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ABSTRACT 

Chromatin is a complex of DNA, RNA, and proteins whose primary 
function is to package genomic DNA into the tight confines of a cell 
nucleus. A fundamental repeating unit of chromatin is the nucleo­
some, an octamer of histone proteins around which 147 base pairs of 
DNA are wound in almost two turns of a left-handed superhelix. 
Chromatin is a dynamic structure that exerts profound influence on 
regulation of gene expression and other cellular functions. These 
chromatin-directed processes are facilitated by optimizing nucleosome 
positions throughout the genome and by remodeling nucleosomes in 
response to various external and internal signals such as environmen­
tal perturbations. Here we discuss the large-scale maps of nucleosome 
positions made available through recent advances in parallel high-
throughput sequencing and microarray technologies. We show that 
these maps reveal common features of nucleosome organization in 
eukaryotic genomes. We also survey the computational models 
designed to predict nucleosome formation scores or energies and 
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demonstrate how these predictions can be used to position  multiple  
nucleosomes on the genome without steric overlap. 

I. INTRODUCTION 

DNA in eukaryotic nuclei is assembled into chromatin – a complex 
combination of DNA, RNA, and proteins that makes up chromosomes. 
The primary function of chromatin is to compact genomic DNA, which 
otherwise would not fit into the cell nucleus. However, since the early 
days of chromatin studies (Kornberg and Thomas, 1974) it has been 
recognized that chromatin’s function goes well beyond DNA compaction; 
in particular, chromatin exerts a profound influence on gene regulation, 
replication, and recombination, and on DNA repair both by blocking 
access to DNA (Boeger et al., 2003) and by juxtaposing sites far apart 
on the linear sequence (Wallrath et al., 1994). 

The building block of chromatin is the nucleosome core particle (Khor­
asanizadeh, 2004), a 147-base pair (bp) long DNA segment wrapped in 
�1.65 superhelical turns around the surface of a histone octamer (Luger 
et al., 1997; Richmond and Davey, 2003) (Fig. 1A). On the first level of 
compaction, DNA is arranged into one-dimensional (1D) quasi-periodic 
nucleosomal arrays, which in turn fold into higher order chromatin fibers 
(Felsenfeld and Groudine, 2003). Chromatin fiber formation is stabilized 
in part by the linker histone H1. Neighboring nucleosomes (which consist 
of the nucleosome core particle and H1) are separated from each other 
by �10–60 bp stretches of linker DNA, which means that �70–90% of 
genomic DNA is wrapped in nucleosomes. The histone octamer is made 
of two copies of four highly conserved histone proteins: H2A, H2B, H3, 
and H4. Histones have unstructured tail domains that protrude from the 
surface of the histone octamer, providing sites for potential interactions 
with other proteins. Histone tails are targets of numerous post­
translational covalent modifications such as acetylation, phosphorylation, 
methylation, ubiquitination, and ADP-ribosylation, and may also influ­
ence how nucleosome arrays fold into higher order chromatin structures 
(Strahl and Allis, 2000; Khorasanizadeh, 2004). 

In this review we focus on the genome-wide predictions of nucleosome 
formation energies and positions obtained by analyzing DNA conforma­
tional properties and high-throughput nucleosome-mapping data. DNA 
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FIG. 1. (A) Crystal structure of the nucleosome core particle (Luger et al., 1997) 
(courtesy of Song Tan, Penn State University). The 147-bp long DNA is wrapped 
around the histone octamer in �1.65 turns of a left-handed superhelix. The histone 
octamer consists of two copies each of histones H2A (yellow), H2B (red), H3 (blue), 
and H4 (green). (B) Bending of nucleosomal DNA is mediated by specific 
dinucleotides located at positions where DNA minor or major groove faces the 
histone octamer (reproduced with permission from Segal et al., 2006). Relative 
frequencies of A/T-rich dinucleotides tend to increase at positions where the minor 
groove faces the surface of the histone octamer, whereas relative frequencies of G/C­
rich dinucleotides tend to increase where the minor groove faces away from and the 
major groove faces toward the histone octamer. (See color plate 1). 

sequences differ greatly in their ability to form nucleosomes – in vitro 
studies show that the range of histone–DNA-binding affinities is at least a 
thousand-fold (Thastrom et al., 1999). Nucleosomal DNA is sharply bent 
to achieve tight wrapping around the histone octamer. This bending 
occurs at every 10–11 bp DNA helical repeat, where the minor groove 
of the DNA faces inward toward the histone octamer, and again at �5 bp  
away, with opposite direction, when the minor groove faces outward 
(Fig. 1B). The bends of each direction are facilitated by specific dinucleo­
tides – up to higher order effects, sequence-specific DNA bending is 
controlled by base stacking energies between neighboring base pairs. 
It is reasonable to assume that in vitro nucleosome positions are deter­

mined purely by intrinsic sequence preferences and by steric exclusion 
between neighboring nucleosomes. In vivo, however, nucleosomes com­
pete with non-histone DNA-binding factors for access to genomic DNA, 
which may result in overriding the intrinsic sequence preferences. 



4 TOLKUNOV AND MOROZOV 

In addition, chromatin-remodeling enzymes play a role that needs to be 
quantified: in one scenario the role of such enzymes is purely catalytic, 
modifying the rate of assembly but not the final disposition of nucleo­
somes on DNA. In the other, ATP-dependent chromatin-remodeling 
enzymes actively reposition nucleosomes to control access to DNA, in 
analogy with motor proteins. The relative importance of intrinsic 
sequence preferences, chromatin-remodeling enzymes, competition 
with other factors, and formation of higher order structures for shaping 
and maintaining in vivo chromatin continues to be debated. 

To address these questions, large-scale maps of nucleosome positions 
have been generated in recent years. Using microarray and massively 
parallel sequencing technologies, nucleosomes have been mapped 
genome-wide in Saccharomyces cerevisiae (both in vivo and in vitro), 
Drosophila melanogaster, Caenorhabditis Elegans, and Homo sapiens. These 
data were used to train bioinformatics models that attempt to predict 
nucleosome occupancy profiles and in particular discriminate between 
nucleosome-enriched and nucleosome-depleted regions using various 
sequence features (e.g. dinucleotide frequencies found in the alignment 
of experimentally mapped nucleosomal sequences (Segal et al., 2006)) as 
input. On the other hand, there are a number of models that do not rely 
on high-throughput data sets – rather, they employ a physics-based 
description of the nucleosome core particle to predict sequence-
dependent elastic energies of bending nucleosomal DNA into a super­
helix. The elastic energy is represented as a quadratic potential, using the 
empirical parameters obtained from DNA structural data, measurements 
of DNA mobility on a gel, and so on. The resulting energy profile is then 
used to predict nucleosome occupancies and positions, and compare 
them with experimental data. 

In this review we focus on high-throughput nucleosome-positioning 
data sets and on the computational models created to explain them. The 
scope of this review does not allow us to discuss smaller scale nucleosome­
positioning studies that had existed well before the first microarray-based 
nucleosome map was published in 2005. Although we have tried to 
review all the major data sets published between 2005 and 2009, rapid 
progress in parallel sequencing technology makes it certain that many 
more nucleosome-positioning maps will be available in the near future. 
The current data sets, however, have already been invaluable for under­
standing major features of nucleosome organization in eukaryotic 
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genomes. They have also provided insight into how chromatin is shaped 
by genomic sequence features that dictate nucleosome positioning 
in vitro. In the modeling part of the review we focus on bioinformatics 
models and on physical models that compute sequence-dependent free 
energies of nucleosome formation. 
This review is organized as follows: Section II.A covers nucleosome­

positioning data and describes select observations drawn from it, focusing 
especially on stereotypical features of nucleosome organization in genic 
and intergenic regions. Section II.B gives a brief overview of the struc­
tural studies of the nucleosome core particle. Section III.A describes 
nucleosome models based on elastic-energy calculations. Section III.B 
summarizes the currently available bioinformatics models for chromatin 
structure prediction. Section III.C explains how statistical physics of 1D 
liquids can be applied to positioning multiple nucleosomes simulta­
neously without steric overlap. Section III.D describes a hidden Markov 
model (HMM) approach for inferring nucleosome occupancy from 
log-intensity microarray profiles. Finally, Section IV contains a brief 
summary of our main observations. 

