be dropped from the design and another added from the list of candidate points. The choice of points to be dropped or added is sequential, that is, at each step the point that contributes least with respect to the chosen optimality criterion (D or A) is dropped from the design; then the algorithm chooses a point from the candidate list so as to optimize the respective criterion. The algorithm stops when no further improvement is achieved with additional exchanges. 

DETMAX algorithm (exchange with excursions). This algorithm, due to Mitchell (1974b), is probably the best known and most widely used optimal design search algorithm. Like the simple exchange method, first an initial design is constructed (by default, via the sequential search algorithm described above). The search begins with a simple exchange as described above. However, if the respective criterion (D or A) does not improve, the algorithm will undertake excursions. Specifically, the algorithm will add or subtract more than one point at a time, so that, during the search, the number of points in the design may vary between ND+ Nexcursion and ND- Nexcursion, where ND is the requested design size, and Nexcursion refers to the maximum allowable excursion, as specified by the user. The iterations will stop when the chosen criterion (D or A) no longer improves within the maximum excursion. 

Modified Fedorov (simultaneous switching). This algorithm represents a modification (Cook and Nachtsheim, 1980) of the basic Fedorov algorithm described below. It also begins with an initial design of the requested size (by default constructed via the sequential search algorithm). In each iteration, the algorithm will exchange each point in the design with one chosen from the candidate list, so as to optimize the design according to the chosen criterion (D or A). Unlike the simple exchange algorithm described above, the exchange is not sequential, but simultaneous. Thus, in each iteration each point in the design is compared with each point in the candidate list, and the exchange is made for the pair that optimizes the design. The algorithm terminates when there are no further improvements in the respective optimality criterion. 

Fedorov (simultaneous switching). This is the original simultaneous switching method proposed by Fedorov (see Cook and Nachtsheim, 1980). The difference between this procedure and the one described above (modified Fedorov) is that in each iteration only a single exchange is performed, that is, in each iteration all possible pairs of points in the design and those in the candidate list are evaluated. The algorithm will then exchange the pair that optimizes the design (with regard to the chosen criterion). Thus, it is easy to see that this algorithm potentially can be somewhat slow, since in each iteration ND*NC comparisons are performed, in order to exchange a single point. 

General Recommendations 
If you think about the basic strategies represented by the different algorithms described above, it should be clear that there are usually no exact solutions to the optimal design problem. Specifically, the determinant of the X'X matrix (and trace of its inverse) are complex functions of the list of candidate points. In particular, there are usually several "local minima" with regard to the chosen optimality criterion; for example, at any point during the search a design may appear optimal unless you simultaneously discard half of the points in the design and choose certain other points from the candidate list; but, if you only exchange individual points or only a few points (via DETMAX), then no improvement occurs. 

Therefore, it is important to try a number of different initial designs and algorithms. If after repeating the optimization several times with random starts the same, or very similar, final optimal design results, then you can be reasonably sure that you are not "caught" in a local minimum or maximum. 

Also, the methods described above vary greatly with regard to their ability to get "trapped" in local minima or maxima. As a general rule, the slower the algorithm (i.e., the further down on the list of algorithms described above), the more likely is the algorithm to yield a truly optimal design. However, note that the modified Fedorov algorithm will practically perform just as well as the unmodified algorithm (see Cook and Nachtsheim, 1980); therefore, if time is not a consideration, we recommend the modified Fedorov algorithm as the best method to use. 

D-optimality and A-optimality. For computational reasons (see Galil and Kiefer, 1980), updating the trace of a matrix (for the A-optimality criterion) is much slower than updating the determinant (for D-optimality). Thus, when you choose the A-optimality criterion, the computations may require significantly more time as compared to the D-optimality criterion. Since in practice, there are many other factors that will affect the quality of an experiment (e.g., the measurement reliability for the dependent variable), we generally recommend that you use the D optimality criterion. However, in difficult design situations, for example, when there appear to be many local maxima for the D criterion, and repeated trials yield very different results, you may want to run several optimization trials using the A criterion to learn more about the different types of designs that are possible. 

Avoiding Matrix Singularity 
It may happen during the search process that it cannot compute the inverse of the X'X matrix (for A-optimality), or that the determinant of the matrix becomes almost 0 (zero). At that point, the search can usually not continue. To avoid this situation, perform the optimization based on an augmented X'X matrix: 

X'Xaugmented = X'X + [image: image139.png]


*(X0'X0/N0) 

where X0 stands for the design matrix constructed from the list of all N0 candidate points, and [image: image140.png]


(alpha) is a user-defined small constant. Thus, you can turn off this feature by setting [image: image141.png]


to 0 (zero). 

"Repairing" Designs 
The optimal design features can be used to "repair" designs. For example, suppose you ran an orthogonal design, but some data were lost (e.g., due to equipment malfunction), and now some effects of interest can no longer be estimated. You could of course make up the lost runs, but suppose you do not have the resources to redo them all. In that case, you can set up the list of candidate points from among all valid points for the experimental region, add to that list all the points that you have already run, and instruct it to always force those points into the final design (and never to drop them out; you can mark points in the candidate list for such forced inclusion). It will then only consider to exclude those points from the design that you did not actually run. In this manner you can, for example, find the best single run to add to an existing experiment, that would optimize the respective criterion. 

Constrained Experimental Regions and Optimal Design 
A typical application of the optimal design features is to situations when the experimental region of interest is constrained. As described earlier in this section, there are facilities for finding vertex and centroid points for linearly constrained regions and mixtures. Those points can then be submitted as the candidate list for constructing an optimal design of a particular size for a particular model. Thus, these two facilities combined provide a very powerful tool to cope with the difficult design situation when the design region of interest is subject to complex constraints, and one wants to fit particular models with the least number of runs. 
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Special Topics 

The following sections introduce several analysis techniques. The sections describe Response/desirability profiling, conducting Residual analyses, and performing Box-Cox transformations of the dependent variable. 

See also ANOVA/MANOVA, Methods for Analysis of Variance, and Variance Components and Mixed Model ANOVA/ANCOVA. 

Profiling Predicted Responses and Response Desirability 

Basic Idea. A typical problem in product development is to find a set of conditions, or levels of the input variables, that produces the most desirable product in terms of its characteristics, or responses on the output variables. The procedures used to solve this problem generally involve two steps: (1) predicting responses on the dependent, or Y variables, by fitting the observed responses using an equation based on the levels of the independent, or X variables, and (2) finding the levels of the X variables which simultaneously produce the most desirable predicted responses on the Y variables. Derringer and Suich (1980) give, as an example of these procedures, the problem of finding the most desirable tire tread compound. There are a number of Y variables, such as PICO Abrasion Index, 200 percent modulus, elongation at break, and hardness. The characteristics of the product in terms of the response variables depend on the ingredients, the X variables, such as hydrated silica level, silane coupling agent level, and sulfur. The problem is to select the levels for the X's which will maximize the desirability of the responses on the Y's. The solution must take into account the fact that the levels for the X's that maximize one response may not maximize a different response. 

When analyzing 2**(k-p) (two-level factorial) designs, 2-level screening designs, 2**(k-p) maximally unconfounded and minimum aberration designs, 3**(k-p) and Box Behnken designs, Mixed 2 and 3 level designs, central composite designs, and mixture designs, Response/desirability profiling allows you to inspect the response surface produced by fitting the observed responses using an equation based on levels of the independent variables. 

Prediction Profiles. When you analyze the results of any of the designs listed above, a separate prediction equation for each dependent variable (containing different coefficients but the same terms) is fitted to the observed responses on the respective dependent variable. Once these equations are constructed, predicted values for the dependent variables can be computed at any combination of levels of the predictor variables. A prediction profile for a dependent variable consists of a series of graphs, one for each independent variable, of the predicted values for the dependent variable at different levels of one independent variable, holding the levels of the other independent variables constant at specified values, called current values. If appropriate current values for the independent variables have been selected, inspecting the prediction profile can show which levels of the predictor variables produce the most desirable predicted response on the dependent variable. 

One might be interested in inspecting the predicted values for the dependent variables only at the actual levels at which the independent variables were set during the experiment. Alternatively, one also might be interested in inspecting the predicted values for the dependent variables at levels other than the actual levels of the independent variables used during the experiment, to see if there might be intermediate levels of the independent variables that could produce even more desirable responses. Also, returning to the Derringer and Suich (1980) example, for some response variables, the most desirable values may not necessarily be the most extreme values, for example, the most desirable value of elongation may fall within a narrow range of the possible values. 

Response Desirability. Different dependent variables might have different kinds of relationships between scores on the variable and the desirability of the scores. Less filling beer may be more desirable, but better tasting beer can also be more desirable--lower "fillingness" scores and higher "taste" scores are both more desirable. The relationship between predicted responses on a dependent variable and the desirability of responses is called the desirability function. Derringer and Suich (1980) developed a procedure for specifying the relationship between predicted responses on a dependent variable and the desirability of the responses, a procedure that provides for up to three "inflection" points in the function. Returning to the tire tread compound example described above, their procedure involved transforming scores on each of the four tire tread compound outcome variables into desirability scores that could range from 0.0 for undesirable to 1.0 for very desirable. For example, their desirability function for hardness of the tire tread compound was defined by assigning a desirability value of 0.0 to hardness scores below 60 or above 75, a desirability value of 1.0 to mid-point hardness scores of 67.5, a desirability value that increased linearly from 0.0 up to 1.0 for hardness scores between 60 and 67.5 and a desirability value that decreased linearly from 1.0 down to 0.0 for hardness scores between 67.5 and 75.0. More generally, they suggested that procedures for defining desirability functions should accommodate curvature in the "falloff" of desirability between inflection points in the functions. 

After transforming the predicted values of the dependent variables at different combinations of levels of the predictor variables into individual desirability scores, the overall desirability of the outcomes at different combinations of levels of the predictor variables can be computed. Derringer and Suich (1980) suggested that overall desirability be computed as the geometric mean of the individual desirabilities (which makes intuitive sense, because if the individual desirability of any outcome is 0.0, or unacceptable, the overall desirability will be 0.0, or unacceptable, no matter how desirable the other individual outcomes are--the geometric mean takes the product of all of the values, and raises the product to the power of the reciprocal of the number of values). Derringer and Suich's procedure provides a straightforward way for transforming predicted values for multiple dependent variables into a single overall desirability score. The problem of simultaneously optimization of several response variables then boils down to selecting the levels of the predictor variables that maximize the overall desirability of the responses on the dependent variables. 

Summary. When one is developing a product whose characteristics are known to depend on the "ingredients" of which it is constituted, producing the best product possible requires determining the effects of the ingredients on each characteristic of the product, and then finding the balance of ingredients that optimizes the overall desirability of the product. In data analytic terms, the procedure that is followed to maximize product desirability is to (1) find adequate models (i.e., prediction equations) to predict characteristics of the product as a function of the levels of the independent variables, and (2) determine the optimum levels of the independent variables for overall product quality. These two steps, if followed faithfully, will likely lead to greater success in product improvement than the fabled, but statistically dubious technique of hoping for accidental breakthroughs and discoveries that radically improve product quality. 

Residuals Analysis 

Basic Idea. Extended residuals analysis is a collection of methods for inspecting different residual and predicted values, and thus to examine the adequacy of the prediction model, the need for transformations of the variables in the model, and the existence of outliers in the data. 

Residuals are the deviations of the observed values on the dependent variable from the predicted values, given the current model. The ANOVA models used in analyzing responses on the dependent variable make certain assumptions about the distributions of residual (but not predicted) values on the dependent variable. These assumptions can be summarized by saying that the ANOVA model assumes normality, linearity, homogeneity of variances and covariances, and independence of residuals. All of these properties of the residuals for a dependent variable can be inspected using Residuals analysis. 

Box-Cox Transformations of Dependent Variables 

Basic Idea. It is assumed in analysis of variance that the variances in the different groups (experimental conditions) are homogeneous, and that they are uncorrelated with the means. If the distribution of values within each experimental condition is skewed, and the means are correlated with the standard deviations, then one can often apply an appropriate power transformation to the dependent variable to stabilize the variances, and to reduce or eliminate the correlation between the means and standard deviations. The Box-Cox transformation is useful for selecting an appropriate (power) transformation of the dependent variable. 

Selecting the Box-Cox transformation option will produce a plot of the Residual Sum of Squares, given the model, as a function of the value of lambda, where lambda is used to define a transformation of the dependent variable, 

	y' = ( y**(lambda) - 1 ) / ( g**(lambda-1) * lambda)
	if lambda [image: image142.png]


0

	y' = g * natural log(y)
	if lambda = 0


in which g is the geometric mean of the dependent variable and all values of the dependent variable are non-negative. The value of lambda for which the Residual Sum of Squares is a minimum is the maximum likelihood estimate for this parameter. It produces the variance stabilizing transformation of the dependent variable that reduces or eliminates the correlation between the group means and standard deviations. 

In practice, it is not important that you use the exact estimated value of lambda for transforming the dependent variable. Rather, as a rule of thumb, one should consider the following transformations:

	Approximate
lambda
	Suggested
transorfmation of y

	-1   
-0.5
 0   
 0.5
 1   
	Reciprocal
Reciprocal square root
Natural logarithm
Square root
None


For additional information regarding this family of transformations, see Box and Cox (1964), Box and Draper (1987), and Maddala (1977). 
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Principal Components and Factor Analysis



General Purpose 

Basic Idea of Factor Analysis as a Data Reduction Method 

Factor Analysis as a Classification Method 

Miscellaneous Other Issues and Statistics 



General Purpose 
The main applications of factor analytic techniques are: (1) to reduce the number of variables and (2) to detect structure in the relationships between variables, that is to classify variables. Therefore, factor analysis is applied as a data reduction or structure detection method (the term factor analysis was first introduced by Thurstone, 1931). The topics listed below will describe the principles of factor analysis, and how it can be applied towards these two purposes. We will assume that you are familiar with the basic logic of statistical reasoning as described in Elementary Concepts. Moreover, we will also assume that you are familiar with the concepts of variance and correlation; if not, we advise that you read the Basic Statistics chapter at this point. 

There are many excellent books on factor analysis. For example, a hands-on how-to approach can be found in Stevens (1986); more detailed technical descriptions are provided in Cooley and Lohnes (1971); Harman (1976); Kim and Mueller, (1978a, 1978b); Lawley and Maxwell (1971); Lindeman, Merenda, and Gold (1980); Morrison (1967); or Mulaik (1972). The interpretation of secondary factors in hierarchical factor analysis, as an alternative to traditional oblique rotational strategies, is explained in detail by Wherry (1984). 

Confirmatory factor analysis. Structural Equation Modeling (SEPATH) allows you to test specific hypotheses about the factor structure for a set of variables, in one or several samples (e.g., you can compare factor structures across samples). 

Correspondence analysis. Correspondence analysis is a descriptive/exploratory technique designed to analyze two-way and multi-way tables containing some measure of correspondence between the rows and columns. The results provide information which is similar in nature to those produced by factor analysis techniques, and they allow one to explore the structure of categorical variables included in the table. For more information regarding these methods, refer to Correspondence Analysis. 
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Basic Idea of Factor Analysis as a Data Reduction Method 
Suppose we conducted a (rather "silly") study in which we measure 100 people's height in inches and centimeters. Thus, we would have two variables that measure height. If in future studies, we want to research, for example, the effect of different nutritional food supplements on height, would we continue to use both measures? Probably not; height is one characteristic of a person, regardless of how it is measured. 

Let us now extrapolate from this "silly" study to something that one might actually do as a researcher. Suppose we want to measure people's satisfaction with their lives. We design a satisfaction questionnaire with various items; among other things we ask our subjects how satisfied they are with their hobbies (item 1) and how intensely they are pursuing a hobby (item 2). Most likely, the responses to the two items are highly correlated with each other. (If you are not familiar with the correlation coefficient, we recommend that you read the description in Basic Statistics - Correlations) Given a high correlation between the two items, we can conclude that they are quite redundant. 

Combining Two Variables into a Single Factor. One can summarize the correlation between two variables in a scatterplot. A regression line can then be fitted that represents the "best" summary of the linear relationship between the variables. If we could define a variable that would approximate the regression line in such a plot, then that variable would capture most of the "essence" of the two items. Subjects' single scores on that new factor, represented by the regression line, could then be used in future data analyses to represent that essence of the two items. In a sense we have reduced the two variables to one factor. Note that the new factor is actually a linear combination of the two variables. 

Principal Components Analysis. The example described above, combining two correlated variables into one factor, illustrates the basic idea of factor analysis, or of principal components analysis to be precise (we will return to this later). If we extend the two-variable example to multiple variables, then the computations become more involved, but the basic principle of expressing two or more variables by a single factor remains the same. 

Extracting Principal Components. We do not want to go into the details about the computational aspects of principal components analysis here, which can be found elsewhere (references were provided at the beginning of this section). However, basically, the extraction of principal components amounts to a variance maximizing (varimax) rotation of the original variable space. For example, in a scatterplot we can think of the regression line as the original X axis, rotated so that it approximates the regression line. This type of rotation is called variance maximizing because the criterion for (goal of) the rotation is to maximize the variance (variability) of the "new" variable (factor), while minimizing the variance around the new variable (see Rotational Strategies). 

Generalizing to the Case of Multiple Variables. When there are more than two variables, we can think of them as defining a "space," just as two variables defined a plane. Thus, when we have three variables, we could plot a three- dimensional scatterplot, and, again we could fit a plane through the data. 
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With more than three variables it becomes impossible to illustrate the points in a scatterplot, however, the logic of rotating the axes so as to maximize the variance of the new factor remains the same. 

Multiple orthogonal factors. After we have found the line on which the variance is maximal, there remains some variability around this line. In principal components analysis, after the first factor has been extracted, that is, after the first line has been drawn through the data, we continue and define another line that maximizes the remaining variability, and so on. In this manner, consecutive factors are extracted. Because each consecutive factor is defined to maximize the variability that is not captured by the preceding factor, consecutive factors are independent of each other. Put another way, consecutive factors are uncorrelated or orthogonal to each other. 

How many Factors to Extract? Remember that, so far, we are considering principal components analysis as a data reduction method, that is, as a method for reducing the number of variables. The question then is, how many factors do we want to extract? Note that as we extract consecutive factors, they account for less and less variability. The decision of when to stop extracting factors basically depends on when there is only very little "random" variability left. The nature of this decision is arbitrary; however, various guidelines have been developed, and they are reviewed in Reviewing the Results of a Principal Components Analysis under Eigenvalues and the Number-of- Factors Problem. 

