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Retrovirus Vectors: Toward the Plentivirus?
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Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or
potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely
used for stable gene transfer. Different members of the Retroviridae family have developed distinct and
potentially useful features related to their life cycle. These natural differences can be exploited for
specialized applications in gene therapy and could conceivably be combined to create future retroviral
hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging
system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-
specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic
transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and
physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary
vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an
enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral
components into vector particles or transgenes.
Key Words: reverse transcription, integrase, mouse leukemia virus, human immunodeficiency
virus, spumavirus
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INTRODUCTION

The family Retroviridae shares three common fea-
tures that are of major interest for gene delivery
[1–6]:

(1) receptor-mediated uptake of a membrane-coated

viral particle into target cells,
(2) reverse transcription of a plus-stranded RNA genome

into a double-stranded DNA that is integrated into
cellular chromosomes to establish active or latent
infection, and
(3) cytoplasmic assembly of particles with incorpora-

tion of the full-length retroviral mRNA as the
mobile form of genetic information.
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Three genes are required in this process and can thus be
found in all replicating retroviruses: gag (encoding viral
matrix, capsid, and nucleocapsid proteins), pol (encoding
a protease, reverse transcriptase, and integrase), and env
(encoding a bipartite membrane-anchored surface protein
mediating target cell recognition and particle uptake). The
proteins encoded by these open reading frames are
processed into several subunits, which require cleavage
by the retroviral protease following budding of the
immature particle. Replication-competent retrovirus vec-
tors contain genes in addition to the canonical gag–pol–
env genome [7]. Splitting gag–pol and env into two separate
retroviral genomes may allow the generation of a comple-
mentary replicating vector system [8]. The more widely
used replication-deficient retroviral vectors are generated
by coexpressing the basic retroviral trans-acting genes
from transcripts that are not intended to be incorporated
into retroviral particles. The transgene is encoded within a
transcript that contains all cis-regulatory sequences
required for its retroviral packaging (Fig. 1).

Three forms of replication-defective retroviral vectors
can thus be generated (Fig. 2; Table 1):

(1) If only mRNA is to be transduced, cis-acting sequen-
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or its function needs to be blocked by treatment of
target cells with RT inhibitors [9].
(2) If episomal delivery of circular transgene DNA is to

be achieved in target cells, cis-acting sequences
interacting with integrase (IN) must be destroyed or
IN needs to be mutated or inhibited [10].
(3) Stable integration of a replication-deficient provirus

into chromosomes is the archetypal application of
retrovirus vectors and occurs with an efficiency that
has not yet been reached with any alternative
integrating vector system.
For future vector design, two avenues can be followed:
the creation of specialized vectors that profit from the
naturally evolved tropism of a given retrovirus for a cell type
of interest or the development of innovative hybrid vectors
that combine advantageous features of different Retroviri-
dae. The present review deals primarily with the classical
use of retroviral vectors for stable transgene insertion; the
final section also addresses the advent of retrovirus-derived
vectors for delivery of mRNA or episomal DNA.

RETROVIRUSES TYPICALLY USED FOR VECTOR

DESIGN AND DESIRABLE FEATURES

Distinct retroviral genera have been classified based upon
the processing of the fused gag–pol transcription unit, the
re. Coding sequences (encoding the protein subunits indicated below

e generated, either LTR-driven or self-inactivating (SIN). The latter are

rminal repeat (LTR). pre, post-transcriptional regulatory element; att,

SA, splice acceptor; PPT, polypurine tract. Optional lentiviral vector
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FIG. 2. Delivery of nucleic acids by retroviral particles. Following receptor-mediated uptake (by fusion or via endosomes, depending on the envelope protein),

retroviral particles can deliver three forms of genetic information: (1) if reverse transcription does not occur, the mRNA may be subject to immediate translation;

(2) if integration is blocked, episomal circles can be generated that may persist in non-dividing cells; (3) if all steps of the retroviral transduction process are

completed, a double-stranded DNA integrates in cellular chromosomes. DPBS, deletion/mutation of the PBS, Datt, deletion/mutation of the att sites; RNAPII,

RNA polymerase II. Reprinted with minor modifications from [9], with permission from Elsevier.
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acquisition of accessory proteins, increasing genomic com-
plexity, and site of particle assembly (Table 2). Although
interesting properties relevant for vector design can be found
in all types of retroviruses, so far the focus has almost
exclusively been on the following three genera (Table 2):

(1) Simple gammaretroviruses with the paradigmatic
Deliver

Episom
mRNA

Env, enve
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vectors derived from murine leukemia virus (MLV).
These vectors possess the most advanced packaging
system.
TABLE 1: Retroviral vectors may de
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derived from the human immunodeficiency virus
type 1 (HIV). These vectors may circumvent aberrant
splicing of their transcript in producer cells and are
able to transduce many types of nondividing cells.
(3) The more distantly related spumaviruses with the

paradigmatic vectors derived from bhumanQ foamy
virus (HFV). This virus is considered to be apatho-
genic in humans and has the unique property of
completing reverse transcription prior to cell entry.
ree forms of nucleic acids
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Attachment sites in U5 and U3 IN inhibitors
Primer binding site RT inhibitors
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TABLE 2: Taxonomy of the retroviral family (Retroviridae) and commonly used vector systems discussed in this article

Genus Species (examples)

Paradigmatic vector

system discussed here

Key properties relevant

for vector design

Alpharetrovirus Avian leukosis sarcoma virus — Relatively unbiased

integration pattern.