II. EXPERIMENTAL STUDIES OF CHROMATIN STRUCTURE 

A. Genome-Wide Mapping of Nucleosome Positions 

1. Nucleosome-positioning Studies in S. cerevisiae 

1.1. Microarray studies Given the current wealth of technologies for 
genome-wide mapping of nucleosome positions, it is amazing to note that 
these technologies date only from 2005. Prior to that, microarray resolu­
tion was simply too low (�1kbp) to detect single nucleosome positions. 
Despite this limitation, early work showed a general depletion of nucleo­
somes from promoter regions (Bernstein et al., 2004; Lee et al., 2004). 
This important observation was refined in a pioneering 2005 study by 
Yuan et al. (2005) that employed a microarray to map nucleosome posi­
tions across 482 kb of the budding yeast genome, spanning almost the 
entire chromosome III and 223 additional regulatory regions. The 
microarray consisted of 50 bp oligonucleotide probes tiled every 20 bp 
across the genomic regions of interest. Nucleosomal DNA was digested 
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with micrococcal nuclease (MNase; an endo–exonuclease that preferen­
tially digests linker DNA) and labeled with green (Cy3) fluorescent dye. 
The sample was then mixed with total genomic DNA labeled with red 
(Cy5) fluorescent dye and hybridized to the microarray. The output of 
the experiment consisted of the log2 ratio of hybridization values for 
nucleosomal versus genomic DNA at each probe position across the 
genomic region of interest (see Fig. 2 for an overview of the method). 

The log-intensity profiles served as input to an HMM (Section III.D), 
which was used to predict the probability of starting a nucleosome at each 
base pair and the corresponding nucleosome occupancies. (Nucleosome 
occupancy is defined as the probability that a given base pair is covered by 
any nucleosome and is therefore computed as the sum of the probability 
peaks for all nucleosomes that are close enough to overlap the base pair 
in question.) The authors confirmed the earlier low-resolution reports 
that intergenic DNA in yeast was nucleosome-depleted relative to coding 
DNA, and found nucleosome-depleted regions (NDRs) of �150 bp in 
length immediately upstream of many annotated coding sequences 
(Fig. 3). Although the microarray resolution was insufficient for mapping 
individual nucleosomes with a bp-level precision, the authors were able to 
carry out a limited study of the sequence determinants of nucleosome 
positioning, and found that the nucleosome-free regions were enriched 
in poly-A and poly-T motifs. These motifs tend to occur in promoters, 
suggesting a causal role of poly(dA-dT) tracts in establishing NDRs. 

Rapid progress in microarray technology allowed the first nucleosome 
map of the entire S. cerevisiae genome to be completed in 2007 (Lee et al., 
2007). The Lee et al. study employed high-density Affymetrix tiling 
microarrays with 25-bp probes spaced every 4 bp across the yeast gen­
ome. Similarly to the earlier Yuan et al. (2005) study, genomic chromatin 
was cross-linked with formaldehyde and treated with MNase, resulting in 
preferential digestion of nucleosome-free linker sequences. Three inde­
pendent samples of nucleosomal and total genomic DNA were hybridized 
to the microarray. The resulting log2-intensity traces were processed by 
the HMM to yield genome-wide nucleosome probabilities and occupan­
cies. The authors used the Viterbi algorithm (Durbin et al., 1998) to  
identify nucleosome positions in the “top” (most likely) nucleosome 
configuration. Using a single configuration rather than a sum over all 
possible configurations allows placing nucleosomes uniquely but discards 
probabilistic information about alternative nucleosome positions 
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FIG. 2. Schematic representation of high-throughput nucleosome-positioning 
experiments. Chromatin is subjected to MNase digestion, the resulting DNA is purified, 
and mononucleosomal DNA is isolated on a gel. Optionally, histones are cross-linked on 
DNAprior to theMNase digestion and immunoprecipitated, after which the cross-linking 
is reversed. In a chip-based experiment (left panel),mononucleosomal DNA is hybridized 
to a microarray together with a control sample prepared by digesting genomic 
nucleosome-free DNA with MNase. The log ratio of nucleosomal DNA intensity to 
genomic DNA intensity is plotted as a function of each probe’s starting position on the 
genome. Higher-than-average log-intensity values correspond to nucleosome-covered 
regions, while lower-than-average log-intensity values correspond to nucleosome-
depleted regions. Microarray probes are tiled across the entire genome or genomic 
regions of interest. In a high-throughput parallel sequencing experiment, 
mononucleosomal (and in some cases control) DNA is sequenced directly (right panel). 
High-throughput sequencing yields large collections of reads typically shorter than the 
DNA lengths in the input sample. The reads are mapped onto both strands of the 
reference genome (often with several mismatches allowed) and combined into a single 
sequence-readprofile by assuming that eachnucleosome core particle has a fixed length of 
147bp.With this assumption, sequence reads from the reverse strand are remapped onto 
the forward strand by subtracting 147bp from their start coordinates. The resulting 
sequence-read profile contains information about the number of reads assigned to every 
genomic position. (See color plate 2). 
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FIG. 3. Nucleosome occupancy in the vicinity of transcription start sites (TSSs) and 
transcription termination sites (TTSs) in S. cerevisiae. The unnormalized occupancy is 
defined as the number of nucleosomes covering a given base pair. Solid lines: in vivo 
occupancy (YPD medium, average over four replicates without cross-linking), dashed 
lines: in vitro occupancy (average over two replicates). In vivo and in vitro nucleosome 
positions weremapped by Kaplan et al. using high-throughput sequencing (Kaplan et al., 
2009). Transcript coordinates are from Nagalakshmi et al. (2008). The genome-wide 
average of the nucleosome occupancy is subtracted from the plots. 
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contained in the full HMM approach (Section III.D). The authors 
confirmed existence of NDRs on a genome-wide scale and observed 
that nucleosome occupancy profiles correlated with transcript abundance 
and transcription rate. In addition, functionally related genes were clus­
tered on the basis of nucleosome occupancy patterns observed at their 
promoters. 

1.2. High-throughput sequencing studies By 2007 massively parallel 
sequencing technologies had matured to a point where it became possible 
to sequence hundreds of thousands of nucleosomal DNA molecules 
directly instead of hybridizing them to a microarray (see Fig. 2 for an 
overview of the method). The necessary technology, first developed by 
454 Life Sciences (http://www.454.com), was capable of sequencing 
�100 bp molecules, comparable to the 147-bp length of the nucleosome 
core particle. Thus it was natural to apply high-throughput sequencing to 
nucleosomal DNA. The first such study, carried out by Frank Pugh and 

http://www.454.com
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coworkers, focused on S. cerevisiae nucleosomes with the histone variant 
H2A.Z (Albert et al., 2007). H2A.Z is conserved by evolution and is 
believed to be involved in transcriptional regulation, antisilencing, silen­
cing, and genome stability (Draker and Cheung, 2009). 
The Albert et al. study mapped 322,000 H2A.Z nucleosomes that had 

been fixed on DNA by formaldehyde cross-linking, immunoprecipitated, 
MNase-digested, and gel-purified. The most important difference from 
the microarray experiments was that instead of hybridizing nucleosomal 
DNA samples to the array (after further fragmenting the �150-bp 
sequences with nuclease into �50-bp pieces to make hybridization with 
relatively short probes more efficient), DNA molecules were sequenced 
directly and mapped onto the reference genome, providing a starting 
coordinate for each sequence read. This procedure resulted in a 
sequence read profile in which a non-negative number of reads was 
assigned to each genomic base pair (Fig. 2). Unlike microarray hybridiza­
tion approaches, sequence read profiles can be constructed separately for 
both strands, and either compared with each other (Fig. 4) or combined. 
The authors had to assume that the nucleosome position was given 

precisely by the coordinates of the sequence read, neglecting potential 
errors caused by imperfect MNase digestion. They also had to extend the 
mapped sequence reads to cover the 147-bp length of the nucleosome 
core particle (This procedure is common to all short-read sequencing 
studies.) Furthermore, because only the H2A.Z-containing nucleosomes 
were detected, the question of bulk nucleosome positioning remained 
open. 
This question was addressed in a 2008 study by the same group 