Reviewing the Results of a Principal Components Analysis. Without further ado, let us now look at some of the standard results from a principal components analysis. To reiterate, we are extracting factors that account for less and less variance. To simplify matters, one usually starts with the correlation matrix, where the variances of all variables are equal to 1.0. Therefore, the total variance in that matrix is equal to the number of variables. For example, if we have 10 variables each with a variance of 1 then the total variability that can potentially be extracted is equal to 10 times 1. Suppose that in the satisfaction study introduced earlier we included 10 items to measure different aspects of satisfaction at home and at work. The variance accounted for by successive factors would be summarized as follows: 

	STATISTICA
FACTOR
ANALYSIS
	Eigenvalues (factor.sta)
Extraction: Principal components
 

	 
Value
	 
Eigenval
	% total
Variance
	Cumul.
Eigenval
	Cumul.
%

	1
2
3
4
5
6
7
8
9
10
	6.118369
1.800682
.472888
.407996
.317222
.293300
.195808
.170431
.137970
.085334
	61.18369
18.00682
4.72888
4.07996
3.17222
2.93300
1.95808
1.70431
1.37970
.85334
	6.11837
7.91905
8.39194
8.79993
9.11716
9.41046
9.60626
9.77670
9.91467
10.00000
	61.1837
79.1905
83.9194
87.9993
91.1716
94.1046
96.0626
97.7670
99.1467
100.0000


Eigenvalues
In the second column (Eigenvalue) above, we find the variance on the new factors that were successively extracted. In the third column, these values are expressed as a percent of the total variance (in this example, 10). As we can see, factor 1 accounts for 61 percent of the variance, factor 2 for 18 percent, and so on. As expected, the sum of the eigenvalues is equal to the number of variables. The third column contains the cumulative variance extracted. The variances extracted by the factors are called the eigenvalues. This name derives from the computational issues involved. 

Eigenvalues and the Number-of-Factors Problem
Now that we have a measure of how much variance each successive factor extracts, we can return to the question of how many factors to retain. As mentioned earlier, by its nature this is an arbitrary decision. However, there are some guidelines that are commonly used, and that, in practice, seem to yield the best results. 

The Kaiser criterion. First, we can retain only factors with eigenvalues greater than 1. In essence this is like saying that, unless a factor extracts at least as much as the equivalent of one original variable, we drop it. This criterion was proposed by Kaiser (1960), and is probably the one most widely used. In our example above, using this criterion, we would retain 2 factors (principal components). 

The scree test. A graphical method is the scree test first proposed by Cattell (1966). We can plot the eigenvalues shown above in a simple line plot. 
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Cattell suggests to find the place where the smooth decrease of eigenvalues appears to level off to the right of the plot. To the right of this point, presumably, one finds only "factorial scree" -- "scree" is the geological term referring to the debris which collects on the lower part of a rocky slope. According to this criterion, we would probably retain 2 or 3 factors in our example. 

Which criterion to use. Both criteria have been studied in detail (Browne, 1968; Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman & Linn, 1969). Theoretically, one can evaluate those criteria by generating random data based on a particular number of factors. One can then see whether the number of factors is accurately detected by those criteria. Using this general technique, the first method (Kaiser criterion) sometimes retains too many factors, while the second technique (scree test) sometimes retains too few; however, both do quite well under normal conditions, that is, when there are relatively few factors and many cases. In practice, an additional important aspect is the extent to which a solution is interpretable. Therefore, one usually examines several solutions with more or fewer factors, and chooses the one that makes the best "sense." We will discuss this issue in the context of factor rotations below. 

Principal Factors Analysis
Before we continue to examine the different aspects of the typical output from a principal components analysis, let us now introduce principal factors analysis. Let us return to our satisfaction questionnaire example to conceive of another "mental model" for factor analysis. We can think of subjects' responses as being dependent on two components. First, there are some underlying common factors, such as the "satisfaction-with-hobbies" factor we looked at before. Each item measures some part of this common aspect of satisfaction. Second, each item also captures a unique aspect of satisfaction that is not addressed by any other item. 

Communalities. If this model is correct, then we should not expect that the factors will extract all variance from our items; rather, only that proportion that is due to the common factors and shared by several items. In the language of factor analysis, the proportion of variance of a particular item that is due to common factors (shared with other items) is called communality. Therefore, an additional task facing us when applying this model is to estimate the communalities for each variable, that is, the proportion of variance that each item has in common with other items. The proportion of variance that is unique to each item is then the respective item's total variance minus the communality. A common starting point is to use the squared multiple correlation of an item with all other items as an estimate of the communality (refer to Multiple Regression for details about multiple regression). Some authors have suggested various iterative "post-solution improvements" to the initial multiple regression communality estimate; for example, the so-called MINRES method (minimum residual factor method; Harman & Jones, 1966) will try various modifications to the factor loadings with the goal to minimize the residual (unexplained) sums of squares. 

Principal factors vs. principal components. The defining characteristic then that distinguishes between the two factor analytic models is that in principal components analysis we assume that all variability in an item should be used in the analysis, while in principal factors analysis we only use the variability in an item that it has in common with the other items. A detailed discussion of the pros and cons of each approach is beyond the scope of this introduction (refer to the general references provided in Principal components and Factor Analysis - Introductory Overview). In most cases, these two methods usually yield very similar results. However, principal components analysis is often preferred as a method for data reduction, while principal factors analysis is often preferred when the goal of the analysis is to detect structure (see Factor Analysis as a Classification Method). 
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Factor Analysis as a Classification Method 
Let us now return to the interpretation of the standard results from a factor analysis. We will henceforth use the term factor analysis generically to encompass both principal components and principal factors analysis. Let us assume that we are at the point in our analysis where we basically know how many factors to extract. We may now want to know the meaning of the factors, that is, whether and how we can interpret them in a meaningful manner. To illustrate how this can be accomplished, let us work "backwards," that is, begin with a meaningful structure and then see how it is reflected in the results of a factor analysis. Let us return to our satisfaction example; shown below is the correlation matrix for items pertaining to satisfaction at work and items pertaining to satisfaction at home. 

	STATISTICA
FACTOR
ANALYSIS
	Correlations (factor.sta)
Casewise deletion of MD
n=100

	Variable
	WORK_1
	WORK_2
	WORK_3
	HOME_1
	HOME_2
	HOME_3

	WORK_1
WORK_2
WORK_3
HOME_1
HOME_2
HOME_3
	1.00
.65
.65
.14
.15
.14
	.65
1.00
.73
.14
.18
.24
	.65
.73
1.00
.16
.24
.25
	.14
.14
.16
1.00
.66
.59
	.15
.18
.24
.66
1.00
.73
	.14
.24
.25
.59
.73
1.00


The work satisfaction items are highly correlated amongst themselves, and the home satisfaction items are highly intercorrelated amongst themselves. The correlations across these two types of items (work satisfaction items with home satisfaction items) is comparatively small. It thus seems that there are two relatively independent factors reflected in the correlation matrix, one related to satisfaction at work, the other related to satisfaction at home. 

Factor Loadings. Let us now perform a principal components analysis and look at the two-factor solution. Specifically, let us look at the correlations between the variables and the two factors (or "new" variables), as they are extracted by default; these correlations are also called factor loadings. 

	STATISTICA
FACTOR
ANALYSIS
	Factor Loadings (Unrotated)
Principal components
 

	Variable
	Factor 1
	Factor 2

	WORK_1
WORK_2
WORK_3
HOME_1
HOME_2
HOME_3
	.654384
.715256
.741688
.634120
.706267
.707446
	.564143
.541444
.508212
-.563123
-.572658
-.525602

	Expl.Var
Prp.Totl
	2.891313
.481885
	1.791000
.298500


Apparently, the first factor is generally more highly correlated with the variables than the second factor. This is to be expected because, as previously described, these factors are extracted successively and will account for less and less variance overall. 

Rotating the Factor Structure. We could plot the factor loadings shown above in a scatterplot. In that plot, each variable is represented as a point. In this plot we could rotate the axes in any direction without changing the relative locations of the points to each other; however, the actual coordinates of the points, that is, the factor loadings would of course change. In this example, if you produce the plot it will be evident that if we were to rotate the axes by about 45 degrees we might attain a clear pattern of loadings identifying the work satisfaction items and the home satisfaction items. 

Rotational strategies. There are various rotational strategies that have been proposed. The goal of all of these strategies is to obtain a clear pattern of loadings, that is, factors that are somehow clearly marked by high loadings for some variables and low loadings for others. This general pattern is also sometimes referred to as simple structure (a more formalized definition can be found in most standard textbooks). Typical rotational strategies are varimax, quartimax, and equamax. 

We have described the idea of the varimax rotation before (see Extracting Principal Components), and it can be applied to this problem as well. As before, we want to find a rotation that maximizes the variance on the new axes; put another way, we want to obtain a pattern of loadings on each factor that is as diverse as possible, lending itself to easier interpretation. Below is the table of rotated factor loadings. 

	STATISTICA
FACTOR
ANALYSIS
	Factor Loadings (Varimax normalized)
Extraction: Principal components
 

	Variable
	Factor 1
	Factor 2

	WORK_1
WORK_2
WORK_3
HOME_1
HOME_2
HOME_3
	.862443
.890267
.886055
.062145
.107230
.140876
	.051643
.110351
.152603
.845786
.902913
.869995

	Expl.Var
Prp.Totl
	2.356684
.392781
	2.325629
.387605


Interpreting the Factor Structure. Now the pattern is much clearer. As expected, the first factor is marked by high loadings on the work satisfaction items, the second factor is marked by high loadings on the home satisfaction items. We would thus conclude that satisfaction, as measured by our questionnaire, is composed of those two aspects; hence we have arrived at a classification of the variables. 

Consider another example, this time with four additional Hobby/Misc variables added to our earlier example. 

[image: image145.png]



In the plot of factor loadings above, 10 variables were reduced to three specific factors, a work factor, a home factor and a hobby/misc. factor. Note that factor loadings for each factor are spread out over the values of the other two factors but are high for its own values. For example, the factor loadings for the hobby/misc variables (in green) have both high and low "work" and "home" values, but all four of these variables have high factor loadings on the "hobby/misc" factor. 

Oblique Factors. Some authors (e.g., Catell & Khanna; Harman, 1976; Jennrich & Sampson, 1966; Clarkson & Jennrich, 1988) have discussed in some detail the concept of oblique (non-orthogonal) factors, in order to achieve more interpretable simple structure. Specifically, computational strategies have been developed to rotate factors so as to best represent "clusters" of variables, without the constraint of orthogonality of factors. However, the oblique factors produced by such rotations are often not easily interpreted. To return to the example discussed above, suppose we would have included in the satisfaction questionnaire above four items that measured other, "miscellaneous" types of satisfaction. Let us assume that people's responses to those items were affected about equally by their satisfaction at home (Factor 1) and at work (Factor 2). An oblique rotation will likely produce two correlated factors with less-than- obvious meaning, that is, with many cross-loadings. 

Hierarchical Factor Analysis. Instead of computing loadings for often difficult to interpret oblique factors, you can use a strategy first proposed by Thompson (1951) and Schmid and Leiman (1957), which has been elaborated and popularized in the detailed discussions by Wherry (1959, 1975, 1984). In this strategy, you first identify clusters of items and rotate axes through those clusters; next the correlations between those (oblique) factors is computed, and that correlation matrix of oblique factors is further factor-analyzed to yield a set of orthogonal factors that divide the variability in the items into that due to shared or common variance (secondary factors), and unique variance due to the clusters of similar variables (items) in the analysis (primary factors). To return to the example above, such a hierarchical analysis might yield the following factor loadings: 

	STATISTICA
FACTOR
ANALYSIS
	Secondary & Primary Factor Loadings
 
 

	Factor
	Second. 1
	Primary 1
	Primary 2

	WORK_1
WORK_2
WORK_3
HOME_1
HOME_2
HOME_3
MISCEL_1
MISCEL_2
MISCEL_3
MISCEL_4
	.483178
.570953
.565624
.535812
.615403
.586405
.780488
.734854
.776013
.714183
	.649499
.687056
.656790
.117278
.079910
.065512
.466823
.464779
.439010
.455157
	.187074
.140627
.115461
.630076 
.668880
.626730
.280141
.238512
.303672
.228351


Careful examination of these loadings would lead to the following conclusions: 

There is a general (secondary) satisfaction factor that likely affects all types of satisfaction measured by the 10 items; 

There appear to be two primary unique areas of satisfaction that can best be described as satisfaction with work and satisfaction with home life. 

Wherry (1984) discusses in great detail examples of such hierarchical analyses, and how meaningful and interpretable secondary factors can be derived. 

Confirmatory Factor Analysis. Over the past 15 years, so-called confirmatory methods have become increasingly popular (e.g., see Jöreskog and Sörbom, 1979). In general, one can specify a priori, a pattern of factor loadings for a particular number of orthogonal or oblique factors, and then test whether the observed correlation matrix can be reproduced given these specifications. Confirmatory factor analyses can be performed via Structural Equation Modeling (SEPATH). 

	To index 


Miscellaneous Other Issues and Statistics 
Factor Scores. We can estimate the actual values of individual cases (observations) for the factors. These factor scores are particularly useful when one wants to perform further analyses involving the factors that one has identified in the factor analysis. 

Reproduced and Residual Correlations. An additional check for the appropriateness of the respective number of factors that were extracted is to compute the correlation matrix that would result if those were indeed the only factors. That matrix is called the reproduced correlation matrix. To see how this matrix deviates from the observed correlation matrix, one can compute the difference between the two; that matrix is called the matrix of residual correlations. The residual matrix may point to "misfits," that is, to particular correlation coefficients that cannot be reproduced appropriately by the current number of factors. 

Matrix Ill-conditioning. If, in the correlation matrix there are variables that are 100% redundant, then the inverse of the matrix cannot be computed. For example, if a variable is the sum of two other variables selected for the analysis, then the correlation matrix of those variables cannot be inverted, and the factor analysis can basically not be performed. In practice this happens when you are attempting to factor analyze a set of highly intercorrelated variables, as it, for example, sometimes occurs in correlational research with questionnaires. Then you can artificially lower all correlations in the correlation matrix by adding a small constant to the diagonal of the matrix, and then restandardizing it. This procedure will usually yield a matrix that now can be inverted and thus factor-analyzed; moreover, the factor patterns should not be affected by this procedure. However, note that the resulting estimates are not exact.

General Discriminant Analysis (GDA)



Introductory Overview 

Advantages of GDA 



Introductory Overview 

General Discriminant Analysis (GDA) is called a "general" discriminant analysis because it applies the methods of the general linear model (see also General Linear Models (GLM)) to the discriminant function analysis problem. A general overview of discriminant function analysis, and the traditional methods for fitting linear models with categorical dependent variables and continuous predictors, is provided in the context of Discriminant Analysis. In GDA, the discriminant function analysis problem is "recast" as a general multivariate linear model, where the dependent variables of interest are (dummy-) coded vectors that reflect the group membership of each case. The remainder of the analysis is then performed as described in the context of General Regression Models (GRM), with a few additional features noted below. 
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Advantages of GDA 

Specifying models for predictor variables and predictor effects. One advantage of applying the general linear model to the discriminant analysis problem is that you can specify complex models for the set of predictor variables. For example, you can specify for a set of continuous predictor variables, a polynomial regression model, response surface model, factorial regression, or mixture surface regression (without an intercept). Thus, you could analyze a constrained mixture experiment (where the predictor variable values must sum to a constant), where the dependent variable of interest is categorical in nature. In fact, GDA does not impose any particular restrictions on the type of predictor variable (categorical or continuous) that can be used, or the models that can be specified. However, when using categorical predictor variables, caution should be used (see "A note of caution for models with categorical predictors, and other advanced techniques" below).

Stepwise and best-subset analyses. In addition to the traditional stepwise analyses for single continuous predictors provided in Discriminant Analysis, General Discriminant Analysis makes available the options for stepwise and best-subset analyses provided in General Regression Models (GRM). Specifically, you can request stepwise and best-subset selection of predictors or sets of predictors (in multiple-degree of freedom effects, involving categorical predictors), based on the F-to-enter and p-to-enter statistics (associated with the multivariate Wilks' Lambda test statistic). In addition, when a cross-validation sample is specified, best-subset selection can also be based on the misclassification rates for the cross-validation sample; in other words, after estimating the discriminant functions for a given set of predictors, the misclassification rates for the cross-validation sample are computed, and the model (subset of predictors) that yields the lowest misclassification rate for the cross-validation sample is chosen. This is a powerful technique for choosing models that may yield good predictive validity, while avoiding overfitting of the data (see also Neural Networks).

Desirability profiling of posterior classification probabilities. Another unique option of General Discriminant Analysis (GDA) is the inclusion of Response/desirability profiler options. These options are described in some detail in the context of Experimental Design (DOE). In short, the predicted response values for each dependent variable are computed, and those values can be combined into a single desirability score. A graphical summary can then be produced to show the "behavior" of the predicted responses and the desirability score over the ranges of values for the predictor variables. In GDA, you can profile both simple predicted values (like in General Regression Models) for the coded dependent variables (i.e., dummy-coded categories of the categorical dependent variable), and you can also profile posterior prediction probabilities. This unique latter option allows you to evaluate how different values for the predictor variables affect the predicted classification of cases, and is particularly useful when interpreting the results for complex models that involve categorical and continuous predictors and their interactions. 

A note of caution for models with categorical predictors, and other advanced techniques. General Discriminant Analysis provides functionality that makes this technique a general tool for classification and data mining. However, most -- if not all -- textbook treatments of discriminant function analysis are limited to simple and stepwise analyses with single degree of freedom continuous predictors. No "experience" (in the literature) exists regarding issues of robustness and effectiveness of these techniques, when they are generalized in the manner provided in this very powerful analysis. The use of best-subset methods, in particular when used in conjunction with categorical predictors or when using the misclassification rates in a cross-validation sample for choosing the best subset of predictors, should be considered a heuristic search method, rather than a statistical analysis technique.

The use of categorical predictor variables. The use of categorical predictor variables or effects in a discriminant function analysis model may be (statistically) questionable. For example, you can use GDA to analyze a 2 by 2 frequency table, by specifying one variable in the 2 by 2 table as the dependent variable, and the other as the predictor. Clearly, the (ab)use of GDA in this manner would be silly (although, interestingly, in most cases you will get results that are generally compatible with those you would get by computing a simple Chi-square test for the 2 by 2 table). On the other hand, if you only consider the parameter estimates computed by GDA as the least squares solution to a set of linear (prediction) equations, then the use of categorical predictors in GDA is fully justified; moreover, it is not uncommon in applied research to be confronted with a mixture of continuous and categorical predictors (e.g., income or age which are continuous, along with occupational status, which is categorical) for predicting a categorical dependent variable. In those cases, it can be very instructive to consider specific models involving the categorical predictors, and possibly interactions between categorical and continuous predictors for classifying observations. However, to reiterate, the use of categorical predictor variables in discriminant function analysis is not widely documented, and you should proceed cautiously before accepting the results of statistical significance tests, and before drawing final conclusions from your analyses. Also remember that there are alternative methods available to perform similar analyses, namely, the multinomial logit models available in Generalized Linear Models (GLZ), and the methods for analyzing multi-way frequency tables in Log-Linear. 
General Linear Models (GLM)
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Testing specific hypotheses 
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This chapter describes the use of the general linear model in a wide variety of statistical analyses. If you are unfamiliar with the basic methods of ANOVA and regression in linear models, it may be useful to first review the basic information on these topics in Elementary Concepts. A detailed discussion of univariate and multivariate ANOVA techniques can also be found in the ANOVA/MANOVA chapter. 