Betaretrovirus Mouse mammary tumor virus (MMTV),
Mason–Pfizer monkey virus (MPMV),

human endogenous retroviruses K (HERV-K)

— Tissue-specific promoter (MMTV);
presence of constitutive (MPMV)

or inducible (HERV-K) RNA

export elements.

Deltaretrovirus Human T cell leukemia virus, bovine leukemia virus — Poorly explored for vector design
(replicates primarily as a

provirus along with cellular

DNA replication).
Epsilonretrovirus Walleye dermal sarcoma virus — Poorly explored for vector

design (infects fish).

Gammaretrovirus Gibbon ape leukemia virus, feline

leukemia virus

Mouse leukemia virus Simple genome architecture,

‘‘clean’’ packaging system;
powerful constitutive promoters;

nontoxic Env proteins.

Lentivirus Equine infectious anemia virus,

feline immunodeficiency virus,
simian immunodeficiency virus,

bovine immunodeficiency virus

Human immunodeficiency

virus type 1

Stabilization of genomic vector

RNA in packaging cells;
transduction of nondividing cells.

Spumavirus Chimpanzee foamy virus ‘‘Human’’ foamy virus Completion of reverse
transcription prior to entry;

relatively low preference for

integration in active genes.

All the retroviruses shown belong to the subfamily of Orthoretrovirinae, with the exception of spumaviruses, which are separated into their own subfamily (Spumaretrovirinae) (http://

www.ncbi.nlm.nih.gov/ICTVdb/Ictv/index.htm).

REVIEW ARTICLEdoi:10.1016/j.ymthe.2006.03.007
These three vector systems show important differ-
ences in their life cycle, biological properties of their
trans-acting proteins, and the minimal cis-elements
required to generate high-titer vectors. It is of signifi-
cance that none of the current recombinant retroviral
vectors fulfills the criteria of an ideal vector system for
human gene therapy, which should combine the
following features:

! efficient, noncytopathic packaging system with low
MOLECU

Copyrigh
lihood of recombination,
like

! serum-resistant particles pseudotyped with cell-spe-

c envelopes,
cifi

! reverse transcription prior to cell entry,
! unrestricted cytoplasmic transport and nuclear

ort,
imp

! insulated expression cassette and/or specific chromo-

al targeting,
som

! physiologic or regulated levels of transgene expression,
! efficiency in relevant animal models, and
! avoidance of horizontal or vertical transmission (high

safety).
bio

Toward the generation of such an ideal hybrid
bsuper-retrovirusQ vector, we should contemplate the
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different types of vectors available to date and addi-
tionally consider other members of the Retroviridae
family as a source of potentially useful features. In
addition, many of the above characteristics cannot be
achieved without adopting nonretroviral components.

EFFICIENT, NONCYTOPATHIC PACKAGING SYSTEM

AND LOW LIKELIHOOD OF RECOMBINATION

The risk of generating replication-competent retroviral
vector particles through homologous recombination of
viral packaging genes is reduced by avoiding sequence
identity between the vectorTs cis-elements and trans-
acting components [11,12]. The trans-acting genes should
be encoded by at least two separate plasmid constructs
with minimal sequence homology. In addition, the
particles should not be composed of cytopathic elements,
to guarantee their sustained production from stable
packaging cell clones and to avoid toxicity when applied
to target cells. However, despite these safety modifica-
tions, crude vector stocks need to contain high titers of
infectious particles to facilitate transduction of primary
cells.

Distinct retroviral cis-acting sequences regulate pack-
aging of proviral RNA, reverse transcription, genomic
insertion, and transgene expression. A major advantage
1053
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TABLE 3: Cis-sequences that overlap with coding regions and might be required for production of
high-titer retroviral vector stocks

Gene remnant
Mouse leukemia

virus (gammaretroviral)
Human immunodeficiency

virus type 1 (lentiviral)
‘‘Human’’ foamy
virus (spumaviral

Gag Not required 40–400 bp 645 bp

Pol 53 bp (SA)a 0–130 bp (cPPT) 1850 bp

Env Not required 0–850 bp (RRE plus SA) 165 bp

Sum 0–53 bp 40–1380 bp 2660 bp

SA, splice acceptor.
a Sequence degeneration or deletion in the packing construct possible; residual coding sequences contained in vectors are typically deleted of their AUG start codons.
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of MLV is that these elements do not overlap with
retroviral coding regions [13–15] (Table 3). The only cis-
element showing residual overlap with coding sequences
is the splice acceptor site located downstream of the
packaging and dimerization (Psi, C) motif. This splice
acceptor site is of major interest in the design of LTR-
driven vectors because the export of the unspliced LTR-
derived transcript to the cytoplasm is inefficient [13,14,
16,17]. It can be condensed to a partially degenerate
oligonucleotide [13], completely wobbled, or replaced by
alternative cellular sequences [18]. Thus, improved
gammaretroviral packaging systems will not only avoid
the presentation of potentially immunogenic virus-
derived open reading frames [13,19] but also completely
eradicate residual sequence overlap between the transfer
vector and the expression plasmids for gag–pol and env
[12]. It should be noted that early generations of MLV
vectors that are currently used in clinical studies may
contain large portions of gag–pol [20–22].