(Mavrich et al., 2008a), which used immunoprecipitation with antibodies 
against tagged histones H3 and H4 to map 1,206,057 bulk nucleosomes 
from the yeast genome. The use of the 454 sequencing and the construc­
tion of the sequence read profile were the same as in the earlier H2A.Z 
study. These sequencing studies helped establish a “canonical” picture of 
nucleosome organization in which well-positioned –1 and þ1 nucleo­
somes bracket an NDR upstream of S. cerevisiae genes (Fig. 3). 
Mavrich et al. argued that positioning of bulk nucleosomes is largely a 

consequence of steric exclusion: þ1 and to a certain extent –1 nucleo­
somes form barriers against which the other nucleosomes are “phased.” 
In this scenario, sequence specificity would be important only for a small 
fraction of positioned nucleosomes. This picture is consistent with the 
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FIG. 4. Correlation function between the sequence reads mapped onto the 
Watson and Crick strands, respectively. High-throughput sequencing data is for 
in vivo nucleosomes in S. cerevisiae (Mavrich et al., 2008a). The observed maximum 
at zero lag corresponds to sequence reads on the opposite strands separated by 147 bp, 
thus demarcating the same nucleosome (see inset). Maxima at non-zero lag show 
relative positions of neighboring nucleosomes. The correlation function was 
smoothed using a 50 bp window average. 

observation that nucleosomal dinucleotide patterns are more pro­
nounced in the –1 and þ1 nucleosomes than in the bulk ones (Mavrich 
et al., 2008a). The observed patterns are non-periodic and consist of a 
gradient of the TA/AA/TT dinucleotide counts at positions covered by –1 
and þ1 nucleosomes. The gradient is absent in bulk nucleosomes and its 
direction corresponds to a decrease in the TA/AA/TT counts with dis­
tance to the NDR (i.e. the counts increase in the 30 direction for the –1 
nucleosome and in the 50 direction for the þ1 nucleosome). 

In addition to the 50 NDR, a novel 30 NDR (Fig. 3) that coincides with 
the transcription termination site (TTS) was discovered by the authors 
and it was argued that it may be implicated in transcription termination, 
antisense initiation, and gene looping. They concluded that the terminal 
nucleosomes (30 nucleosomes immediately upstream of the TTS) may be 
partially positioned by sequence, including nearby cleavage and polyade­
nylation sites (AATAAA and related sequences). 
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Another in vivo map of nucleosome positions in S. cerevisiae was pub­
lished by Eran Segal and coworkers in 2008 (Field et al., 2008). The 
authors used the 454 parallel pyrosequencing technology to sequence 
503,264 yeast nucleosomes. The nucleosomes were mapped to the yeast 
genome by BLAST with a 95% sequence identity cutoff. The authors also 
required that sequence reads map to a unique location, have a length 
between 127 and 177 bp, and do not overlap with the ribosomal RNA 
locus. The resulting 378,686 nucleosomes were retained for further 
analysis. The 454 pyrosequencing technology used in this study was 
capable of creating �200-bp reads (longer than the �100-bp reads 
obtained by Frank Pugh and colleagues (Albert et al., 2007; Mavrich 
et al., 2008a)) and thus mononucleosome fragments were sequenced in 
full. However, even though both ends of the read mononucleosome were 
known, a wide distribution of fragment lengths made it impossible to 
predict individual nucleosome positions with a bp-level precision. 
Furthermore, there was no immunoprecipitation step, and the sequence 
read coverage was approximately a quarter of the 454 data set created by 
Frank Pugh and colleagues (Mavrich et al., 2008a). 
The main focus of the Field et al. paper is on the nucleosome-

positioning signals, which the authors captured with a model based on: 
a) relative dinucleotide frequencies at 127 central positions in the align­
ment of all sequence reads around their center (Segal et al., 2006); b) 
ratios of 5-mer frequencies in the linkers (defined as contiguous regions 
of 50–500 bp not covered by any nucleosome) to those in the nucleosome-
bound sequences. The model is described in more detail in Section 
III.B.1; here we simply note that AAAAA/TTTTT was found to be the 
5-mer with the strongest enrichment in linkers. The authors attribute a 
significant nucleosome-positioning role to this and other A/T-rich 
“boundary zone” elements that tend to be underrepresented in nucleo­
somes but overrepresented immediately outside of the nucleosome cores 
in the linker regions. 
The authors also argue that nucleosome depletion over A/T-rich 

“boundary elements” is unlikely to be an MNase artifact, on the basis of 
the low rank-order correlation observed between word frequencies 
across MNase cut sites and relative word frequencies in linkers versus 
nucleosomes. In particular, AAAAAA is ranked 1782nd as an MNase 
cleavage site and 1st for enrichment in linker regions. The authors also 
find that their data yields an average nucleosome occupancy profile with 



12 TOLKUNOV AND MOROZOV 

respect to the transcription start site (TSS) that is in a broad agreement 
with the earlier microarray study by Lee et al. (2007): for most genes, 
there is a prominent NDR flanked by oscillations in the nucleosome 
occupancy that are usually interpreted as being a consequence of steric 
exclusion. 

Except for several studies focused on changes in chromatin structure 
with respect to environmental or genetic perturbations (cf. Section 
II.A.1.3), prior to 2009 all nucleosome maps had come from in vivo 
chromatin of yeast cells grown in rich YPD medium. However, in 2009 
Eran Segal and coworkers employed the short-read Solexa/Illumina 
sequencing (http://www.illumina.com/sequencing) to compare the 
in vitro and in vivo nucleosome positions and to study how chromatin 
structure changes under different growth conditions (Kaplan et al., 
2009). The in vitro map is especially important because nucleosome loca­
tions should be dictated purely by steric exclusion and intrinsic sequence 
preferences. For in vivo maps, yeast cells were grown in YPD medium as 
well as YP media supplemented with 2.0% galactose or 2.8% ethanol 
instead of glucose. For each medium, nucleosome DNA samples were 
prepared both with and without formaldehyde cross-linking and 
sequenced by synthesis using the Solexa/Illumina technique. For the 
in vitro map, yeast genomic DNA was purified and mixed with histone 
octamers from chicken erythrocytes. Nucleosomes were reconstituted by 
salt gradient dialysis (Thastrom et al., 2004) at a lower histone octamer 
concentration than that observed in vivo (40 mg histone octamer per 
100 mg DNA). The lower histone concentration was necessary as recon­
stitutions at higher in vivo stoichiometry resulted in insoluble chromatin, 
which was inaccessible to MNase. 