Basic Ideas: The General Linear Model 

The following topics summarize the historical, mathematical, and computational foundations for the general linear model. For a basic introduction to ANOVA (MANOVA, ANCOVA) techniques, refer to ANOVA/MANOVA; for an introduction to multiple regression, see Multiple Regression; for an introduction to the design an analysis of experiments in applied (industrial) settings, see Experimental Design. 

Historical Background 

The roots of the general linear model surely go back to the origins of mathematical thought, but it is the emergence of the theory of algebraic invariants in the 1800's that made the general linear model, as we know it today, possible. The theory of algebraic invariants developed from the groundbreaking work of 19th century mathematicians such as Gauss, Boole, Cayley, and Sylvester. The theory seeks to identify those quantities in systems of equations which remain unchanged under linear transformations of the variables in the system. Stated more imaginatively (but in a way in which the originators of the theory would not consider an overstatement), the theory of algebraic invariants searches for the eternal and unchanging amongst the chaos of the transitory and the illusory. That is no small goal for any theory, mathematical or otherwise. 

The wonder of it all is the theory of algebraic invariants was successful far beyond the hopes of its originators. Eigenvalues, eigenvectors, determinants, matrix decomposition methods; all derive from the theory of algebraic invariants. The contributions of the theory of algebraic invariants to the development of statistical theory and methods are numerous, but a simple example familiar to even the most casual student of statistics is illustrative. The correlation between two variables is unchanged by linear transformations of either or both variables. We probably take this property of correlation coefficients for granted, but what would data analysis be like if we did not have statistics that are invariant to the scaling of the variables involved? Some thought on this question should convince you that without the theory of algebraic invariants, the development of useful statistical techniques would be nigh impossible. 

The development of the linear regression model in the late 19th century, and the development of correlational methods shortly thereafter, are clearly direct outgrowths of the theory of algebraic invariants. Regression and correlational methods, in turn, serve as the basis for the general linear model. Indeed, the general linear model can be seen as an extension of linear multiple regression for a single dependent variable. Understanding the multiple regression model is fundamental to understanding the general linear model, so we will look at the purpose of multiple regression, the computational algorithms used to solve regression problems, and how the regression model is extended in the case of the general linear model. A basic introduction to multiple regression methods and the analytic problems to which they are applied is provided in the Multiple Regression. 
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The Purpose of Multiple Regression 

The general linear model can be seen as an extension of linear multiple regression for a single dependent variable, and understanding the multiple regression model is fundamental to understanding the general linear model. The general purpose of multiple regression (the term was first used by Pearson, 1908) is to quantify the relationship between several independent or predictor variables and a dependent or criterion variable. For a detailed introduction to multiple regression, also refer to the Multiple Regression chapter. For example, a real estate agent might record for each listing the size of the house (in square feet), the number of bedrooms, the average income in the respective neighborhood according to census data, and a subjective rating of appeal of the house. Once this information has been compiled for various houses it would be interesting to see whether and how these measures relate to the price for which a house is sold. For example, one might learn that the number of bedrooms is a better predictor of the price for which a house sells in a particular neighborhood than how "pretty" the house is (subjective rating). One may also detect "outliers," for example, houses that should really sell for more, given their location and characteristics. 

Personnel professionals customarily use multiple regression procedures to determine equitable compensation. One can determine a number of factors or dimensions such as "amount of responsibility" (Resp) or "number of people to supervise" (No_Super) that one believes to contribute to the value of a job. The personnel analyst then usually conducts a salary survey among comparable companies in the market, recording the salaries and respective characteristics (i.e., values on dimensions) for different positions. This information can be used in a multiple regression analysis to build a regression equation of the form: 

Salary = .5*Resp + .8*No_Super 

Once this so-called regression equation has been determined, the analyst can now easily construct a graph of the expected (predicted) salaries and the actual salaries of job incumbents in his or her company. Thus, the analyst is able to determine which position is underpaid (below the regression line) or overpaid (above the regression line), or paid equitably. 

In the social and natural sciences multiple regression procedures are very widely used in research. In general, multiple regression allows the researcher to ask (and hopefully answer) the general question "what is the best predictor of ...". For example, educational researchers might want to learn what are the best predictors of success in high-school. Psychologists may want to determine which personality variable best predicts social adjustment. Sociologists may want to find out which of the multiple social indicators best predict whether or not a new immigrant group will adapt and be absorbed into society. 
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Computations for Solving the Multiple Regression Equation 

A one dimensional surface in a two dimensional or two-variable space is a line defined by the equation Y = b0 + b1X. According to this equation, the Y variable can be expressed in terms of or as a function of a constant (b0) and a slope (b1) times the X variable. The constant is also referred to as the intercept, and the slope as the regression coefficient. For example, GPA may best be predicted as 1+.02*IQ. Thus, knowing that a student has an IQ of 130 would lead us to predict that her GPA would be 3.6 (since, 1+.02*130=3.6). In the multiple regression case, when there are multiple predictor variables, the regression surface usually cannot be visualized in a two dimensional space, but the computations are a straightforward extension of the computations in the single predictor case. For example, if in addition to IQ we had additional predictors of achievement (e.g., Motivation, Self-discipline) we could construct a linear equation containing all those variables. In general then, multiple regression procedures will estimate a linear equation of the form: 

Y = b0 + b1X1 + b2X2 + ... + bkXk 

where k is the number of predictors. Note that in this equation, the regression coefficients (or b1 … bk coefficients) represent the independent contributions of each in dependent variable to the prediction of the dependent variable. Another way to express this fact is to say that, for example, variable X1 is correlated with the Y variable, after controlling for all other independent variables. This type of correlation is also referred to as a partial correlation (this term was first used by Yule, 1907). Perhaps the following example will clarify this issue. One would probably find a significant negative correlation between hair length and height in the population (i.e., short people have longer hair). At first this may seem odd; however, if we were to add the variable Gender into the multiple regression equation, this correlation would probably disappear. This is because women, on the average, have longer hair than men; they also are shorter on the average than men. Thus, after we remove this gender difference by entering Gender into the equation, the relationship between hair length and height disappears because hair length does not make any unique contribution to the prediction of height, above and beyond what it shares in the prediction with variable Gender. Put another way, after controlling for the variable Gender, the partial correlation between hair length and height is zero. 

The regression surface (a line in simple regression, a plane or higher-dimensional surface in multiple regression) expresses the best prediction of the dependent variable (Y), given the independent variables (X's). However, nature is rarely (if ever) perfectly predictable, and usually there is substantial variation of the observed points from the fitted regression surface. The deviation of a particular point from the nearest corresponding point on the predicted regression surface (its predicted value) is called the residual value. Since the goal of linear regression procedures is to fit a surface, which is a linear function of the X variables, as closely as possible to the observed Y variable, the residual values for the observed points can be used to devise a criterion for the "best fit." Specifically, in regression problems the surface is computed for which the sum of the squared deviations of the observed points from that surface are minimized. Thus, this general procedure is sometimes also referred to as least squares estimation. (see also the description of weighted least squares estimation). 

The actual computations involved in solving regression problems can be expressed compactly and conveniently using matrix notation. Suppose that there are n observed values of Y and n associated observed values for each of k different X variables. Then Yi, Xik, and ei can represent the ith observation of the Y variable, the ith observation of each of the X variables, and the ith unknown residual value, respectively. Collecting these terms into matrices we have 
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The multiple regression model in matrix notation then can be expressed as 

Y = Xb + e 

where b is a column vector of 1 (for the intercept) + k unknown regression coefficients. Recall that the goal of multiple regression is to minimize the sum of the squared residuals. Regression coefficients that satisfy this criterion are found by solving the set of normal equations 

X'Xb = X'Y 

When the X variables are linearly independent (i.e., they are nonredundant, yielding an X'X matrix which is of full rank) there is a unique solution to the normal equations. Premultiplying both sides of the matrix formula for the normal equations by the inverse of X'X gives 

(X'X)-1X'Xb = (X'X)-1X'Y 

or 

b = (X'X)-1X'Y 

This last result is very satisfying in view of its simplicity and its generality. With regard to its simplicity, it expresses the solution for the regression equation in terms just 2 matrices (X and Y) and 3 basic matrix operations, (1) matrix transposition, which involves interchanging the elements in the rows and columns of a matrix, (2) matrix multiplication, which involves finding the sum of the products of the elements for each row and column combination of two conformable (i.e., multipliable) matrices, and (3) matrix inversion, which involves finding the matrix equivalent of a numeric reciprocal, that is, the matrix that satisfies 

A-1AA=A 

for a matrix A. 

It took literally centuries for the ablest mathematicians and statisticians to find a satisfactory method for solving the linear least square regression problem. But their efforts have paid off, for it is hard to imagine a simpler solution. 

With regard to the generality of the multiple regression model, its only notable limitations are that (1) it can be used to analyze only a single dependent variable, (2) it cannot provide a solution for the regression coefficients when the X variables are not linearly independent and the inverse of X'X therefore does not exist. These restrictions, however, can be overcome, and in doing so the multiple regression model is transformed into the general linear model. 
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Extension of Multiple Regression to the General Linear Model 

One way in which the general linear model differs from the multiple regression model is in terms of the number of dependent variables that can be analyzed. The Y vector of n observations of a single Y variable can be replaced by a Y matrix of n observations of m different Y variables. Similarly, the b vector of regression coefficients for a single Y variable can be replaced by a b matrix of regression coefficients, with one vector of b coefficients for each of the m dependent variables. These substitutions yield what is sometimes called the multivariate regression model, but it should be emphasized that the matrix formulations of the multiple and multivariate regression models are identical, except for the number of columns in the Y and b matrices. The method for solving for the b coefficients is also identical, that is, m different sets of regression coefficients are separately found for the m different dependent variables in the multivariate regression model. 

The general linear model goes a step beyond the multivariate regression model by allowing for linear transformations or linear combinations of multiple dependent variables. This extension gives the general linear model important advantages over the multiple and the so-called multivariate regression models, both of which are inherently univariate (single dependent variable) methods. One advantage is that multivariate tests of significance can be employed when responses on multiple dependent variables are correlated. Separate univariate tests of significance for correlated dependent variables are not independent and may not be appropriate. Multivariate tests of significance of independent linear combinations of multiple dependent variables also can give insight into which dimensions of the response variables are, and are not, related to the predictor variables. Another advantage is the ability to analyze effects of repeated measure factors. Repeated measure designs, or within-subject designs, have traditionally been analyzed using ANOVA techniques. Linear combinations of responses reflecting a repeated measure effect (for example, the difference of responses on a measure under differing conditions) can be constructed and tested for significance using either the univariate or multivariate approach to analyzing repeated measures in the general linear model. 

A second important way in which the general linear model differs from the multiple regression model is in its ability to provide a solution for the normal equations when the X variables are not linearly independent and the inverse of X'X does not exist. Redundancy of the X variables may be incidental (e.g., two predictor variables might happen to be perfectly correlated in a small data set), accidental (e.g., two copies of the same variable might unintentionally be used in an analysis) or designed (e.g., indicator variables with exactly opposite values might be used in the analysis, as when both Male and Female predictor variables are used in representing Gender). Finding the regular inverse of a non-full-rank matrix is reminiscent of the problem of finding the reciprocal of 0 in ordinary arithmetic. No such inverse or reciprocal exists because division by 0 is not permitted. This problem is solved in the general linear model by using a generalized inverse of the X'X matrix in solving the normal equations. A generalized inverse is any matrix that satisfies 

AA-A = A 

for a matrix A. 

A generalized inverse is unique and is the same as the regular inverse only if the matrix A is full rank. A generalized inverse for a non-full-rank matrix can be computed by the simple expedient of zeroing the elements in redundant rows and columns of the matrix. Suppose that an X'X matrix with r non-redundant columns is partitioned as 
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where A11 is an r by r matrix of rank r. Then the regular inverse of A11 exists and a generalized inverse of X'X is 
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where each 0 (null) matrix is a matrix of 0's (zeroes) and has the same dimensions as the corresponding A matrix. 

In practice, however, a particular generalized inverse of X'X for finding a solution to the normal equations is usually computed using the sweep operator (Dempster, 1960). This generalized inverse, called a g2 inverse, has two important properties. One is that zeroing of the elements in redundant rows is unnecessary. Another is that partitioning or reordering of the columns of X'X is unnecessary, so that the matrix can be inverted "in place." 

There are infinitely many generalized inverses of a non-full-rank X'X matrix, and thus, infinitely many solutions to the normal equations. This can make it difficult to understand the nature of the relationships of the predictor variables to responses on the dependent variables, because the regression coefficients can change depending on the particular generalized inverse chosen for solving the normal equations. It is not cause for dismay, however, because of the invariance properties of many results obtained using the general linear model. 

A simple example may be useful for illustrating one of the most important invariance properties of the use of generalized inverses in the general linear model. If both Male and Female predictor variables with exactly opposite values are used in an analysis to represent Gender, it is essentially arbitrary as to which predictor variable is considered to be redundant (e.g., Male can be considered to be redundant with Female, or vice versa). No matter which predictor variable is considered to be redundant, no matter which corresponding generalized inverse is used in solving the normal equations, and no matter which resulting regression equation is used for computing predicted values on the dependent variables, the predicted values and the corresponding residuals for males and females will be unchanged. In using the general linear model, one must keep in mind that finding a particular arbitrary solution to the normal equations is primarily a means to the end of accounting for responses on the dependent variables, and not necessarily an end in itself. 
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Sigma-Restricted and Overparameterized Model 

Unlike the multiple regression model, which is usually applied to cases where the X variables are continuous, the general linear model is frequently applied to analyze any ANOVA or MANOVA design with categorical predictor variables, any ANCOVA or MANCOVA design with both categorical and continuous predictor variables, as well as any multiple or multivariate regression design with continuous predictor variables. To illustrate, Gender is clearly a nominal level variable (anyone who attempts to rank order the sexes on any dimension does so at his or her own peril in today's world). There are two basic methods by which Gender can be coded into one or more (non-offensive) predictor variables, and analyzed using the general linear model. 

Sigma-restricted model (coding of categorical predictors). Using the first method, males and females can be assigned any two arbitrary, but distinct values on a single predictor variable. The values on the resulting predictor variable will represent a quantitative contrast between males and females. Typically, the values corresponding to group membership are chosen not arbitrarily but rather to facilitate interpretation of the regression coefficient associated with the predictor variable. In one widely used strategy, cases in the two groups are assigned values of 1 and -1 on the predictor variable, so that if the regression coefficient for the variable is positive, the group coded as 1 on the predictor variable will have a higher predicted value (i.e., a higher group mean) on the dependent variable, and if the regression coefficient is negative, the group coded as -1 on the predictor variable will have a higher predicted value on the dependent variable. An additional advantage is that since each group is coded with a value one unit from zero, this helps in interpreting the magnitude of differences in predicted values between groups, because regression coefficients reflect the units of change in the dependent variable for each unit change in the predictor variable. This coding strategy is aptly called the sigma-restricted parameterization, because the values used to represent group membership (1 and -1) sum to zero. 

Note that the sigma-restricted parameterization of categorical predictor variables usually leads to X'X matrices which do not require a generalized inverse for solving the normal equations. Potentially redundant information, such as the characteristics of maleness and femaleness, is literally reduced to full-rank by creating quantitative contrast variables representing differences in characteristics. 

Overparameterized model (coding of categorical predictors). The second basic method for recoding categorical predictors is the indicator variable approach. In this method a separate predictor variable is coded for each group identified by a categorical predictor variable. To illustrate, females might be assigned a value of 1 and males a value of 0 on a first predictor variable identifying membership in the female Gender group, and males would then be assigned a value of 1 and females a value of 0 on a second predictor variable identifying membership in the male Gender group. Note that this method of recoding categorical predictor variables will almost always lead to X'X matrices with redundant columns, and thus require a generalized inverse for solving the normal equations. As such, this method is often called the overparameterized model for representing categorical predictor variables, because it results in more columns in the X'X than are necessary for determining the relationships of categorical predictor variables to responses on the dependent variables. 

True to its description as general, the general linear model can be used to perform analyses with categorical predictor variables which are coded using either of the two basic methods that have been described. 
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Summary of Computations 

To conclude this discussion of the ways in which the general linear model extends and generalizes regression methods, the general linear model can be expressed as 

YM = Xb + e 

Here Y, X, b, and e are as described for the multivariate regression model and M is an m x s matrix of coefficients defining s linear transformation of the dependent variables. The normal equations are 

X'Xb = X'YM 

and a solution for the normal equations is given by 

b = (X'X)-X'YM 

Here the inverse of X'X is a generalized inverse if X'X contains redundant columns. 

Add a provision for analyzing linear combinations of multiple dependent variables, add a method for dealing with redundant predictor variables and recoded categorical predictor variables, and the major limitations of multiple regression are overcome by the general linear model. 
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Types of Analyses 

A wide variety of types of designs can be analyzed using the general linear model. In fact, the flexibility of the general linear model allows it to handle so many different types of designs that it is difficult to develop simple typologies of the ways in which these designs might differ. Some general ways in which designs might differ can be suggested, but keep in mind that any particular design can be a "hybrid" in the sense that it could have combinations of features of a number of different types of designs. 

In the following discussion, references will be made to the design matrix X, as well as sigma-restricted and overparameterized model coding. For an explanation of this terminology, refer to the section entitled Basic Ideas: The General Linear Model, or, for a brief summary, to the Summary of computations section. 

A basic discussion to univariate and multivariate ANOVA techniques can also be found in the ANOVA/MANOVA chapter; a discussion of mutiple regression methods is also provided in the Multiple Regression chapter. 

Between-Subject Designs 

Overview 

One-way ANOVA 

Main effect ANOVA 

Factorial ANOVA 

Nested designs 

Balanced ANOVA 

Simple regression 

Multiple regression 

Factorial regression 

Polynomial regression 

Response surface regression 

Mixture surface regression 

Analysis of covariance (ANCOVA) 

Separate slopes designs 

Homogeneity of slopes 

Mixed-model ANOVA and ANCOVA 

Overview. The levels or values of the predictor variables in an analysis describe the differences between the n subjects or the n valid cases that are analyzed. Thus, when we speak of the between subject design (or simply the between design) for an analysis, we are referring to the nature, number, and arrangement of the predictor variables. 