When generating lentiviral vectors, optimal titers are
achieved by incorporating several hundred base pairs
derived from gag–pol and env genes (Table 3). The
packaging signal of lentiviral vectors extends up to 300
bp into the N-terminus of gag [15]. To date, the defined
minimal packaging sequence for HIV-based vectors still
contains about 40 bp of gag [23,24]. In our hands,
sufficient titers of such minimal lentiviral vectors require
the use of relatively high amounts of plasmid DNA for
transfection of packaging cells. The more widely distrib-
uted versions of lentiviral vectors harbor larger gag
sequences (up to 400 bp) [25].

To increase the transduction efficiency, lentiviral
vectors may contain a so-called central polypurine tract
(cPPT) in a fragment comprising 130 bp derived from pol.
The cPPT supports reverse transcription and potentially
also nuclear translocation [26]. Lentiviral vectors also
require the presence of the Rev-responsive element
(RRE), up to 850 bp in size including surrounding env
remnants [25] (Fig. 1). The Rev/RRE interaction over-
comes nuclear retention of the lentiviral genomic RNA,
which is mediated by inhibitory sequences involving the
splice donor and gag. Interestingly, RNA export systems
equivalent to Rev/RRE are found not only in lentiviruses,
but also in the endogenous human retroviral family
MOLECULAR THERAPY Vol. 13, No. 6, June 20061054
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HERV-K and mouse mammary tumor virus, both repre-
senting betaretroviruses (Table 2) [27–30]. Although the
bcoreQ RRE of HIV-1 consists of only 230 bp, the flanking
sequences cannot be omitted without a significant loss in
titer [23]. This implies that sequences surrounding the
RRE are important for proper folding and Rev function
[31–33].

Rev/RRE-independent lentiviral vectors have been
constructed using the following three approaches:

(1) A vector designed on the basis of simian immuno-

deficiency virus (SIV) uses the R/U5 region of spleen
necrosis virus to export vector RNA [34].
(2) The constitutive transport element (CTE) of

Mason–Pfizer monkey virus, a betaretrovirus (Table
2), has been incorporated in HIV vectors. Depend-
ing on the splice donor site in the HIV leader, the
CTE mediated superior titers compared to the
standard construct [35,36]. Similarly, a Rev-inde-
pendent packing construct was developed using
four copies of the CTE [37] (A.S., unpublished
results).
(3) Codon-optimized, Rev-independent gag–pol genes

that have the additional benefit of reducing over-
lapping sequences between packaging construct
and transfer vector have been developed [38]. This
concept is applicable to various forms of lentiviral
vectors [39,40]. However, the specific infectivity of
HIV-derived vector particles produced using a
codon-optimized gag–pol construct in hemato-
poietic cells was lower than that of a previous
vector generation [41]. This might be explained by
the unexpected link between nuclear fate of the
HIV gag–pol mRNA and capsid assembly [42].
Gag remnants, cPPT, and RRE are all optional
components of lentiviral vectors that typically are used
when attempting to generate optimal titers. If the Rev
protein is coexpressed in packaging cells, the nascent
lentiviral transcript containing the RRE will be recruited
into a CRM-1-dependent nuclear export pathway [43],
potentially competing with splicing. Although this
mechanism does not show complete fidelity, it might
y
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promote the incorporation of unspliced genomic RNA
into vector particles. Hence, this may facilitate the
generation of vector particles containing complex
expression cassettes that otherwise would be subject to
bpregenome splicingQ [44,45]. However, reliable suppres-
sion of a downstream intron by Rev/RRE requires that
the splice sites are suboptimal [46]. Both gammaretrovi-
ruses and spumaviruses lack the Rev/RRE interplay, and
it will therefore be interesting to explore its potential
utility in these nonlentiviral vectors. Of note, it has
been observed that MLV vectors may also preserve
introns, although to a lesser extent compared with
RRE-containing lentiviral vectors packaged in the pres-
ence of Rev [47].

Of the three major vector types under consider-
ation, HFV apparently needs the greatest overlap
between coding sequences of vector RNA to generate
high-titer stocks, yet still show the lowest yields. The
sequence requirements for efficient packaging of the
transfer vector comprise a bipartite element that
resides in the leader region extending into gag and
a second element found in the 3V half of pol
extending into the cPPT and the env open reading
frame (ORF). This partially explains the need for
residual coding sequences in the transfer vector
(Table 3) [48–50]. The sum of these sequences is 2.6
kb (Table 3). The latest versions of HFV vectors
generate titers exceeding 105 infectious units/ml in
unconcentrated supernatant [50,51], which is 10- to
50-fold lower than the output of optimized lentiviral
or gammaretroviral production systems. Moreover,
relatively large amounts of transfer and helper plas-
mid are typically used in transient transfection
systems for production of HFV vectors. Considering
both high expenses and the potential contamination
of retroviral supernatants with plasmid [52], the high
quantity of GMP-grade plasmid DNA required for
large-scale production systems represents a potential
drawback.

So-called self-inactivating (SIN) vectors are obtained
by deleting enhancer–promoter sequences from the U3
region of the long terminal repeats (LTRs). Initial MLV-
based SIN vectors had poor titers [53], but recent data
suggest that modifications of the 5V promoter and the 3V
untranslated region allow the production of MLV SIN
vectors with titers that are equivalent to those of their
LTR-driven counterparts [54] (A.S., J.B., C.B., unpublished
data). SIN design of spumaviral and lentiviral vectors has
previously been achieved without major reduction in
vector yields [25,51,55].