Comparison between nucleosome positions from in vitro and in vivo 
experiments revealed striking overall similarity, leading the authors to 
conclude that: a) in vitro and in vivo nucleosome maps are highly similar; 
and b) chromatin structure is largely invariant with respect to different 
growth conditions. The authors also concluded that nucleosome posi­
tions are largely encoded by intrinsic DNA sequence signals, because a 
purely sequence-dependent model fit on the in vitro data was able to 
predict in vivo nucleosome locations with reasonably high accuracy. The 
model is essentially identical to the earlier one from Field et al. (2008), 
and is described in more detail in Section III.B.1. Similarly to this pre­
vious study, the authors found using both in vitro and in vivo maps that 

http://www.illumina.com/sequencing
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5-mers with the lowest average nucleosome occupancy were AAAAA and 
ATATA. In addition to the nucleosome-excluding and nucleosome-
favoring distributions of 5-mers, a 10 to 11-bp periodic dinucleotide 
signal caused by DNA bending (as discussed in the Section I), with AA/ 
AT/TA/TT frequencies out of phase with CC/CG/GC/GG frequencies 
(Fig. 5), was also described by the authors. These periodic oscillations 
have been observed in both in vitro and in vivo nucleosome-positioning 
sequences (NPSs) (Albert et al., 2007; Field et al., 2008; Mavrich et al., 
2008a; Kaplan et al., 2009). 
Finally, a nucleosome-depleted region is present in vitro at both the 

TSS and the translation end (which was chosen because the authors 
believe TTSs to be poorly annotated in yeast). Interestingly, though 
there is little difference between in vivo and in vitro nucleosome depletion 
at 30 ends of genes, the 50 NDR is much shallower for in vitro chromatin 
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FIG. 5. Periodic dinucleotide frequencies observed in a high-throughput data set 
of nucleosome-positioning sequences in yeast (Kaplan et al., 2009). The 147-bp long 
in vitro nucleosome-positioning sequences defined by five or more sequence reads 
were aligned and the relative frequencies of AA/AT/TA/TT and CC/CG/GC/GG 
dinucleotides were computed at each position in the nucleosomal site. The 
frequencies were divided by genome-wide propensities for each group of 
dinucleotides. 
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and there are no characteristic oscillations in the flanking regions (Fig. 3). 
If these oscillations were indeed induced by steric exclusion, their 
absence from in vitro chromatin indicates that nucleosomes are not posi­
tioned as precisely, and suggests that intrinsic sequence signals are not 
the only contribution to the in vivo anchoring of nucleosomal arrays. 

Another study that focused on mapping nucleosomes assembled in vitro 
on genomic DNA was carried out by Kevin Struhl and coworkers (Zhang 
et al., 2009). The authors purified both S. cerevisiae and Escherichia coli 
genomic DNA and assembled it into chromatin either by salt dialysis with 
D. melanogaster histones or by using an in vitro system containing recombi­
nant D. melanogaster proteins NAP-1 (nucleosome assembly protein 1) and 
ACF, an ATP-dependent chromatin assembly factor known to produce 
arrays of regularly spaced nucleosomes (Ito et al., 1997). In vitro chromatin 
was subsequently digested with MNase to mononucleosome core particles, 
and the resulting DNA was purified and sequenced on a Solexa/Illumina 
Genome Analyzer, yielding 1–3 million uniquely mapped sequence reads 
for each input sample. As a control, the authors sonicated a mixture of 
yeast and E. coli DNA, followed by isolating and sequencing fragments of 
mononucleosomal size. 

The authors discovered that nucleosomes strongly prefer yeast DNA to 
E. coli DNA, indicating that yeast genome evolved to facilitate nucleosome 
formation. As in the Kaplan et al. (2009) study, they found that many 
regions aroundTSSs andTTSs intrinsically disfavor nucleosome formation 
and that nucleosomes positioned in vitro by salt dialysis exhibit prominent 
periodic distributions of AA/TT/ATdinucleotides. In contrast, nucleosomes 
positioned by ACF had fewer NDRs and significantly less prominent 
periodicity of dinucleotide frequencies, showing that ACF is capable of 
overriding intrinsic sequence specificities of nucleosome core particles. 

The main conclusion reached by Zhang et al. (2009) is that intrinsic 
histone–DNA interactions are not a major determinant of in vivo nucleo­
some positions. This is in contrast to the Kaplan et al. (2009) study, which 
argues that in vivo and in vitro nucleosome occupancy profiles are highly 
similar and that the latter can be explained with a model based purely on 
DNA sequence features. Zhang et al. focus instead on the fact that the 
in vivo pattern of statistical nucleosome positioning around 50 NDRs is not 
observed in vitro and thus cannot be determined by intrinsic sequence 
preferences alone (Fig. 3). They argue that the strong positioning of the 
þ1 nucleosome is linked to the process of transcriptional initiation, and 
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propose that, although in vitro 50 NDRs may facilitate assembly of the 
pre-initiation complex (PIC), an early step in the transcription process 
(probably preceding extensive elongation) is a primary determinant of 
the þ1 nucleosome positioning. They hypothesize that some component 
of the transcriptional initiation machinery interacts with a nucleosome-
remodeling complex and/or histones to position the þ1 nucleosome. 
Once in place, the þ1 nucleosome positions the þ2, þ3,… nucleosomes 
by steric exclusion. This view is supported by the observation that in vivo 
þ2, þ3,… nucleosomes are much better positioned than their –2, –3,… 
counterparts, even though the intrinsic positioning effect of the NDR 
should be the same on both sides. 

1.3. Physiological and genetic perturbations of S. cerevisiae 
chromatin There are several studies of nucleosome positions in yeast 
whose main focus is not on intrinsic sequence preferences nor on the 
nucleosome organization with respect to various genomic features, but 
rather on how chromatin responds either to environmental perturba­
tions or to deleting genes implicated in chromatin remodeling and 
maintenance. 
The first high-throughput study of this kind was carried out in 2007 by 

Toshio Tsukiyama and coworkers (Whitehouse et al., 2007). The authors 
investigated the role of the ATP-dependent chromatin-remodeling com­
plex Isw2 in controlling chromatin structure across the yeast genome. 
They sought to discover Isw2 targets genome-wide by identifying differ­
ences in nucleosome positions between wild-type and D isw2 mutant 
strains. To this end, chromatin was cross-linked by formaldehyde, 
digested with MNase and exonuclease III, and purified to mononucleo­
somes using gel electrophoresis. Mononucleosomal DNA from both 
strains was separately hybridized to high-resolution Affymetrix tiling 
microarrays with �5bp probe spacing. Based on the difference in hybri­
dization intensity between wild-type and mutant strains, the authors 
identified >1,000 regions, typically �600 bp in length, where chromatin 
structure was disrupted in the D isw2 mutant (these changes affected 
�12% of yeast promoters). The authors also used chromatin immuno­
precipitation (ChIP) to determine whether Isw2 was present at the loci 
whose nucleosome positions changed between strains. 
The authors concluded that Isw2 functions by moving nucleosomes 

toward intergenic regions, where many important regulatory sequences 
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are located. By doing so, it overrides intrinsic sequence-based 
nucleosome-positioning signals, as evidenced by the fact that poly(dA­
dT) tracts are located within nucleosome þ1 at many Isw2 targets 
(defined as promoters that exhibited change in the D isw2 deletion strain). 
Loss of Isw2 would thus allow nucleosomes to relocate to their inherently 
preferred sites, lowering the total free energy of the system. The ability of 
Isw2 and other chromatin-remodeling enzymes to actively reposition 
nucleosomes demonstrates that intrinsic nucleosome-positioning prefer­
ences may be disrupted in living cells. 

The Whitehouse et al. (2007) Isw2 study was followed in 2009 by a 
study by Hartley andMadhani (2009), which focused on how nucleosome 
positioning was affected by degrading proteins believed to be essential for 
maintaining chromatin structure: Myb family proteins Abf1 and Reb1, 
and the catalytic subunit of the RSC-remodeling complex, Sth1. As Reb1, 
Abf1, and Sth1 are all essential proteins, the authors had to use condi­
tional alleles rather than gene deletion strains. Specifically, they used the 
temperature-sensitive degron system to engineer yeast strains in which 
protein degradation could be controlled via the N-end rule pathway 
(Dohmen and Varshavsky, 2005). Nucleosomal DNA samples were col­
lected from wild-type and “degron” strains and interrogated using a low-
resolution microarray designed to cover yeast chromosome III at 20 bp 
tiling steps (Yuan et al., 2005). The authors found that though the effect 
of Reb1 and Abf1 depletion was minimal, affecting �10% of chromosome 
III promoters, depleting Sth1 affected the majority (�55%) of promoters. 
The affected genes displayed shrinking of the NDR accompanied by the 
movement of flanking nucleosomes. Although NDR was reduced in 
width, it was not eliminated, and the authors hypothesized that it is 
maintained by intrinsic sequence preferences. In support of this hypoth­
esis, nucleosome positions were better predicted by the intrinsic “nucleo­
some positioning signature” (a first-generation nucleosome-positioning 
model by Ioshikes et al. (2006), cf. Section III.B.2) in the absence of Sth1. 