Concerning the nature or type of predictor variables, between designs which contain only categorical predictor variables can be called ANOVA (analysis of variance) designs, between designs which contain only continuous predictor variables can be called regression designs, and between designs which contain both categorical and continuous predictor variables can be called ANCOVA (analysis of covariance) designs. Further, continuous predictors are always considered to have fixed values, but the levels of categorical predictors can be considered to be fixed or to vary randomly. Designs which contain random categorical factors are called mixed-model designs (see the Variance Components and Mixed Model ANOVA/ANCOVA chapter). 

Between designs may involve only a single predictor variable and therefore be described as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., multiple regression). 

Concerning the arrangement of predictor variables, some between designs employ only "main effect" or first-order terms for predictors, that is, the values for different predictor variables are independent and raised only to the first power. Other between designs may employ higher-order terms for predictors by raising the values for the original predictor variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming products of different predictor variables (i.e., interaction terms). A common arrangement for ANOVA designs is the full-factorial design, in which every combination of levels for each of the categorical predictor variables is represented in the design. Designs with some but not all combinations of levels for each of the categorical predictor variables are aptly called fractional factorial designs. Designs with a hierarchy of combinations of levels for the different categorical predictor variables are called nested designs. 

These basic distinctions about the nature, number, and arrangement of predictor variables can be used in describing a variety of different types of between designs. Some of the more common between designs can now be described. 

One-Way ANOVA. A design with a single categorical predictor variable is called a one-way ANOVA design. For example, a study of 4 different fertilizers used on different individual plants could be analyzed via one-way ANOVA, with four levels for the factor Fertilizer. 
In genera, consider a single categorical predictor variable A with 1 case in each of its 3 categories. Using the sigma-restricted coding of A into 2 quantitative contrast variables, the matrix X defining the between design is 
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That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, and 1 case in group A3, the X matrix would be 
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where the first subscript for A gives the replicate number for the cases in each group. For brevity, replicates usually are not shown when describing ANOVA design matrices. 

Note that in one-way designs with an equal number of cases in each group, sigma-restricted coding yields X1 … Xk variables all of which have means of 0. 

Using the overparameterized model to represent A, the X matrix defining the between design is simply 
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These simple examples show that the X matrix actually serves two purposes. It specifies (1) the coding for the levels of the original predictor variables on the X variables used in the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, the between design. 

Main Effect ANOVA. Main effect ANOVA designs contain separate one-way ANOVA designs for 2 or more categorical predictors. A good example of main effect ANOVA would be the typical analysis performed on screening designs as described in the context of the Experimental Design chapter. 

Consider 2 categorical predictor variables A and B each with 2 categories. Using the sigma-restricted coding, the X matrix defining the between design is 
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Note that if there are equal numbers of cases in each group, the sum of the cross-products of values for the X1 and X2 columns is 0, for example, with 1 case in each group (1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, the matrix X defining the between design is 
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Comparing the two types of coding, it can be seen that the overparameterized coding takes almost twice as many values as the sigma-restricted coding to convey the same information. 

Factorial ANOVA. Factorial ANOVA designs contain X variables representing combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, full-factorial designs represent all possible combinations of the levels of the categorical predictors. A full-factorial design with 2 categorical predictor variables A and B each with 2 levels each would be called a 2 x 2 full-factorial design. Using the sigma-restricted coding, the X matrix for this design would be 
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Several features of this X matrix deserve comment. Note that the X1 and X2 columns represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing across the levels of the other variable. The X3 column instead represents a contrast between different combinations of the levels of A and B. Note also that the values for X3 are products of the corresponding values for X1 and X2. Product variables such as X3 represent the multiplicative or interaction effects of their factors, so X3 would be said to represent the 2-way interaction of A and B. The relationship of such product variables to the dependent variables indicate the interactive influences of the factors on responses above and beyond their independent (i.e., main effect) influences on responses. Thus, factorial designs provide more information about the relationships between categorical predictor variables and responses on the dependent variables than is provided by corresponding one-way or main effect designs. 

When many factors are being investigated, however, full-factorial designs sometimes require more data than reasonably can be collected to represent all possible combinations of levels of the factors, and high-order interactions between many factors can become difficult to interpret. With many factors, a useful alternative to the full-factorial design is the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial design to degree 2 with 3 categorical predictor variables each with 2 levels. The design would include the main effects for each variable, and all 2-way interactions between the three variables, but would not include the 3-way interaction between all three variables. Using the overparameterized model, the X matrix for this design is 
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The 2-way interactions are the highest degree effects included in the design. These types of designs are discussed in detail the 2**(k-p) Fractional Factorial Designs section of the Experimental Design chapter. 

Nested ANOVA Designs. Nested designs are similar to fractional factorial designs in that all possible combinations of the levels of the categorical predictor variables are not represented in the design. In nested designs, however, the omitted effects are lower-order effects. Nested effects are effects in which the nested variables never appear as main effects. Suppose that for 2 variables A and B with 3 and 2 levels, respectively, the design includes the main effect for A and the effect of B nested within the levels of A. The X matrix for this design using the overparameterized model is 
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Note that if the sigma-restricted coding were used, there would be only 2 columns in the X matrix for the B nested within A effect instead of the 6 columns in the X matrix for this effect when the overparameterized model coding is used (i.e., columns X4 through X9). The sigma-restricted coding method is overly-restrictive for nested designs, so only the overparameterized model is used to represent nested designs. 

Balanced ANOVA. Most of the between designs discussed in this section can be analyzed much more efficiently, when they are balanced, i.e., when all cells in the ANOVA design have equal n, when there are no missing cells in the design, and, if nesting is present, when the nesting is balanced so that equal numbers of levels of the factors that are nested appear in the levels of the factor(s) that they are nested in. In that case, the X'X matrix (where X stands for the design matrix) is a diagonal matrix, and many of the computations necessary to compute the ANOVA results (such as matrix inversion) are greatly simplified. 

Simple Regression. Simple regression designs involve a single continuous predictor variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix would be 
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and using P for X1 the regression equation would be 

Y = b0 + b1P 

If the simple regression design is for a higher-order effect of P, say the quadratic effect, the values in the X1 column of the design matrix would be raised to the 2nd power, that is, squared 

[image: image158.png]



and using P2 for X1 the regression equation would be 

Y = b0 + b1P2 

The sigma-restricted and overparameterized coding methods do not apply to simple regression designs and any other design containing only continuous predictors (since there are no categorical predictors to code). Regardless of which coding method is chosen, values on the continuous predictor variables are raised to the desired power and used as the values for the X variables. No recoding is performed. It is therefore sufficient, in describing regression designs, to simply describe the regression equation without explicitly describing the design matrix X. 

Multiple Regression. Multiple regression designs are to continuous predictor variables as main effect ANOVA designs are to categorical predictor variables, that is, multiple regression designs contain the separate simple regression designs for 2 or more continuous predictor variables. The regression equation for a multiple regression design for the first-order effects of 3 continuous predictor variables P, Q, and R would be 

Y = b0 + b1P + b2Q + b3R 

Factorial Regression. Factorial regression designs are similar to factorial ANOVA designs, in which combinations of the levels of the factors are represented in the design. In factorial regression designs, however, there may be many more such possible combinations of distinct levels for the continuous predictor variables than there are cases in the data set. To simplify matters, full-factorial regression designs are defined as designs in which all possible products of the continuous predictor variables are represented in the design. For example, the full-factorial regression design for two continuous predictor variables P and Q would include the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q interaction effect, which is represented by the product of P and Q scores for each case. The regression equation would be 

Y = b0 + b1P + b2Q + b3P*Q 

Factorial regression designs can also be fractional, that is, higher-order effects can be omitted from the design. A fractional factorial design to degree 2 for 3 continuous predictor variables P, Q, and R would include the main effects and all 2-way interactions between the predictor variables 

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R 

Polynomial Regression. Polynomial regression designs are designs which contain main effects and higher-order effects for the continuous predictor variables but do not include interaction effects between predictor variables. For example, the polynomial regression design to degree 2 for three continuous predictor variables P, Q, and R would include the main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction effect. 

Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 

Polynomial regression designs do not have to contain all effects up to the same degree for every predictor variable. For example, main, quadratic, and cubic effects could be included in the design for some predictor variables, and effects up the fourth degree could be included in the design for other predictor variables. 

Response Surface Regression. Quadratic response surface regression designs are a hybrid type of design with characteristics of both polynomial regression designs and fractional factorial regression designs. Quadratic response surface regression designs contain all the same effects of polynomial regression designs to degree 2 and additionally the 2-way interaction effects of the predictor variables. The regression equation for a quadratic response surface regression design for 3 continuous predictor variables P, Q, and R would be 

Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 + b7P*Q + b8P*R + b9Q*R 

These types of designs are commonly employed in applied research (e.g., in industrial experimation), and a detailed discussion of these types of designs is also presented in the Experimental Design chapter (see Central composite designs). 

Mixture Surface Regression. Mixture surface regression designs are identical to factorial regression designs to degree 2 except for the omission of the intercept. Mixtures, as the name implies, add up to a constant value; the sum of the proportions of ingredients in different recipes for some material all must add up 100%. Thus, the proportion of one ingredient in a material is redundant with the remaining ingredients. Mixture surface regression designs deal with this redundancy by omitting the intercept from the design. The design matrix for a mixture surface regression design for 3 continuous predictor variables P, Q, and R would be 

Y = b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R 

These types of designs are commonly employed in applied research (e.g., in industrial experimentation), and a detailed discussion of these types of designs is also presented in the Experimental Design chapter (see Mixture designs and triangular surfaces). 

Analysis of Covariance. In general, between designs which contain both categorical and continuous predictor variables can be called ANCOVA designs. Traditionally, however, ANCOVA designs have referred more specifically to designs in which the first-order effects of one or more continuous predictor variables are taken into account when assessing the effects of one or more categorical predictor variables. A basic introduction to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) topic of the ANOVA/MANOVA chapter. 

To illustrate, suppose a researcher wants to assess the influences of a categorical predictor variable A with 3 levels on some outcome, and that measurements on a continuous predictor variable P, known to covary with the outcome, are available. If the data for the analysis are 

[image: image159.png]> wwee D




then the sigma-restricted X matrix for the design that includes the separate first-order effects of P and A would be 
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The b2 and b3 coefficients in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 

represent the influences of group membership on the A categorical predictor variable, controlling for the influence of scores on the P continuous predictor variable. Similarly, the b1 coefficient represents the influence of scores on P controlling for the influences of group membership on A. This traditional ANCOVA analysis gives a more sensitive test of the influence of A to the extent that P reduces the prediction error, that is, the residuals for the outcome variable. 

The X matrix for the same design using the overparameterized model would be 
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The interpretation is unchanged except that the influences of group membership on the A categorical predictor variables are represented by the b2, b3 and b4 coefficients in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 

Separate Slope Designs. The traditional analysis of covariance (ANCOVA) design for categorical and continuous predictor variables is inappropriate when the categorical and continuous predictors interact in influencing responses on the outcome. The appropriate design for modeling the influences of the predictors in this situation is called the separate slope design. For the same example data used to illustrate traditional ANCOVA, the overparameterized X matrix for the design that includes the main effect of the three-level categorical predictor A and the 2-way interaction of P by A would be 
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The b4, b5, and b6 coefficients in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 

give the separate slopes for the regression of the outcome on P within each group on A, controlling for the main effect of A. 

As with nested ANOVA designs, the sigma-restricted coding of effects for separate slope designs is overly restrictive, so only the overparameterized model is used to represent separate slope designs. In fact, separate slope designs are identical in form to nested ANOVA designs, since the main effects for continuous predictors are omitted in separate slope designs. 

Homogeneity of Slopes. The appropriate design for modeling the influences of continuous and categorical predictor variables depends on whether the continuous and categorical predictors interact in influencing the outcome. The traditional analysis of covariance (ANCOVA) design for continuous and categorical predictor variables is appropriate when the continuous and categorical predictors do not interact in influencing responses on the outcome, and the separate slope design is appropriate when the continuous and categorical predictors do interact in influencing responses. The homogeneity of slopes designs can be used to test whether the continuous and categorical predictors interact in influencing responses, and thus, whether the traditional ANCOVA design or the separate slope design is appropriate for modeling the effects of the predictors. For the same example data used to illustrate the traditional ANCOVA and separate slope designs, the overparameterized X matrix for the design that includes the main effect of P, the main effect of the three-level categorical predictor A, and the 2-way interaction of P by A would be 
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If the b5, b6, or b7 coefficient in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 

is non-zero, the separate slope model should be used. If instead all 3 of these regression coefficients are zero the traditional ANCOVA design should be used. 

The sigma-restricted X matrix for the homogeneity of slopes design would be 
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Using this X matrix, if the b4, or b5 coefficient in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 

is non-zero, the separate slope model should be used. If instead both of these regression coefficients are zero the traditional ANCOVA design should be used. 

Mixed Model ANOVA and ANCOVA. Designs which contain random effects for one or more categorical predictor variables are called mixed-model designs. Random effects are classification effects where the levels of the effects are assumed to be randomly selected from an infinite population of possible levels. The solution for the normal equations in mixed-model designs is identical to the solution for fixed-effect designs (i.e., designs which do not contain Random effects. Mixed-model designs differ from fixed-effect designs only in the way in which effects are tested for significance. In fixed-effect designs, between effects are always tested using the mean squared residual as the error term. In mixed-model designs, between effects are tested using relevant error terms based on the covariation of random sources of variation in the design. Specifically, this is done using Satterthwaite's method of denominator synthesis (Satterthwaite, 1946), which finds the linear combinations of sources of random variation that serve as appropriate error terms for testing the significance of the respective effect of interest. A basic discussion of these types of designs, and methods for estimating variance components for the random effects can also be found in the Variance Components and Mixed Model ANOVA/ANCOVA chapter. 

Mixed-model designs, like nested designs and separate slope designs, are designs in which the sigma-restricted coding of categorical predictors is overly restrictive. Mixed-model designs require estimation of the covariation between the levels of categorical predictor variables, and the sigma-restricted coding of categorical predictors suppresses this covariation. Thus, only the overparameterized model is used to represent mixed-model designs (some programs will use the sigma-restricted approach and a so-called "restricted model" for random effects; however, only the overparameterized model as described in General Linear Models applies to both balanced and unbalanced designs, as well as designs with missing cells; see Searle, Casella, & McCullock, 1992, p. 127). It is important to recognize, however, that sigma-restricted coding can be used to represent any between design, with the exceptions of mixed-model, nested, and separate slope designs. Furthermore, some types of hypotheses can only be tested using the sigma-restricted coding (i.e., the effective hypothesis, Hocking, 1996), thus the greater generality of the overparameterized model for representing between designs does not justify it being used exclusively for representing categorical predictors in the general linear model. 
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Within-Subject (Repeated Measures) Designs 

Overview 

One-way within-subject designs 

Multi-way within-subject designs 

The multivariate approach to Repeated Measures 

Doubly multivariate within-subject designs
Overview. It is quite common for researchers to administer the same test to the same subjects repeatedly over a period of time or under varying circumstances. In essence, one is interested in examining differences within each subject, for example, subjects' improvement over time. Such designs are referred to as within-subject designs or repeated measures designs. A basic introduction to repeated measures designs is also provided in the Between-groups and repeated measures topic of the ANOVA/MANOVA chapter. 

For example, imagine that one wants to monitor the improvement of students' algebra skills over two months of instruction. A standardized algebra test is administered after one month (level 1 of the repeated measures factor), and a comparable test is administered after two months (level 2 of the repeated measures factor). Thus, the repeated measures factor (Time) has 2 levels. 

Now, suppose that scores for the 2 algebra tests (i.e., values on the Y1 and Y2 variables at Time 1 and Time 2, respectively) are transformed into scores on a new composite variable (i.e., values on the T1), using the linear transformation 

T = YM 

where M is an orthonormal contrast matrix. Specifically, if 
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then the difference of the mean score on T1 from 0 indicates the improvement (or deterioration) of scores across the 2 levels of Time. 

One-Way Within-Subject Designs. The example algebra skills study with the Time repeated measures factor (see also within-subjects design Overview) illustrates a one-way within-subject design. In such designs, orthonormal contrast transformations of the scores on the original dependent Y variables are performed via the M transformation (orthonormal transformations correspond to orthogonal rotations of the original variable axes). If any b0 coefficient in the regression of a transformed T variable on the intercept is non-zero, this indicates a change in responses across the levels of the repeated measures factor, that is, the presence of a main effect for the repeated measure factor on responses. 

What if the between design includes effects other than the intercept? If any of the b1 through bk coefficients in the regression of a transformed T variable on X are non-zero, this indicates a different change in responses across the levels of the repeated measures factor for different levels of the corresponding between effect, i.e., the presence of a within by between interaction effect on responses. 

The same between-subject effects that can be tested in designs with no repeated-measures factors can also be tested in designs that do include repeated-measures factors. This is accomplished by creating a transformed dependent variable which is the sum of the original dependent variables divided by the square root of the number of original dependent variables. The same tests of between-subject effects that are performed in designs with no repeated-measures factors (including tests of the between intercept) are performed on this transformed dependent variable. 

Multi-Way Within-Subject Designs. Suppose that in the example algebra skills study with the Time repeated measures factor (see the within-subject designs Overview), students were given a number problem test and then a word problem test on each testing occasion. Test could then be considered as a second repeated measures factor, with scores on the number problem tests representing responses at level 1 of the Test repeated measure factor, and scores on the word problem tests representing responses at level 2 of the Test repeated measure factor. The within subject design for the study would be a 2 (Time) by 2 (Test) full-factorial design, with effects for Time, Test, and the Time by Test interaction. 

To construct transformed dependent variables representing the effects of Time, Test, and the Time by Test interaction, three respective M transformations of the original dependent Y variables are performed. Assuming that the original Y variables are in the order Time 1 - Test 1, Time 1 - Test 2, Time 2 - Test 1, and Time 2 - Test 2, the M matrices for the Time, Test, and the Time by Test interaction would be 
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The differences of the mean scores on the transformed T variables from 0 are then used to interpret the corresponding within-subject effects. If the b0 coefficient in the regression of a transformed T variable on the intercept is non-zero, this indicates a change in responses across the levels of a repeated measures effect, that is, the presence of the corresponding main or interaction effect for the repeated measure factors on responses. 

Interpretation of within by between interaction effects follow the same procedures as for one-way within designs, except that now within by between interactions are examined for each within effect by between effect combination. 

Multivariate Approach to Repeated Measures. When the repeated measures factor has more than 2 levels, then the M matrix will have more than a single column. For example, for a repeated measures factor with 3 levels (e.g., Time 1, Time 2, Time 3), the M matrix will have 2 columns (e.g., the two transformations of the dependent variables could be (1) Time 1 vs. Time 2 and Time 3 combined, and (2) Time 2 vs. Time 3). Consequently, the nature of the design is really multivariate, that is, there are two simultaneous dependent variables, which are transformations of the original dependent variables. Therefore, when testing repeated measures effects involving more than a single degree of freedom (e.g., a repeated measures main effect with more than 2 levels), you can compute multivariate test statistics to test the respective hypotheses. This is a different (and usually the preferred) approach than the univariate method that is still widely used. For a further discussion of the multivariate approach to testing repeated measures effects, and a comparison to the traditional univariate approach, see the Sphericity and compound symmetry topic of the ANOVA/MANOVA chapter. 