An open question is which SIN vector system will be
useful for the generation of high-titer vector stocks from
stable, cloned packaging cells. Using an innovative
cassette exchange technology, a first success has been
achieved with MLV SIN vectors [56]. However, crucial
components of lentiviral and spumaviral packaging
MOLECULAR THERAPY Vol. 13, No. 6, June 2006
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systems may be cell toxic, including the lentiviral
protease [57] and certain Env proteins used for lentivirus
vector pseudotyping, such as the glycoprotein of vesic-
ular stomatitis virus (VSV-g) [58,59], and the RT and Env
proteins of HFV. Hence, this cellular toxicity presents a
significant hindrance to the development of stable
packaging lines. Nevertheless, significant progress has
also been achieved for HIV-based vectors [60–62]. The
rationale for alternative glycoproteins is discussed
below.

Irrespective of the type of gag–pol and env sequences,
use of packaging cells that are of human origin appears to
be optimal to reduce the danger of transducing nonhu-
man endogenous retroviral sequences [62,63].

SERUM RESISTANCE AND PSEUDOTYPING WITH

CELL-SPECIFIC ENVELOPES

Appropriate pseudotyping of retroviral particles may
increase serum resistance, confer cell-specific transduc-
tion properties, and avoid target cell toxicity.

Inactivation of retroviral or lentiviral particles by
human complement can be circumvented when using
packaging cells of human origin for vector production
[64]. However, certain envelope proteins such as VSV-g
are still subject to serum inactivation. This can be
overcome by PEGylation of viral particles [65]. Down-
stream processing of retroviral supernatants may also
reduce potential target cell toxicity of VSV-g, which may
result from cell debris copurifying with VSV-g-pseudo-
typed gammaretroviral or lentiviral particles [66].

Research regarding alternative envelope proteins has
led to satisfactory transduction rates of several clinically
relevant cell types and potentially allows cell-type-
specific targeting (reviewed in [67]). HFV as the proto-
typic spumavirus is the least flexible among the known
retroviruses with respect to pseudotyping. So far, this
genus has been resistant to packaging by heterologous
envelope proteins [51]. In contrast, numerous pseudo-
types have been made available for both MLV and
lentiviral vectors, using glycoproteins that originate
from other retroviruses (e.g., GALV, RD114), other
membrane-coated viruses (e.g., VSV, LCMV, Ebola), or
recombinant design (typically based on a viral glyco-
protein equipped with artificial targeting domains) [68–
71]. Importantly, Env protein incorporation involves an
interaction of its cytoplasmic tail with Gag proteins. In
addition, appropriate protease-mediated cleavage of Env
into its surface and transmembrane subunits (SU and
TM in Fig. 1) is a prerequisite for efficient uptake of
retroviral particles by the target cells. Modifying cyto-
plasmic tails and protease consensus motifs can greatly
improve both production and infectivity of pseudo-
typed MLV or lentiviral vectors [61,69]. Moreover, the
surface domain of Env proteins can be spiked with
growth factor domains to induce target cell prolifer-
1055
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ation, although particle infectivity in this case depends
upon the copresentation of unmodified Env proteins
[71–73]. Comparative studies of gammaretroviral and
lentiviral vectors pseudotyped with related Env proteins
may provide further insights into potential limitations
occurring at the level of assembly and envelope
stability, receptor interactions, or associated postrecep-
tor pathways [54,74–76].

HIGH-FIDELITY REVERSE TRANSCRIPTION, IF POSSIBLE

PRIOR TO CELL ENTRY

Improving the fidelity of reverse transcription is a major
challenge in retroviral vector technology. The different
vectors currently available all suffer from a relatively high
mutation frequency (introducing one point mutation in
about 10 kb processed RNA). To our knowledge, success-
ful ways to engineer versions of RT that reduce the
incidence of point mutations have not been reported. In
addition, the error rate of cellular RNA polymerase II
generating the viral genomic RNA might also contribute
to point mutations.

Genetic instability during reverse transcription might
also be triggered by transfer of RT between sequence
repeats or between the two strands of genomic RNA that
are simultaneously incorporated as a noncovalently
linked dimer into a retroviral particle. Interestingly, HIV
appears to be more susceptible to recombination at this
step of the life cycle than MLV, potentially owing to
differences in the dimerization process of the respective
genomic RNAs [77].

Larger stretches of C-to-U hypermutations can result
from the copackaging of a cellular protein named
APOBEC3G, a cytidine deaminase that may block the
replication of both endogenous and exogenous retrovi-
ruses [78–80]. Incorporation of this cellular defense
principle into any type of retroviral particle can be
avoided by choosing packaging cells that do not express
this editing enzyme.

HFV differs from other types of retrovirus in that its RT
has a higher processivity [81]. Another desirable feature is
that the reverse transcription process may be complete
prior to cell entry [82]. This capacity is linked to the
unique ability of HFV to package active RT [48,82,83]. In
contrast, both gammaretroviruses and lentiviruses proc-
ess RT to its active form only at a late stage of particle
maturation. Thus, a hallmark of infectious HFV particles
is that their genome may contain double-stranded DNA
(Table 2), very similar to the situation found in hep-
adnaviruses [82]. In contrast, the genome of both
gammaretroviruses and lentiviruses consists of two
strands of single-stranded mRNA that have just initiated
reverse transcription. Consequently, HFV vectors seem to
be less dependent on the nucleotide supply of the target
cell to form double-stranded DNA, potentially contribu-
ting to their ability to transduce metabolically inactive
1056
cells such as unstimulated hematopoietic stem cells
[84,85].