It is also of interest to know how chromatin structure in yeast cells 
responds to physiological perturbations such as heat shock that are 
usually accompanied by massive transcriptional changes. The first study 
of this kind was carried out in 2008 by Vishwanath R. Iyer and colleagues 
(Shivaswamy et al., 2008). The authors subjected yeast cells grown in a 
rich medium to a 15-min period of heat shock. At the end of the 15-min 
period, control and heat-shocked cells were treated with formaldehyde. 
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Mononucleosomal DNA was isolated by means of a standard protocol that 
involves MNase digestions and gel purification, and sequenced using 
Solexa/Illumina short-read technology. In this way, the authors gener­
ated a differential map of nucleosome positions, which consisted of 
514,803 and 1,036,704 uniquely mapped reads for the normal and 
heat-shock growth conditions, respectively. 
As in the work by Frank Pugh and colleagues, which was published at 

approximately the same time (Mavrich et al., 2008a), the authors find 
both 50 and 30 NDRs, with a well-positioned nucleosome at the 30 end of 
the coding region. Thus, yeast genes are demarcated by NDRs at each 
end of the transcribed region. Nucleosomes located next to the NDRs are 
well positioned, at least in part because NDRs act as barriers against 
which the genic nucleosomes are “phased.” 
The authors also addressed the question of whether positioning of 

terminal or bulk nucleosomes over transcribed regions could be attrib­
uted to intrinsic sequence signals. They discovered that the distribution 
of AA/TT dinucleotide frequencies is 10–11 bp periodic in þ1 nucleo­
somes. Furthermore, this periodic profile is also observed in þ2, þ3,… 
nucleosomes, showing that their positioning may be maintained through 
sequence signals in addition to steric constraints. 
Surprisingly, the majority of nucleosomes did not change positions 

upon transcriptional perturbation caused by heat shock, either in pro­
moters or in the coding regions. At some promoters, remodeling events 
were observed that could be classified into eviction, appearance, or repo­
sitioning of one or two nucleosomes. However, there were no simple 
rules that controlled nucleosome remodeling at induced and repressed 
promoters. Thus, although gene activation was associated on average 
with nucleosome eviction and gene repression with nucleosome appear­
ance, there were cases in which strongly positioned nucleosomes 
appeared at induced promoters. Furthermore, many nucleosome-
remodeling events occurred at promoters that did not experience any 
significant transcriptional change. 
Many of these findings were corroborated in a 2009 study in which 

global nucleosome positioning was examined before and after global 
transcriptional restructuring caused by adding glucose to yeast cells 
grown in glycerol, a poor carbon source (Zawadzki et al., 2009). This 
nutrient upshift creates significant changes in the gene expression of 
more than half of all yeast genes (Zaman et al., 2009). The authors isolated 
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mononucleosomal DNA using standard MNase digestion methods at 
three time points: immediately before, 20 min after, and 60 min after 
adding glucose to yeast cells. Nucleosomal and total genomic DNA were 
hybridized to Affymetrix microarrays tiled each 4 bp across the yeast 
genome. The authors also developed an HMM approach to processing 
log-intensity profiles (cf. Section III.D), which they used to predict nucleo­
some occupancies across the yeast genome. 

For most genes changes in expression were not associated with nucleo­
some addition, removal, or repositioning within their promoters, 
although for genes containing TATA boxes the correlation between 
change in gene expression and change in nucleosome occupancy was 
somewhat higher (0.48 for TATA genes vs. 0.34 for all genes). The 
promoters of only 10% of all genes gained or lost nucleosomes despite 
the fact that >50% of all genes exhibited a change in mRNA levels of 
twofold or more (Zaman et al., 2009). Thus it appears that in vivo inter­
actions of transcription factor (TF)-binding sites with their cognate factors 
are largely dictated by pre-positioned nucleosomes and that regulation of 
gene expression through these sites is mediated by changes in local TF 
concentration rather than nucleosome addition or removal. The unal­
tered promoter nucleosome structure for most glucose-regulated genes 
implies the existence of constitutively accessible binding sites for the 
factors that control expression of these genes. This is consistent with the 
notion of “pre-set” chromatin, which plays a largely instructive role in 
regulating gene expression (Morse, 2007). 

2. Nucleosome-positioning Studies in Higher Eukaryotes 

2.1. Caenorhabditis elegans High-throughput sequencing and 
microarray methods pioneered with S. cerevisiae were soon applied to 
other eukaryotes. In two recent papers Andrew Z. Fire and coworkers 
mapped nucleosome positions in another model organism C. elegans 
(Johnson et al., 2006; Valouev et al., 2008). The first of these studies 
presented a collection of 284,091 nucleosome cores sequenced with the 
454 pyrosequencing technology. The nucleosomes came from a mixed-
stage population of C. elegans. As in yeast, nucleosome sequence reads 
were mapped onto the reference genome, with �60% of all reads 
assigned unambiguously to genomic loci. The resulting map had the 
coverage of one nucleosome per 300–400 bp of genomic DNA. Analysis 
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of dinucleotide distributions revealed a pronounced periodicity in AA 
and TT frequencies that extended across the nucleosome core. 
Another observation concerned the effect of the MNase sequence 

specificity on nucleosome positioning: in agreement with the earlier 
study of MNase sequence preferences (Wingert and Von Hippel, 1968), 
the authors observed preferential cleavage at A/T-rich target sites, with 
G/C residues considerably underrepresented at both positions flanking 
the cleavage site. However, there was no corresponding A/T enrichment 
around position 147 (where the end of the nucleosome core particle 
would have been if it were mapped with a bp-level precision). The 
authors interpret this lack of symmetry as evidence that MNase sequence 
specificity influences the choice of cleavage sites but does not lead to 
nucleosome repositioning. Indeed, if nucleosomes were actively reposi­
tioned by interactions with MNase, both ends of the core particle would 
have been marked by A/T-rich flanking regions. As mentioned above, 
symmetric flanking regions were not observed in the data, even though 
this may be simply due to inaccuracies in locating the other end of the 
nucleosome. 
This study was extended in 2008 by the same group using a massively 

parallel technique of sequencing by oligonucleotide ligation and detec­
tion (SOLiD by Applied Biosystems: solid.appliedbiosystems.com) 
(Valouev et al., 2008). Parallel sequencing yielded more than 44 million 
uniquely mapped nucleosome cores from a mixed-stage population of 
C. elegans. SOLiD sequencing platform produces 50-bp reads – shorter 
than the 147-bp length of the nucleosome core particle. As a result (and 
similarly to other sequencing studies), the position of the nucleosome 
dyad had to be inferred by adding 73 bp to the starting base pair for reads 
mapped onto the Watson strand and subtracting 73 bp from the starting 
base pair for reads mapped onto the Crick strand. 
The authors found that the absolute nucleosome positions varied 

substantially, possibly reflecting a lack of universal sequence-dictated 
positioning across C. elegans cell types. Nonetheless, nucleosomes tended 
to be arranged in repeated arraylike structures, presumably due to steric 
constraints. Sequence analysis of nucleosome cores showed an oscillating 
�10 bp periodicity for AA/TT with an out-of-phase �10bp periodicity for 
GC. Longer words (up to 6-mers) were also distributed non-randomly, 
with a pronounced enrichment of A/T nucleotides around sequence read 
starts, which the authors again ascribed to MNase sequence specificity. 
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2.2. Drosophila melanogaster In 2008 Frank Pugh and co-authors 
used the 454 pyrosequencing to map 652,738 H2A.Z-containing nucleo­
somes to 207,025 locations in the D. melanogaster genome (Mavrich et al., 
2008b). Similarly to the yeast studies from the same group (Albert et al., 
2007; Mavrich et al., 2008a), Drosophila embryos were treated with for­
maldehyde, H2A.Z-containing nucleosome core particles were immuno­
purified, and nucleosomal DNA was sequenced. Because Drosophila 
embryos consist of a wide variety of cell types, the nucleosome map is 
an average over cells with potentially very different gene expression 
profiles. Nonetheless, the nucleosome organization showed generic fea­
tures that transcended the differences in cell types. The most prominent 
of these was the nucleosome-depleted region upstream of the TSS. There 
were two essential differences from the earlier study of H2A.Z nucleo­
somes in yeast (Albert et al., 2007): the absence of a well-positioned –1 
nucleosome and longer linker lengths in the fly, manifested as larger 
distances between consecutive nucleosomal peaks downstream of the þ1 
nucleosome. In addition, the genic (þ1, þ2,…) array of nucleosomal 
peaks started �75bp further downstream from the equivalent position 
in S. cerevisiae, with potentially important implications in how the TSS is 
presented to RNA polymerase II (Pol II): in S. cerevisiae the TSS resides 
within the nucleosome border, whereas in D. melanogaster the TSS tends 
to be nucleosome-free. This is consistent with the hypothesis that gene 
regulation occurs predominantly at the level of transcript initiation in 
S. cerevisiae, whereas in D. melanogaster transcript elongation may play a 
more important role. 