Doubly Multivariate Designs. If the product of the number of levels for each within-subject factor is equal to the number of original dependent variables, the within-subject design is called a univariate repeated measures design. The within design is univariate because there is one dependent variable representing each combination of levels of the within-subject factors. Note that this use of the term univariate design is not to be confused with the univariate and multivariate approach to the analysis of repeated measures designs, both of which can be used to analyze such univariate (single-dependent-variable-only) designs. When there are two or more dependent variables for each combination of levels of the within-subject factors, the within-subject design is called a multivariate repeated measures design, or more commonly, a doubly multivariate within-subject design. This term is used because the analysis for each dependent measure can be done via the multivariate approach; so when there is more than one dependent measure, the design can be considered doubly-multivariate. 

Doubly multivariate design are analyzed using a combination of univariate repeated measures and multivariate analysis techniques. To illustrate, suppose in an algebra skills study, tests are administered three times (repeated measures factor Time with 3 levels). Two test scores are recorded at each level of Time: a Number Problem score and a Word Problem score. Thus, scores on the two types of tests could be treated as multiple measures on which improvement (or deterioration) across Time could be assessed. M transformed variables could be computed for each set of test measures, and multivariate tests of significance could be performed on the multiple transformed measures, as well as on the each individual test measure. 

Multivariate Designs 

Overview. When there are multiple dependent variables in a design, the design is said to be multivariate. Multivariate measures of association are by nature more complex than their univariate counterparts (such as the correlation coefficient, for example). This is because multivariate measures of association must take into account not only the relationships of the predictor variables with responses on the dependent variables, but also the relationships among the multiple dependent variables. By doing so, however, these measures of association provide information about the strength of the relationships between predictor and dependent variables independent of the dependent variable interrelationships. A basic discussion of multivariate designs is also presented in the Multivariate Designs topic in the ANOVA/MANOVA chapter. 

The most commonly used multivariate measures of association all can be expressed as functions of the eigenvalues of the product matrix 

E-1H 

where E is the error SSCP matrix (i.e., the matrix of sums of squares and cross-products for the dependent variables that are not accounted for by the predictors in the between design), and H is a hypothesis SSCP matrix (i.e., the matrix of sums of squares and cross-products for the dependent variables that are accounted for by all the predictors in the between design, or the sums of squares and cross-products for the dependent variables that are accounted for by a particular effect). If 

i = the ordered eigenvalues of E-1H, if E-1 exists

then the 4 commonly used multivariate measures of association are 

Wilks' lambda = [1/(1+i)] 

Pillai's trace = i/(1+i) 

Hotelling-Lawley trace = i 

Roy's largest root = 1 

These 4 measures have different upper and lower bounds, with Wilks' lambda perhaps being the most easily interpretable of the 4 measures. Wilks' lambda can range from 0 to 1, with 1 indicating no relationship of predictors to responses and 0 indicating a perfect relationship of predictors to responses. 1 - Wilks' lambda can be interpreted as the multivariate counterpart of a univariate R-squared, that is, it indicates the proportion of generalized variance in the dependent variables that is accounted for by the predictors. 

The 4 measures of association are also used to construct multivariate tests of significance. These multivariate tests are covered in detail in a number of sources (e.g., Finn, 1974; Tatsuoka, 1971). 
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Estimation and Hypothesis Testing 

The following sections discuss details concerning hypothesis testing in the context of STATISTICA's VGLM module, for example, how the test for the overall model fit is computed, the options for computing tests for categorical effects in unbalanced or incomplete designs, how and when custom-error terms can be chosen, and the logic of testing custom-hypotheses in factorial or regression designs. 

Whole model tests 

Partitioning Sums of Squares. A fundamental principle of least squares methods is that variation on a dependent variable can be partitioned, or divided into parts, according to the sources of the variation. Suppose that a dependent variable is regressed on one or more predictor variables, and that for covenience the dependent variable is scaled so that its mean is 0. Then a basic least squares identity is that the total sum of squared values on the dependent variable equals the sum of squared predicted values plus the sum of squared residual values. Stated more generally, 

(y - y-bar)2 = (y-hat - y-bar)2 + (y - y-hat)2 

where the term on the left is the total sum of squared deviations of the observed values on the dependent variable from the dependent variable mean, and the respective terms on the right are (1) the sum of squared deviations of the predicted values for the dependent variable from the dependent variable mean and (2) the sum of the squared deviations of the observed values on the dependent variable from the predicted values, that is, the sum of the squared residuals. Stated yet another way, 

Total SS = Model SS + Error SS 

Note that the Total SS is always the same for any particular data set, but that the Model SS and the Error SS depend on the regression equation. Assuming again that the dependent variable is scaled so that its mean is 0, the Model SS and the Error SS can be computed using 

Model SS = b'X'Y 

Error SS = Y'Y - b'X'Y 

Testing the Whole Model. Given the Model SS and the Error SS, one can perform a test that all the regression coefficients for the X variables (b1 through bk) are zero. This test is equivalent to a comparison of the fit of the regression surface defined by the predicted values (computed from the whole model regression equation) to the fit of the regression surface defined solely by the dependent variable mean (computed from the reduced regression equation containing only the intercept). Assuming that X'X is full-rank, the whole model hypothesis mean square 

MSH = (Model SS)/k 

is an estimate of the variance of the predicted values. The error mean square 

s2 = MSE = (Error SS)/(n-k-1) 

is an unbiased estimate of the residual or error variance. The test statistic is 

F = MSH/MSE 

where F has (k, n - k - 1) degrees of freedom. 

If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the number of non-redundant columns of X'X. 

Note that in the case of non-intercept models, some multiple regression programs will compute the full model test based on the proportion of variance around 0 (zero) accounted for by the predictors; for more information (see Kvålseth, 1985; Okunade, Chang, and Evans, 1993), while other will actually compute both values (i.e., based on the residual variance around 0, and around the respective dependent variable means. 

Limitations of Whole Model Tests. For designs such as one-way ANOVA or simple regression designs, the whole model test by itself may be sufficient for testing general hypotheses about whether or not the single predictor variable is related to the outcome. In more complex designs, however, hypotheses about specific X variables or subsets of X variables are usually of interest. For example, one might want to make inferences about whether a subset of regression coefficients are 0, or one might want to test whether subpopulation means corresponding to combinations of specific X variables differ. The whole model test is usually insufficient for such purposes. 

A variety of methods have been developed for testing specific hypotheses. Like whole model tests, many of these methods rely on comparisons of the fit of different models (e.g., Type I, Type II, and the effective hypothesis sums of squares). Other methods construct tests of linear combinations of regression coefficients in order to test mean differences (e.g., Type III, Type IV, and Type V sums of squares). For designs that contain only first-order effects of continuous predictor variables (i.e., multiple regression designs), many of these methods are equivalent (i.e., Type II through Type V sums of squares all test the significance of partial regression coefficients). However, there are important distinctions between the different hypothesis testing techniques for certain types of ANOVA designs (i.e., designs with unequal cell n's and/or missing cells). 

All methods for testing hypotheses, however, involve the same hypothesis testing strategy employed in whole model tests, that is, the sums of squares attributable to an effect (using a given criterion) is computed, and then the mean square for the effect is tested using an appropriate error term. 
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Six types of sums of squares 

Contained effects 

Type I sums of squares 

Type II sums of squares 

Type III sums of squares 

Type IV sums of squares 

Type V sums of squares 

Type VI (effective hypothesis) sums of squares 

When there are categorical predictors in the model, arranged in a factorial ANOVA design, then one is typically interested in the main effects for and interaction effects between the categorical predictors. However, when the design is not balanced (has unequal cell n's, and consequently, the coded effects for the categorical factors are usually correlated), or when there are missing cells in a full factorial ANOVA design, then there is ambiguity regarding the specific comparisons between the (population, or least-squares) cell means that constitute the main effects and interactions of interest. These issues are discussed in great detail in Milliken and Johnson (1986), and if you routinely analyze incomplete factorial designs, you should consult their discussion of various problems and approaches to solving them. 

In addition to the widely used methods that are commonly labeled Type I, II, III, and IV sums of squares (see Goodnight, 1980), we also offer different methods for testing effects in incomplete designs, that are widely used in other areas (and traditions) of research. 

Type V sums of squares. Specifically, we propose the term Type V sums of squares to denote the approach that is widely used in industrial experimentation, to analyze fractional factorial designs; these types of designs are discussed in detail in the 2**(k-p) Fractional Factorial Designs section of the Experimental Design chapter. In effect, for those effects for which tests are performed all population marginal means (least squares means) are estimable. 

Type VI sums of squares. Second, in keeping with the Type i labeling convention, we propose the term Type VI sums of squares to denote the approach that is often used in programs that only implement the sigma-restricted model (which is not well suited for certain types of designs; we offer a choice between the sigma-restricted and overparameterized model models). This approach is identical to what is described as the effective hypothesis method in Hocking (1996). 

Contained Effects. The following descriptions will use the term contained effect. An effect E1 (e.g., A * B interaction) is contained in another effect E2 if: 

Both effects involve the same continuous predictor variable (if included in the model; e.g., A * B * X would be contained in A * C * X, where A, B, and C are categorical predictors, and X is a continuous predictor); or 

E2 has more categorical predictors than does E1, and, if E1 includes any categorical predictors, they also appear in E2 (e.g., A * B would be contained in the A * B * C interaction). 

Type I Sums of Squares. Type I sums of squares involve a sequential partitioning of the whole model sums of squares. A hierarchical series of regression equations are estimated, at each step adding an additional effect into the model. In Type I sums of squares, the sums of squares for each effect are determined by subtracting the predicted sums of squares with the effect in the model from the predicted sums of squares for the preceding model not including the effect. Tests of significance for each effect are then performed on the increment in the predicted sums of squares accounted for by the effect. Type I sums of squares are therefore sometimes called sequential or hierarchical sums of squares. 

Type I sums of squares are appropriate to use in balanced (equal n) ANOVA designs in which effects are entered into the model in their natural order (i.e., any main effects are entered before any two-way interaction effects, any two-way interaction effects are entered before any three-way interaction effects, and so on). Type I sums of squares are also useful in polynomial regression designs in which any lower-order effects are entered before any higher-order effects. A third use of Type I sums of squares is to test hypotheses for hierarchically nested designs, in which the first effect in the design is nested within the second effect, the second effect is nested within the third, and so on. 

One important property of Type I sums of squares is that the sums of squares attributable to each effect add up to the whole model sums of squares. Thus, Type I sums of squares provide a complete decomposition of the predicted sums of squares for the whole model. This is not generally true for any other type of sums of squares. An important limitation of Type I sums of squares, however, is that the sums of squares attributable to a specific effect will generally depend on the order in which the effects are entered into the model. This lack of invariance to order of entry into the model limits the usefulness of Type I sums of squares for testing hypotheses for certain designs (e.g., fractional factorial designs). 

Type II Sums of Squares. Type II sums of squares are sometimes called partially sequential sums of squares. Like Type I sums of squares, Type II sums of squares for an effect controls for the influence of other effects. Which other effects to control for, however, is determined by a different criterion. In Type II sums of squares, the sums of squares for an effect is computed by controlling for the influence of all other effects of equal or lower degree. Thus, sums of squares for main effects control for all other main effects, sums of squares for two-way interactions control for all main effects and all other two-way interactions, and so on. 

Unlike Type I sums of squares, Type II sums of squares are invariant to the order in which effects are entered into the model. This makes Type II sums of squares useful for testing hypotheses for multiple regression designs, for main effect ANOVA designs, for full-factorial ANOVA designs with equal cell ns, and for hierarchically nested designs. 

There is a drawback to the use of Type II sums of squares for factorial designs with unequal cell ns. In these situations, Type II sums of squares test hypotheses that are complex functions of the cell ns that ordinarily are not meaningful. Thus, a different method for testing hypotheses is usually preferred. 

Type III Sums of Squares. Type I and Type II sums of squares usually are not appropriate for testing hypotheses for factorial ANOVA designs with unequal ns. For ANOVA designs with unequal ns, however, Type III sums of squares test the same hypothesis that would be tested if the cell ns were equal, provided that there is at least one observation in every cell. Specifically, in no-missing-cell designs, Type III sums of squares test hypotheses about differences in subpopulation (or marginal) means. When there are no missing cells in the design, these subpopulation means are least squares means, which are the best linear-unbiased estimates of the marginal means for the design (see, Milliken and Johnson, 1986). 

Tests of differences in least squares means have the important property that they are invariant to the choice of the coding of effects for categorical predictor variables (e.g., the use of the sigma-restricted or overparameterized model) and to the choice of the particular g2 inverse of X'X used to solve the normal equations. Thus, tests of linear combinations of least squares means in general, including Type III tests of differences in least squares means, are said to not depend on the parameterization of the design. This makes Type III sums of squares useful for testing hypotheses for any design for which Type I or Type II sums of squares are appropriate, as well as for any unbalanced ANOVA design with no missing cells. 

The Type III sums of squares attributable to an effect is computed as the sums of squares for the effect controlling for any effects of equal or lower degree and orthogonal to any higher-order interaction effects (if any) that contain it. The orthogonality to higher-order containing interactions is what gives Type III sums of squares the desirable properties associated with linear combinations of least squares means in ANOVA designs with no missing cells. But for ANOVA designs with missing cells, Type III sums of squares generally do not test hypotheses about least squares means, but instead test hypotheses that are complex functions of the patterns of missing cells in higher-order containing interactions and that are ordinarily not meaningful. In this situation Type V sums of squares or tests of the effective hypothesis (Type VI sums of squares) are preferred. 

Type IV Sums of Squares. Type IV sums of squares were designed to test "balanced" hypotheses for lower-order effects in ANOVA designs with missing cells. Type IV sums of squares are computed by equitably distributing cell contrast coefficients for lower-order effects across the levels of higher-order containing interactions. 

Type IV sums of squares are not recommended for testing hypotheses for lower-order effects in ANOVA designs with missing cells, even though this is the purpose for which they were developed. This is because Type IV sum-of-squares are invariant to some but not all g2 inverses of X'X that could be used to solve the normal equations. Specifically, Type IV sums of squares are invariant to the choice of a g2 inverse of X'X given a particular ordering of the levels of the categorical predictor variables, but are not invariant to different orderings of levels. Furthermore, as with Type III sums of squares, Type IV sums of squares test hypotheses that are complex functions of the patterns of missing cells in higher-order containing interactions and that are ordinarily not meaningful. 

Statisticians who have examined the usefulness of Type IV sums of squares have concluded that Type IV sums of squares are not up to the task for which they were developed: 

Milliken & Johnson (1992, p. 204) write: "It seems likely that few, if any, of the hypotheses tested by the Type IV analysis of [some programs] will be of particular interest to the experimenter." 

Searle (1987, p. 463-464) writes: "In general, [Type IV] hypotheses determined in this nature are not necessarily of any interest."; and (p. 465) "This characteristic of Type IV sums of squares for rows depending on the sequence of rows establishes their non-uniqueness, and this in turn emphasizes that the hypotheses they are testing are by no means necessarily of any general interest." 

Hocking (1985, p. 152), in an otherwise comprehensive introduction to general linear models, writes: "For the missing cell problem, [some programs] offers a fourth analysis, Type IV, which we shall not discuss." 

So, we recommend that you use the Type IV sums of squares solution with caution, and that you understand fully the nature of the (often non-unique) hypotheses that are being testing, before attempting interpretations of the results. Furthermore, in ANOVA designs with no missing cells, Type IV sums of squares are always equal to Type III sums of squares, so the use of Type IV sums of squares is either (potentially) inappropriate, or unnecessary, depending on the presence of missing cells in the design. 

Type V Sums of Squares. Type V sums of squares were developed as an alternative to Type IV sums of squares for testing hypotheses in ANOVA designs in missing cells. Also, this approach is widely used in industrial experimentation, to analyze fractional factorial designs; these types of designs are discussed in detail in the 2**(k-p) Fractional Factorial Designs section of the Experimental Design chapter. In effect, for effects for which tests are performed all population marginal means (least squares means) are estimable. 

Type V sums of squares involve a combination of the methods employed in computing Type I and Type III sums of squares. Specifically, whether or not an effect is eligible to be dropped from the model is determined using Type I procedures, and then hypotheses are tested for effects not dropped from the model using Type III procedures. Type V sums of squares can be illustrated by using a simple example. Suppose that the effects considered are A, B, and A by B, in that order, and that A and B are both categorical predictors with, say, 3 and 2 levels, respectively. The intercept is first entered into the model. Then A is entered into the model, and its degrees of freedom are determined (i.e., the number of non-redundant columns for A in X'X, given the intercept). If A's degrees of freedom are less than 2 (i.e., its number of levels minus 1), it is eligible to be dropped. Then B is entered into the model, and its degrees of freedom are determined (i.e., the number of non-redundant columns for B in X'X, given the intercept and A). If B's degrees of freedom are less than 1 (i.e., its number of levels minus 1), it is eligible to be dropped. Finally, A by B is entered into the model, and its degrees of freedom are determined (i.e., the number of non-redundant columns for A by B in X'X, given the intercept, A, and B). If B's degrees of freedom are less than 2 (i.e., the product of the degrees of freedom for its factors if there were no missing cells), it is eligible to be dropped. Type III sums of squares are then computed for the effects that were not found to be eligible to be dropped, using the reduced model in which any eligible effects are dropped. Tests of significance, however, use the error term for the whole model prior to dropping any eligible effects. 

Note that Type V sums of squares involve determining a reduced model for which all effects remaining in the model have at least as many degrees of freedom as they would have if there were no missing cells. This is equivalent to finding a subdesign with no missing cells such that the Type III sums of squares for all effects in the subdesign reflect differences in least squares means. 

Appropriate caution should be exercised when using Type V sums of squares. Dropping an effect from a model is the same as assuming that the effect is unrelated to the outcome (see, e.g., Hocking, 1996). The reasonableness of the assumption does not necessarily insure its validity, so when possible the relationships of dropped effects to the outcome should be inspected. It is also important to note that Type V sums of squares are not invariant to the order in which eligibility for dropping effects from the model is evaluated. Different orders of effects could produce different reduced models. 

In spite of these limitations, Type V sums of squares for the reduced model have all the same properties of Type III sums of squares for ANOVA designs with no missing cells. Even in designs with many missing cells (such as fractional factorial designs, in which many high-order interaction effects are assumed to be zero), Type V sums of squares provide tests of meaningful hypotheses, and sometimes hypotheses that cannot be tested using any other method. 