UNRESTRICTED CYTOPLASMIC TRANSPORT AND

NUCLEAR IMPORT

The mechanisms underlying cytoplasmic transport of
retroviral particles are not well understood. This most
dynamic interphase of the retroviral life cycle comprises
particle uncoating, reverse transcription, formation of the
preintegration complex, and trafficking to the nucleus
(reviewed by [76]). Gag proteins are a major viral deter-
minant involved in host interactions at these steps.
Accordingly, modifications of gag sequences may over-
come postentry defense mechanisms affecting cytoplas-
mic fate and nuclear translocation. Over recent years,
several restriction factors have been identified that oper-
ate mainly at the level of uncoating, i.e., the disassembly
of the viral core into capsid monomers, and later stages of
cytoplasmic trafficking (reviewed in [76,79,86,87]).

A prominent example of a cellular restriction factor is
TRIM5a which exerts a block before RT [88], most likely
during the complex steps that rearrange the viral capsid
before formation of the preintegration complex. TRIM5a
targets a domain in the capsid protein of Gag. The block
is saturated by an excess of particles and can be circum-
vented by mutations in the capsid domain. TRIM5a
operates in a species-dependent manner, leading to major
phylogenetic differences in the susceptibility to certain
lentiviral and gammaretroviral strains. Currently used
gammaretroviral vectors based on gag sequences of the
Moloney MLV escape this block, whereas HIV-derived
vector infectivity in rhesus cells is inhibited by this
mechanism (reviewed in [86,87]). For this reason HIV-
based vectors cannot be tested directly in rhesus species
(see below).

Conversely, there are important factors that block
MLV but not HIV. One example is the ZAP protein that
degrades retroviral RNA (reviewed in [86]). Moreover,
both MLV and HFV encounter a block in nuclear import
of the preintegration complex in quiescent cells [85,89],
while lentiviral particles are typically capable of trans-
ducing nondividing cells or at least those in the G1
phase of the cell cycle [90–92]. The important conse-
quence of the ability to transduce many nondividing
cells is that lentiviral vectors became the preferred
delivery system for stable transgene delivery in many
tissues in vivo [24,55,93]. Moreover, for cell types such as
hematopoietic stem cells, which are difficult to main-
tain in vitro, it is possible to develop ex vivo transduction
protocols that largely preserve their biological features
[94]. Recently, a novel SIV-derived vector system that is
even capable of transducing some cell types that reside
in the G0 phase of the cell cycle has been described [95].
However, it remains to be seen whether this vector will
maintain this property in the absence of all lentiviral
MOLECULAR THERAPY Vol. 13, No. 6, June 2006
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accessory proteins. Early studies demonstrated that the
capacity of lentiviral particles to transduce nondividing
cells could be mapped to the nuclear import signals in
HIV IN, the Gag matrix, or features of the cPPT.
However, these reports have all been called into ques-
tion ([96–98] and references therein). The discovery of
the underlying mechanisms remains an important topic,
potentially allowing the transfer of this property to
other types of retroviral vectors.

SPECIFIC CHROMOSOMAL TARGETING

All of the currently used retrovirus vectors integrate into
chromosomal DNA in a semirandom manner. The func-
tional consequences of this are twofold:

(1) The potential deregulation of cellular gene expres-
MOLECU

Copyrigh
sion might induce a selective disadvantage or
advantage, depending on the integration site [99].
In the worst case, malignant outgrowth might be
triggered by the activation of some proto-onco-
genes [100–102]. The implications of these severe
adverse events, which clearly represent dose-limit-
ing toxicities but are highly context-dependent in
manifestation, have been the subject of several
recent reviews [103–109].
(2) The clonal variability of transgene expression and

silencing dependent upon the genomic architecture
adjacent to the proviral integration site.
Silencing of transgene expression has been observed
with both gammaretroviral and lentiviral vectors and is
strongly dependent on transgene sequence, integration
site, and cellular differentiation conditions (reviewed in
[110]). Randomly integrated HIV vectors may be more
refractory to transgene silencing than conventional LTR-
controlled MLV vectors, which might reflect differences
in sequences of the vector backbone, transgene, and
integration patterns [110–116]. SIN vector design
reduces the incidence of gene silencing in both gam-
maretroviral and lentiviral backbones [110]. Impor-
tantly, lentiviral vectors can be used to create
transgenic animals [117,118], and it will be interesting
to see whether SIN vectors designed on the basis of other
Retroviridae achieve similar results in this setting. Genetic
and epigenetic variability due to differences in transgene
copy number and integration sites remains a challenge in
the creation of transgenic animals using viral gene trans-
fer. In human gene therapy, numerous somatic cells are
subject to gene delivery. Due to the stochastic nature of
the transduction process, a profound inconsistency with
respect to transgene copy numbers and expression levels
may result, especially when transducing cells with multi-
ple vector copies [119,120]. For all of these reasons,
increasing the specificity of chromosomal targeting is of
major importance.
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Tethering of the preintegration complex (PIC) to
certain areas of chromatin and local structural features
are believed to be the major determinants of target
recognition (reviewed in [121,122]). The precise compo-
nents of the PIC that mediate tethering remain to be
identified. These could be cellular proteins such as
transcription factors that bind the transgene DNA and/
or viral proteins derived from the incoming particles.
Since both genomic sequence and viral proteins vary
dependent upon the type of retrovirus used, the integra-
tion patterns of different retroviruses are not identical.
HIV and derived vectors tend to integrate into transcribed
gene regions [123], whereas MLV shows a preference for
integration within a few kilobases upstream of the tran-
scriptional start site [124]. Among the retroviruses
studied to date (avian sarcoma-leukosis virus, MLV,
HFV, HIV, SIV), HFV shows the least preference for
integration within genes [125–127]. Although the
reported degree of differences appears rather small, this
might still have biological consequences. One recent
striking observation is that lentivirally transduced hem-
atopoietic cells transplanted into rhesus monkeys have
not shown insertions upstream of the primate EVI1
proto-oncogene, while numerous such clones were
detected following transduction with MLV vectors
[128]. The Evi1 allele is also a potent inducer of clonal
dominance in murine hematopoietic cells [99,129].
Future studies may resolve whether the differences
observed between lentiviral and gammaretroviral vectors
depend upon transgene sequence, particle origin, or
transduction conditions.