As in yeast, the 30 ends of fly genes tend to be nucleosome-depleted. 
H2A.Z NPSs exhibit periodic, out-of-phase distributions of A/T-rich and 
G/C-rich dinucleotides. Finally, there is a correlation between AA/TT and 
CC/GG content and nucleosome positioning: nucleosome-covered posi­
tions tend to be G/C-rich, whereas 50 and 30 NDRs are enriched to some 
extent in A/T nucleotides, including poly(dA-dT) TTSs at the 30 end of 
Drosophila genes. The same study produced a lower resolution map of 
bulk (both H2A- and H2A.Z-containing) nucleosomes by digesting chro­
matin with MNase and hybridizing DNA samples to Affymetrix Drosophila 
tiling arrays with an average probe spacing of 36 bp (there was no immu­
noprecipitation step in this assay). The same nucleosome-positioning pat­
tern was found with respect to the TSS, with the exception of a distinct –1 
peak, which was not present in the H2A.Z map. Thus in both yeast and fly 
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–1 nucleosomes are well-positioned but in fly they tend to be H2A.Z-free, 
resulting in the absence of a prominent –1 peak in H2A.Z maps. 

2.3. Homo sapiens The first study of nucleosome positioning on 
human genome was carried out in 2007 using high-resolution micro-
arrays. Using MNase digestion, Ozsolak et al. (2007) isolated mono-
nucleosomal DNA from five types of human cells: primary fibroblasts 
(IMR90), primary melanocytes (PM), mammary epithelial cells (MEC), 
melanoma (A375, MALME), and breast cancer cell lines (T47D, 
MCF7). Nucleosome-free genomic DNA from the same cell line 
(digested to a similar size distribution) was used as control. Nucleoso­
mal and genomic DNA samples were labeled by different fluorescent 
dyes (Cy5 and Cy3, respectively) and hybridized to microarrays con­
taining 50-bp probes. The probes were tiled in 10-bp steps and 
spanned 1.5-kb repeat-masked promoter regions of 3,692 genes, 
including 1,346 genes in the Affymetrix Human Cancer G110 Array 
and 2,346 randomly selected genes. 
Because the log-intensity profiles came in 1.5-kb fragments, the 

HMM algorithm could not be used for predicting nucleosome positions 
and occupancies (HMMs require contiguous input data (Durbin et al., 
1998)). The authors chose to use wavelet-based de-noising instead, 
followed by an edge-detection algorithm. Because log-intensity micro-
array profiles measure nucleosome occupancies, application of edge­
detection techniques amounts to predicting nucleosome positions from 
occupancy data. 
In order to examine whether NDRs existed in human cells, Ozsolak 

et al. compared nucleosome organization in expressed  and unexpressed  
promoters from A375, IMR90, and MALME cell lines. On average, 
NDRs of expressed genes were much more pronounced. Some of the 
unexpressed genes also had NDRs, which the authors attributed to the 
fact that chromatin structure was pre-modified, making those genes 
poised for rapid expression. This hypothesis was supported by an 
observation that NDRs of unexpressed genes were likely to have 
transcription PICs pre-assembled at their promoters. Conversely, 
unexpressed genes without PICs had no nucleosome depletion around 
the TSS. 
Finally, the authors looked for short sequence motifs preferentially 

enriched or depleted in nucleosome-covered regions. They found that 
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TATAAA, TATATA, GCGCGC, and AAAAAA motifs were enriched in 
nucleosome linkers, whereas TTCGA and CTGCTG motifs were 
enriched in nucleosome cores. The authors argued that since none of 
the linker-enriched motifs corresponded to the previously published 
MNase recognition sequences (Horz and Altenburger, 1981), MNase 
sequence specificity did not exert a significant influence on detected 
nucleosome positions, nor did it bias which subset of nucleosomes was 
detected. This conclusion is similar to that reached in yeast by Field et al. 
(2008), but is at variance with the C. elegans studies (Johnson et al., 2006; 
Valouev et al., 2008). 

Another nucleosome-positioning experiment was published in 2007 by 
Robert E. Kingston and coworkers (Dennis et al., 2007). The authors 
employed two complementary approaches for mapping nucleosomes in 
human genome: a tiling microarray and a capillary electrophoresis-based 
sequencing. The microarray was custom-designed by NimbleGen Sys­
tems, Inc. (http://www.nimblegen.com) and consisted of 50-bp probes 
tiled every 20 bp on both forward and reverse strands, with no repeat 
masking. Three replicates for each strand were spotted on the array. 
Mononucleosomal DNA and genomic DNA were labeled with Cy3 and 
Cy5, respectively, and hybridized to the array by the manufacturer. The 
authors estimate that a single microarray chip constructed in this way can 
interrogate up to 200 kb of DNA sequence. Capillary electrophoresis-
based sequencing can only cover �10 kb at a time (Dennis et al., 2007), 
making it less suitable for a genome-wide application. Rather, it is a useful 
method for verifying nucleosome positions obtained by other, potentially 
less accurate, means. The authors carried out a proof-of-principle experi­
ment by designing microarray probes that spanned two relatively short 
genomic regions from a human breast cancer cell line: MMTV-LTR and 
LCMT2. The study focused on the consistency of the results obtained by 
the two techniques, and on the good correspondence with previously 
published nucleosome positions in the MMTV-LTR locus (Richardfoy 
and Hager, 1987; Fragoso et al., 1995). 

The first high-throughput sequencing study of H. sapiens nucleo­
somes was carried out in 2007 by Keji Zhao and coworkers (Barski 
et al., 2007). The authors employed a Solexa 1G Genome Analyzer to 
directly sequence ChIP DNA from mononucleosomes generated by 
MNase digestion of native chromatin. They collected 36-bp long 
sequence reads for the genome-wide distribution of nucleosomes with 

http://www.nimblegen.com
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20 post-translational histone modifications as well as the histone variant 
H2A.Z. The latter data set with 7.4 million sequence reads is analogous 
to the yeast and fly H2A.Z maps to the human genome (Albert et al., 
2007; Mavrich et al., 2008b). Similarly to yeast, H2A.Z was found to be 
enriched in promoter regions both upstream and downstream of the 
TSS. Furthermore, H2A.Z binding correlated with gene expression, 
with H2A.Z-containing nucleosomes present at higher levels in promo­
ters of active versus silent genes. 
In the follow-up work published by the same group in 2008, the authors 

chose resting and activated human CD4þ T cells as a model system 
(Schones et al., 2008). As in previous studies, mononucleosome-sized 
DNA was isolated from MNase-digested chromatin and sequenced using 
the Solexa/Illumina short-read technique; 25-bp reads corresponding to 
the ends of �150bp mononucleosome cores were mapped onto the refer­
ence human genome. This procedure yielded 154,582,677 uniquely 
mapped reads in resting cells and 141,931,997 uniquely mapped reads 
in activated cells. Only those reads were retained for further analysis. The 
authors found a familiar pattern of phased nucleosomes around the TSS – 
similarly to yeast and fly, the þ1 and –1 nucleosomes (–1 nucleosome is 
labeled –2 in Schones et al., 2008) flank an NDR and serve as termini of 
nucleosome arrays that become progressively less phased with the distance 
to the TSS. 
Nucleosome phasing with respect to TSS was found to be more pro­