Type VI (Effective Hypothesis) Sums of Squares. Type I through Type V sums of squares can all be viewed as providing tests of hypotheses that subsets of partial regression coefficients (controlling for or orthogonal to appropriate additional effects) are zero. Effective hypothesis tests (developed by Hocking, 1996) are based on the philosophy that the only unambiguous estimate of an effect is the proportion of variability on the outcome that is uniquely attributable to the effect. The overparameterized coding of effects for categorical predictor variables generally cannot be used to provide such unique estimates for lower-order effects. Effective hypothesis tests, which we propose to call Type VI sums of squares, use the sigma-restricted coding of effects for categorical predictor variables to provide unique effect estimates even for lower-order effects. 

The method for computing Type VI sums of squares is straightforward. The sigma-restricted coding of effects is used, and for each effect, its Type VI sums of squares is the difference of the model sums of squares for all other effects from the whole model sums of squares. As such, the Type VI sums of squares provide an unambiguous estimate of the variability of predicted values for the outcome uniquely attributable to each effect. 

In ANOVA designs with missing cells, Type VI sums of squares for effects can have fewer degrees of freedom than they would have if there were no missing cells, and for some missing cell designs, can even have zero degrees of freedom. The philosophy of Type VI sums of squares is to test as much as possible of the original hypothesis given the observed cells. If the pattern of missing cells is such that no part of the original hypothesis can be tested, so be it. The inability to test hypotheses is simply the price one pays for having no observations at some combinations of the levels of the categorical predictor variables. The philosophy is that it is better to admit that a hypothesis cannot be tested than it is to test a distorted hypothesis which may not meaningfully reflect the original hypothesis. 

Type VI sums of squares cannot generally be used to test hypotheses for nested ANOVA designs, separate slope designs, or mixed-model designs, because the sigma-restricted coding of effects for categorical predictor variables is overly restrictive in such designs. This limitation, however, does not diminish the fact that Type VI sums of squares can b 
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Error terms for tests 

Lack-of-Fit Tests using Pure Error. Whole model tests and tests based on the 6 types of sums of squares use the mean square residual as the error term for tests of significance. For certain types of designs, however, the residual sum of squares can be further partitioned into meaningful parts which are relevant for testing hypotheses. One such type of design is a simple regression design in which there are subsets of cases all having the same values on the predictor variable. For example, performance on a task could be measured for subjects who work on the task under several different room temperature conditions. The test of significance for the Temperature effect in the linear regression of Performance on Temperature would not necessarily provide complete information on how Temperature relates to Performance; the regression coefficient for Temperature only reflects its linear effect on the outcome. 

One way to glean additional information from this type of design is to partition the residual sums of squares into lack-of-fit and pure error components. In the example just described, this would involve determining the difference between the sum of squares that cannot be predicted by Temperature levels, given the linear effect of Temperature (residual sums of squares) and the pure error; this difference would be the sums of squares associated with the lack-of-fit (in this example, of the linear model). The test of lack-of-fit, using the mean square pure error as the error term, would indicate whether non-linear effects of Temperature are needed to adequately model Tempature's influence on the outcome. Further, the linear effect could be tested using the pure error term, thus providing a more sensitive test of the linear effect independent of any possible nonlinear effect. 

Designs with Zero Degrees of Freedom for Error. When the model degrees of freedom equal the number of cases or subjects, the residual sums of squares will have zero degrees of freedom and preclude the use of standard hypothesis tests. This sometimes occurs for overfitted designs (designs with many predictors, or designs with categorical predictors having many levels). However, in some designed experiments, such as experiments using split-plot designs or highly fractionalized factorial designs as commonly used in industrial experimentation, it is no accident that the residual sum of squares has zero degrees of freedom. In such experiments, mean squares for certain effects are planned to be used as error terms for testing other effects, and the experiment is designed with this in mind. It is entirely appropriate to use alternatives to the mean square residual as error terms for testing hypotheses in such designs. 

Tests in Mixed Model Designs. Designs which contain random effects for one or more categorical predictor variables are called mixed-model designs. These types of designs, and the analysis of those designs, is also described in detail in the Variance Components and Mixed Model ANOVA/ANCOVA chapter. Random effects are classification effects where the levels of the effects are assumed to be randomly selected from an infinite population of possible levels. The solution for the normal equations in mixed-model designs is identical to the solution for fixed-effect designs (i.e., designs which do not contain random effects). Mixed-model designs differ from fixed-effect designs only in the way in which effects are tested for significance. In fixed-effect designs, between effects are always tested using the mean square residual as the error term. In mixed-model designs, between effects are tested using relevant error terms based on the covariation of sources of variation in the design. Also, only the overparameterized model is used to code effects for categorical predictors in mixed-models, because the sigma-restricted model is overly restrictive. 

The covariation of sources of variation in the design is estimated by the elements of a matrix called the Expected Mean Squares (EMS) matrix. This non-square matrix contains elements for the covariation of each combination of pairs of sources of variation and for each source of variation with Error. Specifically, each element is the mean square for one effect (indicated by the column) that is expected to be accounted by another effect (indicated by the row), given the observed covariation in their levels. Note that expected mean squares can be computing using any type of sums of squares from Type I through Type V. Once the EMS matrix is computed, it is used to the solve for the linear combinations of sources of random variation that are appropriate to use as error terms for testing the significance of the respective effects. This is done using Satterthwaite's method of denominator synthesis (Satterthwaite, 1946). Detailed discussions of methods for testing effects in mixed-models, and related methods for estimating variance components for random effects, can be found in the Variance Components and Mixed Model ANOVA/ANCOVA chapter. 
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Testing Specific Hypotheses 

Whole model tests and tests based on sums of squares attributable to specific effects illustrate two general types of hypotheses that can be tested using the general linear model. Still, there may be other types of hypotheses the researcher wishes to test that do not fall into either of these categories. For example, hypotheses about subsets of effects may be of interest, or hypotheses involving comparisons of specific levels of categorical predictor variables may be of interest. 

Estimability of Hypotheses. Before considering tests of specific hypotheses of this sort, it is important to address the issue of estimability. A test of a specific hypothesis using the general linear model must be framed in terms of the regression coefficients for the solution of the normal equations. If the X'X matrix is less than full rank, the regression coefficients depend on the particular g2 inverse used for solving the normal equations, and the regression coefficients will not be unique. When the regression coefficients are not unique, linear functions (f) of the regression coefficients having the form 

f = Lb 

where L is a vector of coefficients, will also in general not be unique. However, Lb for an L which satisfies 

L = L(X'X)-X'X 

is invariant for all possible g2 inverses, and is therefore called an estimable function. 

The theory of estimability of linear functions is an advanced topic in the theory of algebraic invariants (Searle, 1987, provides a comprehensive introduction), but its implications are clear enough. One instance of non-estimability of a hypothesis has been encountered in tests of the effective hypothesis which have zero degrees of freedom. On the other hand, Type III sums of squares for categorical predictor variable effects in ANOVA designs with no missing cells (and the least squares means in such designs) provide an example of estimable functions which do not depend on the model parameterization (i.e., the particular g2 inverse used to solve the normal equations). The general implication of the theory of estimability of linear functions is that hypotheses which cannot be expressed as linear combinations of the rows of X (i.e., the combinations of observed levels of the categorical predictor variables) are not estimable, and therefore cannot be tested. Stated another way, we simply cannot test specific hypotheses that are not represented in the data. The notion of estimability is valuable because the test for estimability makes explicit which specific hypotheses can be tested and which cannot. 

Linear Combinations of Effects. In multiple regression designs, it is common for hypotheses of interest to involve subsets of effects. In mixture designs, for example, one might be interested in simultaneously testing whether the main effect and any of the two-way interactions involving a particular predictor variable are non-zero. It is also common in multiple regression designs for hypotheses of interest to involves comparison of slopes. For example, one might be interested in whether the regression coefficients for two predictor variables differ. In both factorial regression and factorial ANOVA designs with many factors, it is often of interest whether sets of effects, say, all three-way and higher-order interactions, are nonzero. 
Tests of these types of specific hypotheses involve (1) constructing one or more Ls reflecting the hypothesis, (2) testing the estimability of the hypothesis by determining whether 

L = L(X'X)-X'X 

and if so, using (3) 

(Lb)'<L(X'X)-L')-1(Lb) 

to estimate the sums of squares accounted for by the hypothesis. Finally, (4) the hypothesis is tested for significance using the usual mean square residual as the error term. To illustrate this 4-step procedure, suppose that a test of the difference in the regression slopes is desired for the (intercept plus) 2 predictor variables in a first-order multiple regression design. The coefficients for L would be 

L = [0 1 -1] 

(note that the first coefficient 0 excludes the intercept from the comparison) for which Lb is estimable if the 2 predictor variables are not redundant with each other. The hypothesis sums of squares reflect the difference in the partial regression coefficients for the 2 predictor variables, which is tested for significance using the mean square residual as the error term. 

Planned Comparisons of Least Square Means. Usually, experimental hypotheses are stated in terms that are more specific than simply main effects or interactions. We may have the specific hypothesis that a particular textbook will improve math skills in males, but not in females, while another book would be about equally effective for both genders, but less effective overall for males. Now generally, we are predicting an interaction here: the effectiveness of the book is modified (qualified) by the student's gender. However, we have a particular prediction concerning the nature of the interaction: we expect a significant difference between genders for one book, but not the other. This type of specific prediction is usually tested by testing planned comparisons of least squares means (estimates of the population marginal means), or as it is sometimes called, contrast analysis. 

Briefly, contrast analysis allows us to test the statistical significance of predicted specific differences in particular parts of our complex design. The 4-step procedure for testing specific hypotheses is used to specify and test specific predictions. Contrast analysis is a major and indispensable component of the analysis of many complex experimental designs (see also for details). 

To learn more about the logic and interpretation of contrast analysis refer to the ANOVA/MANOVA chapter Overview section. 

Post-Hoc Comparisons. Sometimes we find effects in an experiment that were not expected. Even though in most cases a creative experimenter will be able to explain almost any pattern of means, it would not be appropriate to analyze and evaluate that pattern as if one had predicted it all along. The problem here is one of capitalizing on chance when performing multiple tests post-hoc, that is, without a priori hypotheses. To illustrate this point, let us consider the following "experiment." Imagine we were to write down a number between 1 and 10 on 100 pieces of paper. We then put all of those pieces into a hat and draw 20 samples (of pieces of paper) of 5 observations each, and compute the means (from the numbers written on the pieces of paper) for each group. How likely do you think it is that we will find two sample means that are significantly different from each other? It is very likely! Selecting the extreme means obtained from 20 samples is very different from taking only 2 samples from the hat in the first place, which is what the test via the contrast analysis implies. Without going into further detail, there are several so-called post-hoc tests that are explicitly based on the first scenario (taking the extremes from 20 samples), that is, they are based on the assumption that we have chosen for our comparison the most extreme (different) means out of k total means in the design. Those tests apply "corrections" that are designed to offset the advantage of post-hoc selection of the most extreme comparisons. Whenever one finds unexpected results in an experiment one should use those post-hoc procedures to test their statistical significance. 
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Testing hypotheses for repeated measures and dependent variables 

In the discussion of different hypotheses that can be tested using the general linear model, the tests have been described as tests for "the dependent variable" or "the outcome." This has been done solely to simplify the discussion. When there are multiple dependent variables reflecting the levels of repeated measure factors, the general linear model performs tests using orthonormalized M-transformations of the dependent variables. When there are multiple dependent variables but no repeated measure factors, the general linear model performs tests using the hypothesis sums of squares and cross-products for the multiple dependent variables, which are tested against the residual sums of squares and cross-products for the multiple dependent variables. Thus, the same hypothesis testing procedures which apply to univariate designs with a single dependent variable also apply to repeated measure and multivariate designs.

General Regression Models (GRM)



Basic Ideas: The Need for Simple Models 

Model Building in GSR 

Types of Analyses 

Between Subject Designs 

Multivariate Designs 

Building the Whole Model 

Partitioning Sums of Squares 

Testing the Whole Model 

Limitations of Whole Models 

Building Models via Stepwise Regression 

Building Models via Best-Subset Regression 



This chapter describes the use of the general linear model for finding the "best" linear model from a number of possible models. If you are unfamiliar with the basic methods of ANOVA and regression in linear models, it may be useful to first review the basic information on these topics in Elementary Concepts. A detailed discussion of univariate and multivariate ANOVA techniques can also be found in the ANOVA/MANOVA chapter; a discussion of multiple regression methods is also provided in the Multiple Regression chapter. Discussion of the ways in which the linear regression model is extended by the general linear model can be found in the General Linear Models chapter. 



Basic Ideas: The Need for Simple Models 

A good theory is the end result of a winnowing process. We start with a comprehensive model that includes all conceivable, testable influences on the phenomena under investigation. Then we test the components of the initial comprehensive model, to identify the less comprehensive submodels that adequately account for the phenomena under investigation. Finally from these candidate submodels, we single out the simplest submodel, which by the principle of parsimony we take to be the "best" explanation for the phenomena under investigation. 

We prefer simple models not just for philosophical but also for practical reasons. Simple models are easier to put to test again in replication and cross-validation studies. Simple models are less costly to put into practice in predicting and controlling the outcome in the future. The philosophical reasons for preferring simple models should not be downplayed, however. Simpler models are easier to understand and appreciate, and therefore have a "beauty" that their more complicated counterparts often lack. 

The entire winnowing process described above is encapsulated in the model-building techniques of stepwise and best-subset regression. The use of these model-building techniques begins with the specification of the design for a comprehensive "whole model." Less comprehensive submodels are then tested to determine if they adequately account for the outcome under investigation. Finally, the simplest of the adequate is adopted as the "best." 
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Model Building in GSR 

Unlike the multiple regression model, which is used to analyze designs with continuous predictor variables, the general linear model can be used to analyze any ANOVA design with categorical predictor variables, any ANCOVA design with both categorical and continuous predictor variables, as well as any regression design with continuous predictor variables. Effects for categorical predictor variables can be coded in the design matrix X using either the overparameterized model or the sigma-restricted model. 

Only the sigma-restricted parameterization can be used for model-building. True to its description as general, the general linear model can be used to analyze designs with effects for categorical predictor variables which are coded using either parameterization method. In many uses of the general linear model, it is arbitrary whether categorical predictors are coded using the sigma-restricted or the overparameterized coding. When one desires to build models, however, the use of the overparameterized model is unsatisfactory; lower-order effects for categorical predictor variables are redundant with higher-order containing interactions, and therefore cannot be fairly evaluated for inclusion in the model when higher-order containing interactions are already in the model. 

This problem does not occur when categorical predictors are coded using the sigma-restricted parameterization, so only the sigma-restricted parameterization is necessary in general stepwise regression. 

Designs which cannot be represented using the sigma-restricted parameterization. The sigma-restricted parameterization can be used to represent most, but not all types of designs. Specifically, the designs which cannot be represented using the sigma-restricted parameterization are designs with nested effects, such as nested ANOVA and separate slope, and random effects. Any other type of ANOVA, ANCOVA, or regression design can be represented using the sigma-restricted parameterization, and can therefore be analyzed with general stepwise regression. 

Model building for designs with multiple dependent variables. Stepwise and best-subset model-building techniques are well-developed for regression designs with a single dependent variable (e.g., see Cooley and Lohnes, 1971; Darlington, 1990; Hocking Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Neter, Wasserman, and Kutner, 1985; Pedhazur, 1973; Stevens, 1986; Younger, 1985). Using the sigma-restricted parameterization and general linear model methods, these model-building techniques can be readily applied to any ANOVA design with categorical predictor variables, any ANCOVA design with both categorical and continuous predictor variables, as well as any regression design with continuous predictor variables. Building models for designs with multiple dependent variables, however, involves considerations that are not typically addressed by the general linear model. Model-building techniques for designs with multiple dependent variables are available with Structural Equation Modeling. 
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Types of Analyses 

A wide variety of types of designs can be represented using the sigma-restricted coding of the design matrix X, and any such design can be analyzed using the general linear model. The following topics describe these different types of designs and how they differ. Some general ways in which designs might differ can be suggested, but keep in mind that any particular design can be a "hybrid" in the sense that it could have combinations of features of a number of different types of designs. 

Between-subject designs 

Overview 

Simple regression 

Multiple regression 

Factorial regression 

Polynomial regression 

Response surface regression 

Mixture surface regression 

One-way ANOVA 

Main effect ANOVA 

Factorial ANOVA 

Analysis of covariance (ANCOVA) 

Homogeneity of slopes 

Overview. The levels or values of the predictor variables in an analysis describe the differences between the n subjects or the n valid cases that are analyzed. Thus, when we speak of the between subject design (or simply the between design) for an analysis, we are referring to the nature, number, and arrangement of the predictor variables. 

Concerning the nature or type of predictor variables, between designs which contain only categorical predictor variables can be called ANOVA (analysis of variance) designs, between designs which contain only continuous predictor variables can be called regression designs, and between designs which contain both categorical and continuous predictor variables can be called ANCOVA (analysis of covariance) designs. 

Between designs may involve only a single predictor variable and therefore be described as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., multiple regression). 

Concerning the arrangement of predictor variables, some between designs employ only "main effect" or first-order terms for predictors, that is, the values for different predictor variables are independent and raised only to the first power. Other between designs may employ higher-order terms for predictors by raising the values for the original predictor variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming products of different predictor variables (i.e., interaction terms). A common arrangement for ANOVA designs is the full-factorial design, in which every combination of levels for each of the categorical predictor variables is represented in the design. Designs with some but not all combinations of levels for each of the categorical predictor variables are aptly called fractional factorial designs. 

These basic distinctions about the nature, number, and arrangement of predictor variables can be used in describing a variety of different types of between designs. Some of the more common between designs can now be described. 

Simple Regression. Simple regression designs involve a single continuous predictor variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix would be 
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and using P for X1 the regression equation would be 

Y = b0 + b1P 

If the simple regression design is for a higher-order effect of P, say the quadratic effect, the values in the X1 column of the design matrix would be raised to the 2nd power, that is, squared 
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and using P2 for X1 the regression equation would be 

Y = b0 + b1P2 

In regression designs, values on the continuous predictor variables are raised to the desired power and used as the values for the X variables. No recoding is performed. It is therefore sufficient, in describing regression designs, to simply describe the regression equation without explicitly describing the design matrix X. 

Multiple Regression. Multiple regression designs are to continuous predictor variables as main effect ANOVA designs are to categorical predictor variables, that is, multiple regression designs contain the separate simple regression designs for 2 or more continuous predictor variables. The regression equation for a multiple regression design for the first-order effects of 3 continuous predictor variables P, Q, and R would be 

Y = b0 + b1P + b2Q + b3R 

A discussion of multiple regression methods is also provided in the Multiple Regression chapter. 