Epigenetic factors regulating chromatin accessibility
may well be involved in target site selection. This is
one of the major variables to be considered when
addressing cell-type dependence of insertional side
effects. It remains to be seen whether stimulation of
cells with cytokines influences the risk of integration in
the vicinity of crucial proto-oncogenes. This may be
another area where the choice of retroviral vector is
particularly influential as cytokine treatment is essential
for successful transduction of many primary cells with
MLV but is required to a lesser degree for HIV-based
vectors.

Alterations of the IN enzyme encoded by pol may
possibly target transgenes to specific sites within the
genome. Fusion of IN with other DNA-binding domains
has been shown to modify sequence specificity in naked
DNA, but convincing in vivo results remain to be obtained
(reviewed in [121]). Given that PIC and chromatin
determine target site selection in a multifactorial fashion,
such modifications are certainly not trivial. Even site-
specific recombinases still show a significant off-target
rate, especially when being overexpressed [130].

Eventually, the impact of insertional mutations will
have to be determined using functional assays. We have
described murine models that appear to be useful to
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reveal clonal dominance or malignant transformation as
side effects of vector-mediated insertional mutagenesis
[99,102]. Themis et al. recently reported that certain
lentiviral vectors may transform primary hepatocytes
when injected at a high dosage into fetal mice [131],
although formal evidence of insertional mutagenesis as a
driving force of oncogenic progression remains to be
demonstrated in this model [132]. Another recent study
has reported an in vitro culture system that reveals
transforming events elicited by MLV vectors [129].
Alternative models will likely be established in the near
future, providing clear insights into the transforming
potential as a function of transgene architecture, particle
composition, and transduction conditions.

INSULATING THE EXPRESSION CASSETTE,

CONSIDERING BOTH DNA AND RNA PROCESSING

An elegant concept to reduce the risk of insertional
mutagenesis is to flank the transgene with cis-acting
sequences that reduce the likelihood of functional inter-
actions with neighboring cellular alleles. Such attempts
should reflect two basic pathways [103]: enhancer-medi-
ated interactions that may occur over tens to hundreds of
kilobases [99,129] and transcriptional readthrough,
which is a notorious problem of retroviral vectors since
they typically contain suboptimal termination motifs
[47].

The potential advantages of so-called insulators for
reducing position-dependent silencing and enhancing
vector safety have recently been reviewed [110]. Further
studies are ongoing in several laboratories to exploit this
important tool. Insulators would be expected to work
with similar efficiency in any kind of retroviral vector, at
least in the context of SIN vectors in which major wild-
type enhancer motifs are deleted from the U3 regions.
Introducing nuclear scaffold attachment regions may
further increase the transcriptional autonomy of ran-
domly integrating vectors. However, both insulators and
scaffold attachment regions may be subject to differ-
entiation-dependent regulation [110,133,134].

The termination motif of HIV has been shown to be
somewhat stronger than that of MLV [135], but it also
tends to be leaky when SIN vectors are formed by deleting
wild-type U3 sequences [47]. Enhancers of termination
and polyadenylation are known from several viruses and
organisms. An important aim of current work is to
incorporate such enhancers of 3V RNA processing into
SIN vectors.

A first step in this direction is the use of the
posttranscriptional regulatory element of the woodchuck
hepatitis virus (WPRE). This element increases retroviral
titers and in some configurations also enhances retroviral
transgene expression by improving nuclear export of
unspliced RNA via CRM-1 and possibly also by improving
3V termination and/or polyadenylation [136,137]. The
1058
safety of this element has been subject to some debate,
because it overlaps with sequences that have been
associated with the induction of liver cancers by wood-
chuck hepatitis virus [138,139]. Recent work based on
insights into the WPRETs modular assembly [137] showed
that the RNA enhancer function of the WPRE can be
trimmed to avoid the coexpression of potentially onco-
genic sequences [140].