nounced in expressed rather than unexpressed genes, consistent with the 
earlier observation in yeast showing the absence of nucleosome phasing 
or depletion in a cluster enriched for stress response genes (Lee et al., 
2007) (Stress response genes are not expressed in the YPD medium used 
to prepare the cell culture in the Lee et al. study.) The authors observed 
that the position of the þ1 nucleosome depends on gene expression: its 50 

end peaked at þ40 bp with respect to the TSS in active promoters, but 
only at þ10 bp in inactive promoters. This may be due to Pol II binding 
in the promoter regions of active genes: the Pol II peak was found to be 
located around þ10bp (Barski et al., 2007), overlapping with the nucleo­
some peak in inactive promoters. Finally, the authors found that gene 
activation by T cell receptor signaling was accompanied to some extent by 
nucleosome reorganization in promoters and enhancers: there is a con­
sistent difference in the nucleosome occupancies of resting and activated 
cells for induced and repressed genes. 
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B. Structural Studies of the Nucleosome Core Particle 

As of 2009, there were approximately 25 nucleosome structures with 
resolution £3.0 Å available in the Protein Databank (PDB; www.rcsb.org). 
Although the histones in these structures are derived from chicken, 
mouse, human, yeast, and frog, most of them contain the same 146-bp 
sequence of a-satellite DNA with nearly identical geometries. Several 
exceptions include a 145-bp sequence (PDB code 2nzd), sequences that 
are two mutations away from the a-satellite sequences (2cv5, 1kx3, 1aoi), 
and a 147-bp highest-resolution (1.9 Å) entry with a single base pair 
insertion (1kx5) (Richmond and Davey, 2003). In addition, 2fj7 (solved 
at 3.2 Å resolution) contains a 16-bp poly(dA-dT) tract in its 147-bp long 
DNA sequence (Bao et al., 2006). 

There are also several structures with additions and variations, includ­
ing three nucleosomes derived from 1aoi and complexed with site-
specific minor groove-binding ligands, the pyrrole-imidazole polyamides 
(Suto et al., 2003) (1m18, 1m19, 1m1a); crystal structures with histone 
Sin mutants (Muthurajan et al., 2004) (the 1p3 series), and histone 
variants H2A.Z (Suto et al., 2000) (1f66) and macroH2A (Chakravarthy 
et al., 2005) (1u35); and a structure with a pyrrole-imidazole hairpin 
polyamide that spans the nucleosomal “supergroove” (Edayathumanga­
lam et al., 2004) (1s32). 

As can be seen from the above catalog, the vast space of nucleosomal 
DNA conformations and sequences has not yet been sufficiently sampled 
by structural studies. Thus understanding the rules linking DNA geome­
tries with nucleosome positioning and free energies of nucleosome 
formation requires computational modeling guided by available struc­
tural data. In particular, the 1.9 Å crystal structure of the nucleosome 
core particle (Richmond and Davey, 2003) reveals the details of a single 
DNA conformation with unprecedented accuracy. The DNA structure is 
remarkably different from that observed in non-histone protein–DNA 
complexes: DNA trajectory has more than twice the curvature of the ideal 
superhelix with the same radius (41.9 Å) and pitch (25.9 Å) (Fig. 6a). Thus 
DNA is strongly bent, kinked, and twisted on average, with DNA seg­
ments bent into the minor groove either kinked or alternatively shifted. 
This is not surprising because DNA is stiff at the length scales of a single 
core particle and therefore bending it into a superhelix requires major 
conformational distortions of free B-DNA. 

http://www.rcsb.org
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(A) Nucleosome crystal (B) Dinucleotide degrees of freedom 
structure 
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FIG. 6. (A) DNA conformation from the crystal structure of the nucleosome core 
particle (PDB code 1kx5) (Richmond and Davey, 2003) and the ideal superhelix. (B) 
Conformation of a single dinucleotide (defined as two consecutive DNA base pairs in 
the 50–30 direction) is described by six geometric degrees of freedom: three relative 
displacements (rise, shift, and slide) and three angles (twist, roll, and tilt). DNA base 
pairs are shown as rectangular blocks, and the direction of each displacement or 
rotation is indicated with arrows. 

III. COMPUTATIONAL STUDIES OF CHROMATIN STRUCTURE 

A. Using DNA Elasticity Theory to Predict Nucleosome Formation Energies 

The availability of crystal- and NMR structures of nucleosome core 
particles and other protein–DNA complexes makes it possible to predict 
free energies of nucleosome formation and nucleosome occupancy pro­
files ab initio, without resorting to high-throughput nucleosome-
positioning data sets described in Section II.A. When a nucleosome 
core particle is formed, a 147-bp long DNA molecule wraps around the 
surface of the histone octamer in �1.65 turns of a left-handed superhelix 
(Richmond and Davey, 2003). Because DNA wraps so tightly around the 
histone core (the length of nucleosomal DNA is comparable to the DNA 
persistence length), the free energy of bending DNA into a superhelical 
shape is strongly sequence-dependent: flexible sequences bend more 
easily than rigid DNA molecules such as poly(dA-dT) tracts. It is reason­
able to assume that DNA bending depends mostly on base-stacking 
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energies, so that the total free energy is given by the sum of the individual 
dinucleotide contributions. 

Typically, DNA base-stacking geometries are defined using three 
relative displacements (rise, shift, and slide) and three rotation angles 
(twist, roll, and tilt) for each dinucleotide formed by two adjacent base 
pairs (Fig. 6b) (Olson et al., 1998). Together the six degrees of freedom 
completely specify the spatial position of base pair i þ 1 in the local coordi­
nate frame attached to base pair i. Cartesian coordinates of an arbitrary 
DNA molecule can be used to construct a full set of relative dinucleotide 
geometries. Conversely, specifying a complete set of dinucleotide degrees 
of freedom is sufficient for reconstructing an arbitrary DNA conformation 
in global Cartesian coordinates (Lu et al., 1997a, 1997b). 

As shown by Olson et al. (1998), these degrees of freedom can be used to 
derive an empirical model of DNA elastic energies. The model takes dis­
tributions of dinucleotide geometries observed in the ensemble of non­
homologous protein–DNA structures as input (there are currently >100 
such structures in the Protein Data Bank). These data are used to compute 
the mean and the covariance matrix for each degree of freedom (rise, shift, 
…) and for eachdinucleotide type (AA,AC,…).Retaining the full covariance 
matrix allows themodel to include correlations betweendifferent degrees of 
freedom.DNAelastic energy is describedby aneffective quadraticpotential: 

X1 N
T

Eel ¼ ½�s � h�nðsÞi� FnðsÞ½�s � h�nðsÞi�; ð1Þ 
2 

s¼1 

where �s is the six-component vector of dinucleotide degrees of freedom; 
the sum runs over N = 146 consecutive dinucleotides; and h�n(s)i is the 
vector of average values for each degree of freedom for the dinucleotide 
of type n at position s. Fn(s) is a matrix of stiffness coefficients computed by 
inverting the covariance matrix for the dinucleotide of type n atCn
 