Factorial Regression. Factorial regression designs are similar to factorial ANOVA designs, in which combinations of the levels of the factors are represented in the design. In factorial regression designs, however, there may be many more such possible combinations of distinct levels for the continuous predictor variables than there are cases in the data set. To simplify matters, full-factorial regression designs are defined as designs in which all possible products of the continuous predictor variables are represented in the design. For example, the full-factorial regression design for two continuous predictor variables P and Q would include the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q interaction effect, which is represented by the product of P and Q scores for each case. The regression equation would be 

Y = b0 + b1P + b2Q + b3P*Q 

Factorial regression designs can also be fractional, that is, higher-order effects can be omitted from the design. A fractional factorial design to degree 2 for 3 continuous predictor variables P, Q, and R would include the main effects and all 2-way interactions between the predictor variables 

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R 

Polynomial Regression. Polynomial regression designs are designs which contain main effects and higher-order effects for the continuous predictor variables but do not include interaction effects between predictor variables. For example, the polynomial regression design to degree 2 for three continuous predictor variables P, Q, and R would include the main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction effect. 

Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 

Polynomial regression designs do not have to contain all effects up to the same degree for every predictor variable. For example, main, quadratic, and cubic effects could be included in the design for some predictor variables, and effects up the fourth degree could be included in the design for other predictor variables. 

Response Surface Regression. Quadratic response surface regression designs are a hybrid type of design with characteristics of both polynomial regression designs and fractional factorial regression designs. Quadratic response surface regression designs contain all the same effects of polynomial regression designs to degree 2 and additionally the 2-way interaction effects of the predictor variables. The regression equation for a quadratic response surface regression design for 3 continuous predictor variables P, Q, and R would be 

Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 + b7P*Q + b8P*R + b9Q*R 

These types of designs are commonly employed in applied research (e.g., in industrial experimentation), and a detailed discussion of these types of designs is also presented in the Experimental Design chapter (see Central composite designs). 

Mixture Surface Regression. Mixture surface regression designs are identical to factorial regression designs to degree 2 except for the omission of the intercept. Mixtures, as the name implies, add up to a constant value; the sum of the proportions of ingredients in different recipes for some material all must add up 100%. Thus, the proportion of one ingredient in a material is redundant with the remaining ingredients. Mixture surface regression designs deal with this redundancy by omitting the intercept from the design. The design matrix for a mixture surface regression design for 3 continuous predictor variables P, Q, and R would be 

Y = b1P + b2P2 + b3Q + b4P*Q + b5P*R + b6Q*R 

These types of designs are commonly employed in applied research (e.g., in industrial experimentation), and a detailed discussion of these types of designs is also presented in the Experimental Design chapter (see Mixture designs and triangular surfaces). 

One-Way ANOVA. A design with a single categorical predictor variable is called a one-way ANOVA design. For example, a study of 4 different fertilizers used on different individual plants could be analyzed via one-way ANOVA, with four levels for the factor Fertilizer. 
Consider a single categorical predictor variable A with 1 case in each of its 3 categories. Using the sigma-restricted coding of A into 2 quantitative contrast variables, the matrix X defining the between design is 
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That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, and 1 case in group A3, the X matrix would be 
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where the first subscript for A gives the replicate number for the cases in each group. For brevity, replicates usually are not shown when describing ANOVA design matrices. 

Note that in one-way designs with an equal number of cases in each group, sigma-restricted coding yields X1 … Xk variables all of which have means of 0. 

These simple examples show that the X matrix actually serves two purposes. It specifies (1) the coding for the levels of the original predictor variables on the X variables used in the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, the between design. 

Main Effect ANOVA. Main effect ANOVA designs contain separate one-way ANOVA designs for 2 or more categorical predictors. A good example of main effect ANOVA would be the typical analysis performed on screening designs as described in the context of the Experimental Design chapter. 

Consider 2 categorical predictor variables A and B each with 2 categories. Using the sigma-restricted coding, the X matrix defining the between design is 
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Note that if there are equal numbers of cases in each group, the sum of the cross-products of values for the X1 and X2 columns is 0, for example, with 1 case in each group (1*1)+(1*-1)+(-1*1)+(-1*-1)=0. 

Factorial ANOVA. Factorial ANOVA designs contain X variables representing combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, full-factorial designs represent all possible combinations of the levels of the categorical predictors. A full-factorial design with 2 categorical predictor variables A and B each with 2 levels would be called a 2 x 2 full-factorial design. Using the sigma-restricted coding, the X matrix for this design would be 
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Several features of this X matrix deserve comment. Note that the X1 and X2 columns represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing across the levels of the other variable. The X3 column instead represents a contrast between different combinations of the levels of A and B. Note also that the values for X3 are products of the corresponding values for X1 and X2. Product variables such as X3 represent the multiplicative or interaction effects of their factors, so X3 would be said to represent the 2-way interaction of A and B. The relationship of such product variables to the dependent variables indicate the interactive influences of the factors on responses above and beyond their independent (i.e., main effect) influences on responses. Thus, factorial designs provide more information about the relationships between categorical predictor variables and responses on the dependent variables than is provided by corresponding one-way or main effect designs. 

When many factors are being investigated, however, full-factorial designs sometimes require more data than reasonably can be collected to represent all possible combinations of levels of the factors, and high-order interactions between many factors can become difficult to interpret. With many factors, a useful alternative to the full-factorial design is the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial design to degree 2 with 3 categorical predictor variables each with 2 levels. The design would include the main effects for each variable, and all 2-way interactions between the three variables, but would not include the 3-way interactions between all three variables. These types of designs are discussed in detail in the 2**(k-p) Fractional Factorial Designs section of the Experimental Design chapter. 

Analysis of Covariance. In general, between designs which contain both categorical and continuous predictor variables can be called ANCOVA designs. Traditionally, however, ANCOVA designs have referred more specifically to designs in which the first-order effects of one or more continuous predictor variables are taken into account when assessing the effects of one or more categorical predictor variables. A basic introduction to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) topic of the ANOVA/MANOVA chapter. 

To illustrate, suppose a researcher wants to assess the influences of a categorical predictor variable A with 3 levels on some outcome, and that measurements on a continuous predictor variable P, known to covary with the outcome, are available. If the data for the analysis are 
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then the sigma-restricted X matrix for the design that includes the separate first-order effects of P and A would be 
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The b2 and b3 coefficients in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 

represent the influences of group membership on the A categorical predictor variable, controlling for the influence of scores on the P continuous predictor variable. Similarly, the b1 coefficient represents the influence of scores on P controlling for the influences of group membership on A. This traditional ANCOVA analysis gives a more sensitive test of the influence of A to the extent that P reduces the prediction error, that is, the residuals for the outcome variable. 

Homogeneity of Slopes. The appropriate design for modeling the influences of continuous and categorical predictor variables depends on whether the continuous and categorical predictors interact in influencing the outcome. The traditional analysis of covariance (ANCOVA) design for continuous and categorical predictor variables is appropriate when the continuous and categorical predictors do not interact in influencing responses on the outcome. The homogeneity of slopes designs can be used to test whether the continuous and categorical predictors interact in influencing responses. For the same example data used to illustrate the traditional ANCOVA design, the sigma-restricted X matrix for the homogeneity of slopes design would be 
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Using this design matrix X, if the b4 and b5 coefficients in the regression equation 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 

are zero, the simpler traditional ANCOVA design should be used. 

Multivariate Designs Overview 

When there are multiple dependent variables in a design, the design is said to be multivariate. Multivariate measures of association are by nature more complex than their univariate counterparts (such as the correlation coefficient, for example). This is because multivariate measures of association must take into account not only the relationships of the predictor variables with responses on the dependent variables, but also the relationships among the multiple dependent variables. By doing so, however, these measures of association provide information about the strength of the relationships between predictor and dependent variables independent of the dependent variables interrelationships. A basic discussion of multivariate designs is also presented in the Multivariate Designs topic in the ANOVA/MANOVA chapter. 

The most commonly used multivariate measures of association all can be expressed as functions of the eigenvalues of the product matrix 

E-1H 

where E is the error SSCP matrix (i.e., the matrix of sums of squares and cross-products for the dependent variables that are not accounted for by the predictors in the between design), and H is a hypothesis SSCP matrix (i.e., the matrix of sums of squares and cross-products for the dependent variables that are accounted for by all the predictors in the between design, or the sums of squares and cross-products for the dependent variables that are accounted for by a particular effect). If 

i = the ordered eigenvalues of E-1H, if E-1 exists

then the 4 commonly used multivariate measures of association are 

Wilks' lambda = [1/(1+i)] 

Pillai's trace = i/(1+i) 

Hotelling-Lawley trace = i 

Roy's largest root = 1 

These 4 measures have different upper and lower bounds, with Wilks' lambda perhaps being the most easily interpretable of the four measures. Wilks' lambda can range from 0 to 1, with 1 indicating no relationship of predictors to responses and 0 indicating a perfect relationship of predictors to responses. 1 - Wilks' lambda can be interpreted as the multivariate counterpart of a univariate R-squared, that is, it indicates the proportion of generalized variance in the dependent variables that is accounted for by the predictors. 

The 4 measures of association are also used to construct multivariate tests of significance. These multivariate tests are covered in detail in a number of sources (e.g., Finn, 1974; Tatsuoka, 1971). 
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Building the Whole Model 

The following sections discuss details for building and testing hypotheses about the "whole model", for example, how sums of squares are partitioned and how the overall fit for the whole model is tested. 

Partitioning Sums of Squares 

A fundamental principle of least squares methods is that variation on a dependent variable can be partitioned, or divided into parts, according to the sources of the variation. Suppose that a dependent variable is regressed on one or more predictor variables, and that for convenience the dependent variable is scaled so that its mean is 0. Then a basic least squares identity is that the total sum of squared values on the dependent variable equals the sum of squared predicted values plus the sum of squared residual values. Stated more generally, 

(y - y-bar)2 = (y-hat - y-bar)2 + (y - y-hat)2 

where the term on the left is the total sum of squared deviations of the observed values on the dependent variable from the dependent variable mean, and the respective terms on the right are (1) the sum of squared deviations of the predicted values for the dependent variable from the dependent variable mean and (2) the sum of the squared deviations of the observed values on the dependent variable from the predicted values, that is, the sum of the squared residuals. Stated yet another way, 

Total SS = Model SS + Error SS 

Note that the Total SS is always the same for any particular data set, but that the Model SS and the Error SS depend on the regression equation. Assuming again that the dependent variable is scaled so that its mean is 0, the Model SS and the Error SS can be computed using 

Model SS = b'X'Y 

Error SS = Y'Y - b'X'Y 

Testing the Whole Model 

Given the Model SS and the Error SS, one can perform a test that all the regression coefficients for the X variables (b1 through bk, excluding the b0 coefficient for the intercept) are zero. This test is equivalent to a comparison of the fit of the regression surface defined by the predicted values (computed from the whole model regression equation) to the fit of the regression surface defined solely by the dependent variable mean (computed from the reduced regression equation containing only the intercept). Assuming that X'X is full-rank, the whole model hypothesis mean square 

MSH = (Model SS)/k 

where k is the number of columns of X (excluding the intercept column), is an estimate of the variance of the predicted values. The error mean square 

s2 = MSE = (Error SS)/(n-k-1) 

where n is the number of observations, is an unbiased estimate of the residual or error variance. The test statistic is 

F = MSH/MSE 

where F has (k, n - k - 1) degrees of freedom. 

If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the number of non-redundant columns of X'X. 

If the whole model test is not significant the analysis is complete; the whole model is concluded to fit the data no better than the reduced model using the dependent variable mean alone. It is futile to seek a submodel which adequately fits the data when the whole model is inadequate. 

Note that in the case of non-intercept models, some multiple regression programs will only compute the full model test based on the proportion of variance around 0 (zero) accounted for by the predictors; for more information (see Kvålseth, 1985; Okunade, Chang, and Evans, 1993). Other programs will actually compute both values (i.e., based on the residual variance around 0, and around the respective dependent variable means. 

Limitations of Whole Models 

For designs such as one-way ANOVA or simple regression designs, the whole model test by itself may be sufficient for testing general hypotheses about whether or not the single predictor variable is related to the outcome. In complex designs, however, finding a statistically significant test of whole model fit is often just the first step in the analysis; one then seeks to identify simpler submodels that fit the data equally well (see the section on Basic ideas: The need for simple models). It is to this task, the search for submodels that fit the data well, that stepwise and best-subset regression are devoted. 
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Building Models via Stepwise Regression 

Stepwise model-building techniques for regression designs with a single dependent variable are described in numerous sources (e.g., see Darlington, 1990; Hocking, 1966, Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Neter, Wasserman, and Kutner, 1985; Pedhazur, 1973; Stevens, 1986; Younger, 1985). The basic procedures involve (1) identifying an initial model, (2) iteratively "stepping," that is, repeatedly altering the model at the previous step by adding or removing a predictor variable in accordance with the "stepping criteria," and (3) terminating the search when stepping is no longer possible given the stepping criteria, or when a specified maximum number of steps has been reached. The following topics provide details on the use of stepwise model-building procedures. 

The Initial Model in Stepwise Regression. The initial model is designated the model at Step 0. The initial model always includes the regression intercept (unless the No intercept option has been specified.). For the backward stepwise and backward removal methods, the initial model also includes all effects specified to be included in the design for the analysis. The initial model for these methods is therefore the whole model. 

For the forward stepwise and forward entry methods, the initial model always includes the regression intercept (unless the No intercept option has been specified.). The initial model may also include 1 or more effects specified to be forced into the model. If j is the number of effects specified to be forced into the model, the first j effects specified to be included in the design are entered into the model at Step 0 . Any such effects are not eligible to be removed from the model during subsequent Steps. 

Effects may also be specified to be forced into the model when the backward stepwise and backward removal methods are used. As in the forward stepwise and forward entry methods, any such effects are not eligible to be removed from the model during subsequent Steps. 

The Forward Entry Method. The forward entry method is a simple model-building procedure. At each Step after Step 0, the entry statistic is computed for each effect eligible for entry in the model. If no effect has a value on the entry statistic which exceeds the specified critical value for model entry, then stepping is terminated, otherwise the effect with the largest value on the entry statistic is entered into the model. Stepping is also terminated if the maximum number of steps is reached. 

The Backward Removal Method. The backward removal method is also a simple model-building procedure. At each Step after Step 0, the removal statistic is computed for each effect eligible to be removed from the model. If no effect has a value on the removal statistic which is less than the critical value for removal from the model, then stepping is terminated, otherwise the effect with the smallest value on the removal statistic is removed from the model. Stepping is also terminated if the maximum number of steps is reached. 

The Forward Stepwise Method. The forward stepwise method employs a combination of the procedures used in the forward entry and backward removal methods. At Step 1 the procedures for forward entry are performed. At any subsequent step where 2 or more effects have been selected for entry into the model, forward entry is performed if possible, and backward removal is performed if possible, until neither procedure can be performed and stepping is terminated. Stepping is also terminated if the maximum number of steps is reached. 

The Backward Stepwise Method. The backward stepwise method employs a combination of the procedures used in the forward entry and backward removal methods. At Step 1 the procedures for backward removal are performed. At any subsequent step where 2 or more effects have been selected for entry into the model, forward entry is performed if possible, and backward removal is performed if possible, until neither procedure can be performed and stepping is terminated. Stepping is also terminated if the maximum number of steps is reached. 

Entry and Removal Criteria. Either critical F values or critical p values can be specified to be used to control entry and removal of effects from the model. If p values are specified, the actual values used to control entry and removal of effects from the model are 1 minus the specified p values. The critical value for model entry must exceed the critical value for removal from the model. A maximum number of Steps can also be specified. If not previously terminated, stepping stops when the specified maximum number of Steps is reached. 
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Building Models via Best-Subset Regression 

All-possible-subset regression can be used as an alternative to or in conjunction with stepwise methods for finding the "best" possible submodel. 

Neter, Wasserman, and Kutner (1985) discuss the use of all-possible-subset regression in conjunction with stepwise regression "A limitation of the stepwise regression search approach is that it presumes there is a single "best" subset of X variables and seeks to identify it. As noted earlier, there is often no unique "best" subset. Hence, some statisticians suggest that all possible regression models with a similar number of X variables as in the stepwise regression solution be fitted subsequently to study whether some other subsets of X variables might be better." (p. 435). This reasoning suggests that after finding a stepwise solution, the "best" of all the possible subsets of the same number of effects should be examined to determine if the stepwise solution is among the "best." If not, the stepwise solution is suspect. 

All-possible-subset regression can also be used as an alternative to stepwise regression. Using this approach, one first decides on the range of subset sizes that could be considered to be useful. For example, one might expect that inclusion of at least 3 effects in the model is necessary to adequately account for responses, and also might expect there is no advantage to considering models with more than 6 effects. Only the "best" of all possible subsets of 3, 4, 5, and 6 effects are then considered. 

Note that several different criteria can be used for ordering subsets in terms of "goodness." The most often used criteria are the subset multiple R-square, adjusted R-square, and Mallow's Cp statistics. When all-possible-subset regression is used in conjunction with stepwise methods, the subset multiple R-square statistic allows direct comparisons of the "best" subsets identified using each approach. 

The number of possible submodels increases very rapidly as the number of effects in the whole model increases, and as subset size approaches half of the number of effects in the whole model. The amount of computation required to perform all-possible-subset regression increases as the number of possible submodels increases, and holding all else constant, also increases very rapidly as the number of levels for effects involving categorical predictors increases, thus resulting in more columns in the design matrix X. For example, all possible subsets of up to a dozen or so effects could certainly theoretically be computed for a design that includes two dozen or so effects all of which have many levels, but the computation would be very time consuming (e.g., there are about 2.7 million different ways to select 12 predictors from 24 predictors, i.e., 2.7 million models to evaluate just for subset size 12). Simpler is generally better when using all-possible-subset regression. 
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General Purpose 
One basic and straightforward method for analyzing data is via crosstabulation. For example, a medical researcher may tabulate the frequency of different symptoms by patients' age and gender; an educational researcher may tabulate the number of high school drop-outs by age, gender, and ethnic background; an economist may tabulate the number of business failures by industry, region, and initial capitalization; a market researcher may tabulate consumer preferences by product, age, and gender; etc. In all of these cases, the major results of interest can be summarized in a multi-way frequency table, that is, in a crosstabulation table with two or more factors. 

Log-Linear provides a more "sophisticated" way of looking at crosstabulation tables. Specifically, you can test the different factors that are used in the crosstabulation (e.g., gender, region, etc.) and their interactions for statistical significance (see Elementary Concepts for a discussion of statistical significance testing). The following text will present a brief introduction to these methods, their logic, and interpretation. 

Correspondence analysis is a descriptive/exploratory technique designed to analyze two-way and multi-way tables containing some measure of correspondence between the rows and columns. The results provide information which is similar in nature to those produced by Factor Analysis techniques, and they allow one to explore the structure of the categorical variables included in the table. 