PHYSIOLOGIC OR REGULATED LEVELS OF TRANSGENE

EXPRESSION

Several studies addressed which of the various retroviral
backbones (gammaretroviral, spumaviral, or lentiviral)
provides the best platform for incorporation and ex
pression of a given transgene cassette [47,54,84,111,
116,141]. However, not all of these expression studies
have been conducted under conditions of a low and
homogeneous transgene copy number, which is required
to reduce experimental variability [119,142]. When trans-
ducing hematopoietic and fibroblast target cells with
identical transgene copy number and identical internal
expression cassettes, we observed no significant differ-
ences in the transcriptional potency of SIN vectors
derived from MLV or HIV [54]. In contrast, an earlier
study demonstrated superior transgene expression from
HIV vectors, possibly linked to improved 3V termination
and polyadenylation [47]. However, it should be noted
that improved 3V processing was shown to depend on the
presence of the intact HIV-1 U3 region and was lost in the
corresponding SIN vectors [47]. Moreover, the MLV-based
SIN vectors tested in this study still contained the
extended basal promoter of the U3 region [47], in contrast
to our more recent study in which both HIV- and MLV-
based vectors had both enhancer and promoter regions of
the U3 regions removed [54].

More complex expression cassettes, such as those
required for lineage-specific expression of h-globin, tend
to be very unstable in conventional MLV backbones while
showing a remarkable performance when contained in
HIV-derived SIN vectors [44,45,143–145]. It is likely,
although not formally shown, that the stabilization of
the genomic RNA is at least partly mediated by the Rev/
RRE interaction that directs the vector RNA into an
unusual RNA export pathway (see above) [24]. Using the
recently developed Rev-independent lentiviral vectors,
this important question can be addressed.

Other lineage-specific expression cassettes can be
efficiently incorporated into SIN vectors of any origin.
Examples are promoters specific for B cells or T cells [146–
149]. Efficient inducible transgene expression has been
obtained from artificial promoters that respond to drugs.
Drug-inducible artificial transcription factor cassettes
have been successfully incorporated into lentiviral vectors
[150–152]. Similar inducible constructs might be possible
using advanced generations of HFV or MLV vectors. As
MOLECULAR THERAPY Vol. 13, No. 6, June 2006
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residual enhancers and cryptic promoters of the vector
backbone potentially modify the performance of the
transgene cassette [153], comparative studies using differ-
ent viral backbones might be helpful to develop
improved vectors for inducible or tissue-specific gene
expression.

EFFICIENCY IN RELEVANT ANIMAL MODELS

The various cellular restriction factors discussed above
(APOBEC3G, TRIM5a, etc.) operate in a very species-
specific manner [79,86,87]. This has major consequences
for the design of preclinical animal models. In the context
of gene transfer into cultured hematopoietic cells, MLV
vectors (that are derived from the relatively unrestricted
NB-tropic Moloney strain) have been shown to work with
reasonable efficiency in murine, canine, and nonhuman
primate models [154]. However, culture conditions and
pseudotypes typically need to be optimized to allow
efficient use of MLV vectors in species other than mouse.
Importantly, the efficiency of transduction reported from
some blargeQ animal models could be reproduced in
clinical trials [20–22,155].

When targeting minimally manipulated cells in vivo
or ex vivo, lentiviral vectors typically are much more
efficient than MLV vectors [94] (and references therein).
However, conventional HIV-based vectors fail to trans-
duce rhesus monkey cells with high efficiency, unless
variants such as those derived from SIV are used to
overcome the block related to TRIM5a [87,156,157].
HFV vectors are also suboptimal for studies in some
nonhuman primates, which seems to be related to the
existence of preexisting antibodies to related endoge-
nous viruses. The potential ability of antibodies to
eliminate transfused, gene-modified cells that were
transduced ex vivo implies that residual antigens are
formed even though replication-deficient vectors were
used. If their expression cassettes are successfully
deleted of residual viral ORFs, antibody-mediated rejec-
tion may be related to a rather short culture time,
which increases the chance that infused cells continue
to present particle-derived antigens [158]. Following
the use of HIV-based lentiviral vectors, the resulting
antibodies might be recognized by routine diagnostic
tests originally designed to detect HIV infection. If
such a bseroconversionQ occurs, several approved diag-
nostic methods exist to demonstrate the absence of
viral sequences. The use of vectors derived from non-
primate lentiviruses [159], gammaretroviral vectors, and
spumaviral vectors largely or entirely prevents this
bpsychologicalQ issue.

If sensitization of the host or immune rejection of
engineered cells is to be avoided, one might have to
reexplore the utility of prolonged culture prior to cell
transfusion. If a patient has developed an acquired
immune response to vector particles, alternative retro-
viral vector types may still be applicable.
MOLECULAR THERAPY Vol. 13, No. 6, June 2006
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AVOIDING HORIZONTAL OR VERTICAL TRANSMISSION

The potential generation of replication-competent retro-
viruses (gammaretroviral, lentiviral, or spumaviral) with
novel pseudotypes and unusual cis-elements represents a
major safety concern. The range of potential diseases
induced by such viruses includes tumors, immunodefi-
ciency syndromes, and neurodegenerative disorders
[160,161]. A theoretical advantage of HIV-based vectors
is that those drugs designed to treat infection with the
wild-type virus by targeting viral functions encoded by
gag–pol are expected to also counteract spread of
replication-competent vector recombinants [162,163].
Importantly, many of the clinically approved drugs (such
as the nucleoside analogs and the nonnucleoside RT
inhibitors) also inhibit replication of gammaretroviruses
or spumaviruses.