	To index 


Two-way Frequency Tables 
Let us begin with the simplest possible crosstabulation, the 2 by 2 table. Suppose we were interested in the relationship between age and the graying of people's hair. We took a sample of 100 subjects, and determined who does and does not have gray hair. We also recorded the approximate age of the subjects. The results of this study may be summarized as follows: 

	Gray
Hair
	Age
	Total

	
	Below 40
	40 or older
	

	No
Yes
	40
20
	  5
35
	45
55

	Total
	60
	40
	100


While interpreting the results of our little study, let us introduce the terminology that will allow us to generalize to complex tables more easily. 

Design variables and response variables. In multiple regression (Multiple Regression) or analysis of variance (ANOVA/MANOVA) one customarily distinguishes between independent and dependent variables. Dependent variables are those that we are trying to explain, that is, that we hypothesize to depend on the independent variables. We could classify the factors in the 2 by 2 table accordingly: we may think of hair color (gray, not gray) as the dependent variable, and age as the independent variable. Alternative terms that are often used in the context of frequency tables are response variables and design variables, respectively. Response variables are those that vary in response to the design variables. Thus, in the example table above, hair color can be considered to be the response variable, and age the design variable. 

Fitting marginal frequencies. Let us now turn to the analysis of our example table. We could ask ourselves what the frequencies would look like if there were no relationship between variables (the null hypothesis). Without going into details, intuitively one could expect that the frequencies in each cell would proportionately reflect the marginal frequencies (Totals). For example, consider the following table: 

	Gray
Hair
	Age
	Total

	
	Below 40
	40 or older
	

	No
Yes
	27
33
	18
22
	45
55

	Total
	60
	40
	100


In this table, the proportions of the marginal frequencies are reflected in the individual cells. Thus, 27/33=18/22=45/55 and 27/18=33/22=60/40. Given the marginal frequencies, these are the cell frequencies that we would expect if there were no relationship between age and graying. If you compare this table with the previous one you will see that the previous table does reflect a relationship between the two variables: There are more than expected (under the null hypothesis) cases below age 40 without gray hair, and more cases above age 40 with gray hair. 

This example illustrates the general principle on which the log-linear analysis is based: Given the marginal totals for two (or more) factors, we can compute the cell frequencies that would be expected if the two (or more) factors are unrelated. Significant deviations of the observed frequencies from those expected frequencies reflect a relationship between the two (or more) variables. 

Model fitting approach. Let us now rephrase our discussion of the 2 by 2 table so far. We can say that fitting the model of two variables that are not related (age and hair color) amounts to computing the cell frequencies in the table based on the respective marginal frequencies (totals). Significant deviations of the observed table from those fitted frequencies reflect the lack of fit of the independence (between two variables) model. In that case we would reject that model for our data, and instead accept the model that allows for a relationship or association between age and hair color. 

	To index 


Multi-way Frequency Tables 
The reasoning presented for the analysis of the 2 by 2 table can be generalized to more complex tables. For example, suppose we had a third variable in our study, namely whether or not the individuals in our sample experience stress at work. Because we are interested in the effect of stress on graying, we will consider Stress as another design variable. (Note that, if our study were concerned with the effect of gray hair on subsequent stress, variable stress would be the response variable, and hair color would be the design variable.). The resultant table is a three- way frequency table. 

Fitting models. We can apply our previous reasoning to analyze this table. Specifically, we could fit different models that reflect different hypotheses about the data. For example, we could begin with a model that hypothesizes independence between all factors. As before, the expected frequencies in that case would reflect the respective marginal frequencies. If any significant deviations occur, we would reject this model. 

Interaction effects. Another conceivable model would be that age is related to hair color, and stress is related to hair color, but the two (age and stress) factors do not interact in their effect. In that case, we would need to simultaneously fit the marginal totals for the two-way table of age by hair color collapsed across levels of stress, and the two-way table of stress by hair color collapsed across the levels of age. If this model does not fit the data, we would have to conclude that age, stress, and hair color all are interrelated. Put another way, we would conclude that age and stress interact in their effect on graying. 

The concept of interaction here is analogous to that used in analysis of variance (ANOVA /MANOVA). For example, the age by stress interaction could be interpreted such that the relationship of age to hair color is modified by stress. While age brings about only little graying in the absence of stress, age is highly related when stress is present. Put another way, the effects of age and stress on graying are not additive, but interactive. 

If you are not familiar with the concept of interaction, we recommend that you read the Introductory Overview to ANOVA/MANOVA. Many aspects of the interpretation of results from a log-linear analysis of a multi-way frequency table are very similar to ANOVA. 

Iterative proportional fitting. The computation of expected frequencies becomes increasingly complex when there are more than two factors in the table. However, they can be computed, and, therefore, we can easily apply the reasoning developed for the 2 by 2 table to complex tables. The commonly used method for computing the expected frequencies is the so-called iterative proportional fitting procedure. 

The Log-Linear Model 
The term log-linear derives from the fact that one can, through logarithmic transformations, restate the problem of analyzing multi-way frequency tables in terms that are very similar to ANOVA. Specifically, one may think of the multi-way frequency table to reflect various main effects and interaction effects that add together in a linear fashion to bring about the observed table of frequencies. Bishop, Fienberg, and Holland (1974) provide details on how to derive log- linear equations to express the relationship between factors in a multi-way frequency table. 

Goodness-of-Fit 
In the previous discussion we have repeatedly made reference to the "significance" of deviations of the observed frequencies from the expected frequencies. One can evaluate the statistical significance of the goodness-of-fit of a particular model via a Chi-square test. You can compute two types of Chi-squares, the traditional Pearson Chi-square statistic and the maximum likelihood ratio Chi-square statistic (the term likelihood ratio was first introduced by Neyman and Pearson, 1931; the term maximum likelihood was first used by Fisher, 1922a). In practice, the interpretation and magnitude of those two Chi-square statistics are essentially identical. Both tests evaluate whether the expected cell frequencies under the respective model are significantly different from the observed cell frequencies. If so, the respective model for the table is rejected. 

Reviewing and plotting residual frequencies. After one has chosen a model for the observed table, it is always a good idea to inspect the residual frequencies, that is, the observed minus the expected frequencies. If the model is appropriate for the table, then all residual frequencies should be "random noise," that is, consist of positive and negative values of approximately equal magnitudes that are distributed evenly across the cells of the table. 

Statistical significance of effects. The Chi-squares of models that are hierarchically related to each other can be directly compared. For example, if we first fit a model with the age by hair color interaction and the stress by hair color interaction, and then fit a model with the age by stress by hair color (three-way) interaction, then the second model is a superset of the previous model. We could evaluate the difference in the Chi-square statistics, based on the difference in the degrees of freedom; if the differential Chi-square statistic is significant, then we would conclude that the three-way interaction model provides a significantly better fit to the observed table than the model without this interaction. Therefore, the three-way interaction is statistically significant. 

In general, two models are hierarchically related to each other if one can be produced from the other by either adding terms (variables or interactions) or deleting terms (but not both at the same time). 

Automatic Model Fitting 
When analyzing four- or higher-way tables, finding the best fitting model can become increasingly difficult. You can use automatic model fitting options to facilitate the search for a "good model" that fits the data. The general logic of this algorithm is as follows. First, fit a model with no relationships between factors; if that model does not fit (i.e., the respective Chi- square statistic is significant), then it will fit a model with all two-way interactions. If that model does not fit either, then the program will fit all three-way interactions, and so on. Let us assume that this process found the model with all two-way interactions to fit the data. The program will then proceed to eliminate all two-way interactions that are not statistically significant. The resulting model will be the one that includes the least number of interactions necessary to fit the observed table.
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Introductory Overview 

Multivariate Adaptive Regression Splines (MARSplines) is an implementation of techniques popularized by Friedman (1991) for solving regression-type problems (see also, Multiple Regression), with the main purpose to predict the values of a continuous dependent or outcome variable from a set of independent or predictor variables. There are a large number of methods available for fitting models to continuous variables, such as a linear regression [e.g., Multiple Regression, General Linear Model (GLM)], nonlinear regression (Generalized Linear/Nonlinear Models), regression trees (see Classification and Regression Trees), CHAID, Neural Networks, etc.  (see also Hastie, Tishirani, and Friedman, 2001, for an overview). 

Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric regression procedure that makes no assumption about the underlying functional relationship between the dependent and independent variables. Instead, MARSplines constructs this relation from a set of coefficients and basis functions that are entirely "driven" from the regression data. In a sense, the method is based on the "divide and conquer" strategy, which partitions the input space into regions, each with its own regression equation. This makes MARSplines particularly suitable for problems with higher input dimensions (i.e., with more than 2 variables), where the curse of dimensionality would likely create problems for other techniques.

The MARSplines technique has become particularly popular in the area of data mining because it does not assume or impose any particular type or class of relationship (e.g., linear, logistic, etc.) between the predictor variables and the dependent (outcome) variable of interest. Instead, useful models (i.e., models that yield accurate predictions) can be derived even in situations where the relationship between the predictors and the dependent variables is non-monotone and difficult to approximate with parametric models. For more information about this technique and how it compares to other methods for nonlinear regression (or regression trees), see Hastie, Tishirani, and Friedman (2001).

Regression Problems 

Regression problems are used to determine the relationship between a set of dependent variables (also called output, outcome, or response variables) and one or more independent variables (also known as input or predictor variables). The dependent variable is the one whose values you want to predict, based on the values of the independent (predictor) variables. For instance, one might be interested in the number of car accidents on the roads, which can be caused by 1) bad weather and 2) drunk driving. In this case one might write, for example, 

Number_of_Accidents =  Some Constant + 0.5*Bad_Weather + 2.0*Drunk_Driving

The variable Number of Accidents is the dependent variable that is thought to be caused by (among other variables) Bad Weather and Drunk Driving (hence the name dependent variable). Note that the independent variables are multiplied by factors, i.e., 0.5 and 2.0. These are known as regression coefficients. The larger these coefficients, the stronger the influence of the independent variables on the dependent variable. If the two predictors in this simple (fictitious) example were measured on the same scale (e.g., if the variables were standardized to a mean of 0.0 and standard deviation 1.0), then Drunk Driving could be inferred to contribute 4 times more to car accidents than Bad Weather. (If the variables are not measured on the same scale, then direct comparisons between these coefficients are not meaningful, and, usually, some other standardized measure of predictor "importance" is included in the results.)  

For additional details regarding these types of statistical models, refer to Multiple Regression or General Linear Models (GLM), as well as General Regression Models (GRM). In general, the social and natural sciences regression procedures are widely used in research. Regression allows the researcher to ask (and hopefully answer) the general question "what is the best predictor of ..." For example, educational researchers might want to learn what the best predictors of success in high-school are. Psychologists may want to determine which personality variable best predicts social adjustment. Sociologists may want to find out which of the multiple social indicators best predict whether a new immigrant group will adapt and be absorbed into society.

Multivariate Adaptive Regression Splines 

The car accident example we considered previously is a typical application for linear regression, where the response variable is hypothesized to depend linearly on the predictor variables. Linear regression also falls into the category of so-called parametric regression, which assumes that the nature of the relationships (but not the specific parameters) between the dependent and independent variables is known a priori (e.g., is linear). By contrast, nonparametric regression (see Nonparametrics) does not make any such assumption as to how the dependent variables are related to the predictors. Instead it allows the regression function to be "driven" directly from data.

Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric regression procedure that makes no assumption about the underlying functional relationship between the dependent and independent variables. Instead, MARSplines constructs this relation from a set of coefficients and so-called basis functions that are entirely determined from the regression data. You can think of the general "mechanism" by which the MARSplines algorithm operates as multiple piecewise linear regression (see Nonlinear Estimation), where each breakpoint (estimated from the data) defines the "region of application" for a particular (very simple) linear regression equation.

Basis functions. Specifically, MARSplines uses two-sided truncated functions of the form (as shown below) as basis functions for linear or nonlinear expansion, which approximates the relationships between the response and predictor variables. 
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Shown above is a simple example of two basis functions (t-x)+ and (x-t)+ (adapted from Hastie, et al., 2001, Figure 9.9). Parameter t is the knot of the basis functions (defining the "pieces" of the piecewise linear regression); these knots (parameters) are also determined from the data. The "+" signs next to the terms (t-x) and (x-t) simply denote that only positive results of the respective equations are considered; otherwise the respective functions evaluate to zero. This can also be seen in the illustration.

The MARSplines model. The basis functions together with the model parameters (estimated via least squares estimation) are combined to produce the predictions given the inputs. The general MARSplines model equation (see Hastie et al., 2001, equation 9.19) is given as:
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where the summation is over the M nonconstant terms in the model (further details regarding the model are also provided in Technical Notes). To summarize, y is predicted as a function of the predictor variables X (and their interactions); this function consists of an intercept parameter ([image: image178.png]


) and the weighted (by [image: image179.png]


) sum of one or more basis functions [image: image180.png]


, of the kind illustrated earlier. You can also think of this model as "selecting" a weighted sum of basis functions from the set of (a large number of) basis functions that span all values of each predictor (i.e., that set would consist of one basis function, and parameter t, for each distinct value for each predictor variable). The MARSplines algorithm then searches over the space of all inputs and predictor values (knot locations t) as well as interactions between variables. During this search, an increasingly larger number of basis functions are added to the model (selected from the set of possible basis functions), to maximize an overall least squares goodness-of-fit criterion. As a result of these operations, MARSplines automatically determines the most important independent variables as well as the most significant interactions among them. The details of this algorithm are further described in Technical Notes, as well as in Hastie et al., 2001).

Categorical predictors. In practice, both continuous and categorical predictors could be used, and will often yield useful results. However, the basic MARSplines algorithm assumes that the predictor variables are continuous in nature, and, for example, the computed knots program will usually not coincide with actual class codes found in the categorical predictors. For a detailed discussion of categorical predictor variables in MARSplines, see Friedman (1993).

Multiple dependent (outcome) variables. The MARSplines algorithm can be applied to multiple dependent (outcome) variables. In this case, the algorithm will determine a common set of basis functions in the predictors, but estimate different coefficients for each dependent variable. This method of treating multiple outcome variables is not unlike some neural networks architectures, where multiple outcome variables can be predicted from common neurons and hidden layers; in the case of MARSplines, multiple outcome variables are predicted from common basis functions, with different coefficients.

MARSplines and classification problems. Because MARSplines can handle multiple dependent variables, it is easy to apply the algorithm to classification problems as well. First, code the classes in the categorical response variable into multiple indicator variables (e.g., 1 = observation belongs to class k, 0 = observation does not belong to class k); then apply the MARSplines algorithm to fit a model, and compute predicted (continuous) values or scores; finally, for prediction, assign each case to the class for which the highest score is predicted (see also Hastie, Tibshirani, and Freedman, 2001, for a description of this procedure). Note that this type of application will yield heuristic classifications that may work very well in practice, but is not based on a statistical model for deriving classification probabilities.

Model Selection and Pruning 

In general, nonparametric models are adaptive and can exhibit a high degree of flexibility that may ultimately result in overfitting if no measures are taken to counteract it. Although such models can achieve zero error on training data, they have the tendency to perform poorly when presented with new observations or instances (i.e., they do not generalize well to the prediction of "new" cases). MARSplines, like most methods of this kind, tend to overfit the data as well. To combat this problem, MARSplines uses a pruning technique (similar to pruning in classification trees) to limit the complexity of the model by reducing the number of its basis functions.

MARSplines as a predictor (feature) selection method. This feature - the selection of and pruning of basis functions - makes this method a very powerful tool for predictor selection. The MARSplines algorithm will pick up only those basis functions (and those predictor variables) that make a "sizeable" contribution to the prediction (refer to Technical Notes for details). 

Applications 

Multivariate Adaptive Regression Splines (MARSplines) have become very popular recently for finding predictive models for "difficult" data mining problems, i.e., when the predictor variables do not exhibit simple and/or monotone relationships to the dependent variable of interest. Alternative models or approaches that you can consider for such cases are CHAID, Classification and Regression Trees, or any of the many Neural Networks architectures available. Because of the specific manner in which MARSplines selects predictors (basis functions) for the model, it does generally "well" in situations where regression-tree models are also appropriate, i.e., where hierarchically organized successive splits on the predictor variables yield good (accurate) predictions. In fact, instead of considering this technique as a generalization of multiple regression (as it was presented in this introduction), you may consider MARSplines as a generalization of regression trees, where the "hard" binary splits are replaced by "smooth" basis functions. Refer to Hastie, Tibshirani, and Friedman (2001) for additional details.

Technical Notes: The MARSplines Algorithm 

Implementing MARSplines involves a two step procedure that is applied successively until a desired model is found. In the first step, we build the model, i.e. increase its complexity by adding basis functions until a preset (user-defined) maximum level of complexity has been reached. Then we begin a backward procedure to remove the least significant basis functions from the model, i.e. those whose removal will lead to the least reduction in the (least-squares) goodness of fit. This algorithm is implemented as follows:

Start with the simplest model involving only the constant basis function.

Search the space of basis functions, for each variable and for all possible knots, and add those which maximize a certain measure of goodness of fit (minimize prediction error).

Step 2 is recursively applied until a model of pre-determined maximum complexity is derived.

Finally, in the last stage, a pruning procedure is applied where those basis functions are removed that contribute least to the overall (least squares) goodness of fit.

Technical Notes: The Multivariate Adaptive Regression Splines (MARSplines) Model 

The MARSplines algorithm builds models from two sided truncated functions of the predictors (x) of the form:
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These serve as basis functions for linear or nonlinear expansion that approximates some true underlying function f(x).

The MARSplines model for a dependent (outcome) variable y, and M terms , can be summarized in the following equation:
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where the summation is over the M terms in the model, and o and m are parameters of the model (along with the knots t for each basis function, which are also estimated from the data). Function H is defined as:
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where xv(k,m) is the predictor in the k'th of the m'th product. For order of interactions K=1, the model is additive and for K=2 the model pairwise interactive. 

During forward stepwise, a number of basis functions are added to the model according to a pre-determined maximum which should be considerably larger (twice as much at least) than the optimal (best least-squares fit).

After implementing the forward stepwise selection of basis functions, a backward procedure is applied in which the model is pruned by removing those basis functions that are associated with the smallest increase in the (least squares) goodness-of-fit. A least squares error function (inverse of goodness-of-fit) is computed. The so-called Generalized Cross Validation error is a measure of the goodness of fit that takes into account not only the residual error but also the model complexity as well. It is given by
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with 
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where N is the number of cases in the data set, d is the effective degrees of freedom, which is equal to the number of independent basis functions. The quantity c is the penalty for adding a basis function. Experiments have shown that the best value for C can be found somewhere in the range 2 < d < 3 (see Hastie et al., 2001).