Problematic scenarios also result from the potential
mobilization of transgene sequences from somatic cells
into the patientTs germ line (vertical transmission) or into
another patient (horizontal transmission). HIV-derived
vectors can be packaged into wild-type viral particles,
which are abundant in patients with an active HIV-
infection. If copackaged into the same particle, recombi-
nation can occur between vector RNA and lentiviral RNA.
In most of these cases defective mutants will arise, which
has led to the suggestion that HIV vectors would be of
particular interest for treating patients with HIV infection
[164]. However, the outcome of such recombination
events is not predictable. Lentiviral vectors that are
closely related to HIV, such as those derived from SIV,
would not escape this problem. In contrast, vectors based
on HFV or MLV are not preferentially incorporated by
HIV particles.

In general, SIN vectors strongly decrease the risk of
mobilization. Lentiviral (and potentially also other retro-
viral) SIN vectors may still generate a small amount of
full-length transcript in transduced cells. Detailed studies
have shown that a cryptic transcriptional activator
resides in the HIV leader region and that its modification
reduces residual aberrant transcriptional initiation of SIN
vectors [153]. Vectors with artificial primer binding sites
that require cotransfection of a recombinant tRNA for
complementation further decrease the potential for
mobilization [165,166]. In addition there are attempts
to replace the RRE with an artificial RNA stem–loop
structure derived from the lambda phage MS2. Rev is
then supplied as an Rev-MS2 fusion protein in the
packaging cells [167].
mRNA DELIVERY AND NONINTEGRATING VECTOR

MUTANTS

Exploiting intermediate steps of the retroviral life cycle,
such as the transfer of mRNA prior to reverse tran-
scription or the presence of episomal nuclear DNA prior
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to integration, greatly enhances the potential utility of
retroviral vectors (Fig. 2, pathways 1 and 2). If only
mRNA is to be transduced, reverse transcription needs to
be inhibited (Table 1) [9]. MLV appears to be a good
choice for this approach as the genomic vector RNA can
be deleted of aberrant reading frames that are typically
contained within the 5V untranslated region [13] and the
inability of the PIC to transduce resting cells is no longer
relevant. Particle-mediated mRNA transfer by retroviral
mutants leads to relatively weak expression of the
encoded proteins and may therefore be of particular
interest for transient and low-level expression of the
transgene cassette (i.e., for delivery of endonucleases;
recombinases; signaling proteins affecting proliferation,
survival, or differentiation; and receptors that modify cell
homing) [9]. Lentiviral or spumaviral vectors contain
small reading frames in their 5V UTR that inhibit cap-
dependent translation of a reading frame of interest. The
use of internal ribosomal entry sites may circumvent this
limitation for transient mRNA transduction. The lenti-
viral property of relatively brapid uncoatingQ [168,169]
may be of additional interest for mRNA delivery.

If reverse transcription is allowed to occur but inte-
gration is blocked, retroviral delivery systems can be
adapted to form episomal circular DNA in target cells
(Fig. 2, Table 1). Such nonintegrating vector mutants
present mainly as so-called 2-LTR circles are formed as
nuclear by-products by nonhomologous DNA repair if
integration fails. Lentiviral vectors are of particular
interest for the design of these episomal vectors, because
of their ability to transduce nondividing cells in which
episomal transgenes may persist over prolonged periods
of time [10,170]. Episomal transgene delivery by lenti-
viral vectors is an emerging field, and studies that address
the underlying mechanisms and utility of this approach
in therapeutic models are under way. Introducing epi-
somal maintenance signals may even lead to persistence
of nonintegrated DNA in cycling cells [171–173]. How-
ever, residual integrase-independent integration activity
needs to be addressed.

SUMMARY

A little more than 20 years after the first construction of
retroviral vector packaging cells and the demonstration
of retroviral gene transfer into somatic stem cells [1,2],
the field has reached a stage of great diversity and
productivity. The three major groups of retroviral vectors
discussed here have important stories to tell, and further
insights will result from detailed studies addressing the
rich resource represented in the numerous additional
members of the large family of retroviruses (Table 2).

Toward the development of the super-retrovirus or
bplentivirusQ vector, we reach the following conclusions:
The various forms of retrovirus vectors are still by far the
most efficient tool for stable transgene insertion and are
1060
also of increasing interest for the delivery of episomal
DNA or mRNA. The best features of MLV vectors are the
simple genome architecture with its clear separation of cis-
acting sequences from the coding sequences, resulting in
paradigmatic biosafety features. This is coupled with a
clean packaging system that is amenable to industrial
upscaling. However, MLV vectors only work well in
proliferating target cells, which may complicate some
applications unless efficient conditions triggering cellular
self-renewal divisions are defined. The best features of
lentiviral vectors include their capacity to transduce
nondividing cells (possibly mediated by sequences in
gag–pol) and the potential stabilization of the genomic
transcript in packaging cells by the Rev/RRE interaction.
One of the most attractive features of spumaviral vectors is
the completion of reverse transcription prior to cell entry,
which reduces target cell dependence in this most critical
step of the retroviral life cycle. Other desired features
related to Env-mediated cell targeting, site-specific inte-
gration, the inclusion of physiologic expression cassettes,
insulation of enhancers, and improved transcriptional
termination need to be derived from nonretroviral sys-
tems. The flexibility of retroviral genomes and particles is
not tremendous. However, diligent work addressing basic
mechanisms of retroviral replication and technical
aspects of vector design will certainly promote the field.
Hence, many of the above components may be combined
in a single hybrid construct or exploited for specialized
vectors designed to treat a disease of interest. Step by step,
these efforts will increase the versatility and biosafety of
this fascinating vector system.
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