(Cn)�1
position s: Fn = , where 

Cij
n ¼ hð�n � h�i

niÞð�n
j � h�j

niÞi: ð2Þi 

Note that the elastic energy model utilizes only the first and second 
moments of the empirical distributions of dinucleotide geometries – the 
available structural data is insufficient for retaining higher order 
moments or for modeling more than two consecutive base pairs. 
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The elastic energy model described above was first adapted to predict­
ing nucleosome positions in a 2007 paper by Tolstorukov et al. (2007). It  
is known from the 1.9 Å resolution crystal structure of the nucleosome 
core particle (Richmond and Davey, 2003) that dinucleotide positions at 
which nucleosomal DNA is kinked have large positive values of slide and 
large negative values of roll (solid lines with squares in Fig. 7). The kinks 
mediate bending DNA into the nucleosomal shape and define “hot spots” 
at which high-affinity NPSs have flexible dinucleotides. 
The authors argue that lateral slide deformations observed at sites of 

local anisotropic bending define the superhelical trajectory of nucleoso­
mal DNA. They show that slide accounts for over 90% of the overall pitch 
of nucleosomal DNA, with stepwise accumulation of net pitch in �10– 
11 bp increments. The positive values of slide accompany DNA bending 
into the minor groove where roll is negative, and the negative values of 
slide appear with DNA bending into the major groove where roll is 
positive (Fig. 7). Because the direction of slide is roughly parallel to the 
superhelical axis at the kink sites, the values of slide accumulate along the 
path of nucleosomal DNA. As a result, steps with alternating positive and 
negative slide (separated by �5–6 bp) contribute cooperatively to the 
overall superhelical pitch. 
While Tolstorukov et al. mostly focused on the contributions of roll 

and slide to the nucleosomal geometry, they also used DNA elastic 
energies to predict optimal positions of mononucleosomes reconstituted 
in vitro on four short DNA sequences and mapped by hydroxyl radical 
footprinting. Elastic energy was computed for each allowed position of 
the nucleosome core particle along each DNA segment, and energy 
minima were identified with predicted optimal positions. DNA geometry 
was taken from the high-resolution crystal structure (Richmond and 
Davey, 2003), under the ad hoc assumption that sequence-dependent 
variations in DNA geometries and kink positions were not important 
for predicting nucleosomal energies. Regardless of this limitation, the 
model showed reasonable predictive power, although it is difficult to 
judge how its performance would scale up in genome-wide calculations 
where multiple nucleosomes form simultaneously under steric 
constraints. 
Another approach utilizing the empirical DNA elastic potential was 

developed by Morozov et al. (2009). The main methodological difference 
from Tolstorukov et al. (2007) is that the DNA geometry was allowed to 
be relaxed from its initial conformation (given e.g. by the ideal superhelix 
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or by the nucleosome crystal structure). Thus the total energy of a 
nucleosomal DNA was given by a weighted sum of two quadratic 
potentials: 

E ¼ Eel þ wEsh; ð3Þ 

where Eel is the sequence-dependent DNA elastic potential and Esh is the 
non-specific histone–DNA interaction energy designed to penalize devia­
tions of nucleosomal DNA from the ideal superhelix: 

N X 
2

Esh ¼ ! !0ðr � r Þ ; ð4Þs s 
s¼1 

! !0where rs and r are the nucleosomal DNA and the ideal superhelix s 
radius vectors to the origin of base pair s in the global frame (the base 
pair origin is defined by its atomic coordinates Lu et al., 1997a, 1997b). 
Though this term is an oversimplification of complex atomic interactions 
between histones and DNA, its quadratic form reduces minimization of 
the total energy E to solving a system of linear equations: “The weight w is 
set to 0.1 to optimize DNA geometry predictions.” The final conforma­
tion of the DNA molecule is then the one that minimizes its total energy. 
Using this approach the authors carried out the first ab initio prediction 

of DNA base step geometries in nucleosomal DNA. With only the 147-bp 
a-satellite sequence from 1kx5 as input, they predicted 6 dinucleotide 
degrees of freedom observed in the crystal structure with the average 
correlation coefficient of 0.46 (solid lines in Fig. 7). In comparison, the 
average correlation coefficient between the ideal superhelical geometry 
and 1kx5 was 0.07. The model underpredicted the absolute values of 

FIG. 7. Dinucleotide geometries from the crystal structure of the nucleosome core 
particle (solid red lines with squares, PDB code 1kx5) (Richmond and Davey, 2003): 
from the minimum-energy structure obtained by relaxing the 147-bp DNA segment 
with the nucleotide sequence from 1kx5 around the ideal superhelix as described in 
Section III.A (solid black lines) (Morozov et al., 2009); and from the ideal superhelix 
(dashed cyan lines). Six dinucleotide degrees of freedom are shown: roll, slide, tilt, 
twist, shift, and rise. The twofold nucleosome symmetry axis is shown as a dashed 
vertical line. Note that roll is negative when DNA bends into the minor groove (which 
faces the histone octamer) and positive when DNA bends into the major groove (with 
the minor groove facing away from the histone octamer). (See color plate 3) 
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slide in kink positions (although the overall correlation was above 
average at 0.54) and did not reproduce rapid alternate shifts between 
base pairs 31 and 111 (Fig. 7). This behavior could be due to inaccuracies 
in the coefficients of the empirical elastic potential (derived from non­
histone protein–DNA complexes) or due to the inherent limitations of the 
quadratic model (Eq. (3)). 

The authors also predicted free energies of nucleosome formation for 
�45 in vitro sequences (with a correlation coefficient of �0.8), as well as 
nucleosome positions for six short sequences with nucleosomes mapped 
by hydroxyl radical footprinting (four from Tolstorukov et al. (2007) and 
two more determined de novo). The authors found that DNA geometry 
relaxation helped with predicting nucleosome free energies but had 
surprisingly little effect on the accuracy of predicted nucleosome 
positions. 

Finally, the authors provided an exact numerical solution to the many-
body problem of placing multiple nucleosomes onto longer stretches of 
DNA ((Durbin et al., 1998; Segal et al., 2006); see Section III.C for 
details). Free energies of nucleosome formation at every DNA base pair 
were translated by the algorithm into nucleosome probabilities and occu­
pancies under the assumption of steric exclusion among nucleosome core 
particles of fixed size. 

Miele et al. (2008) have also used a sequence-dependent DNA flex­
ibility model to predict nucleosome occupancies in S. cerevisiae and D. 
melanogaster genomes. Their model employed the ideal superhelical geo­
metry (with pitch and radius from 1kx5) and considered only the angu­
lar (roll, twist, and tilt) isotropic contributions to the superhelical 
curvature. In other words, DNA was modeled as an inextensible and 
unshearable elastic rod, and correlations between different degrees of 
freedom were neglected. The equilibrium values of the angular para­
meters and the stiffness coefficients were adopted from Anselmi et al. 
(2000). These parameters are not based on protein–DNA structural data 
– rather, they were derived by energy calculations in the framework of 
the nearest-neighbor approximation (De Santis et al., 1986) and later 
refined to improve the correlation between the calculated and the 
experimental gel electrophoresis mobility of a large pool of synthetic 
and natural DNA molecules. The authors also took into account the 
entropic cost of the transition from free to superhelical DNA, and 
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computed the free energy difference DF at every base pair along the 
sequence. 
In yeast, the free energy landscape was compared with the log2 ratio of 

hybridization values from Yuan et al. (2005) and Lee et al. (2007). The 
authors observed significant correlation between their predictions and 
experimental data. In particular, the model was able to discriminate 
between sets of DNA fragments with the highest and the lowest nucleo­
some occupancies (with the area under the receiver operating character­
istic (ROC) curve being 0.72 for the data set from Yuan et al.). 
Furthermore, the model predicted 50 NDRs. In the fly, the model 
exhibited nucleosome occupancy depletion (i.e. higher values of DF) in  
the vicinity of target sites of the Trithorax and Polycomb group proteins 
zeste and Ez/Psc. This depletion was also observed in the experimental 
profile of chromatin sensitivity to MNase obtained in a study of histone 
H3.3 replacement patterns in D. melanogaster (Mito et al., 2007). 
DNA elastic parameters used by Miele et al. were also employed for 

nucleosome positioning predictions by the original authors of the force 
field, De Santis and colleagues (Anselmi et al., 2000, 2002; Scipioni et al., 
2009). In addition to the DNA model based on roll, tilt, and twist, the 
conformational entropy contribution to the relative thermodynamic sta­
bility of the nucleosome core particle is explicitly considered by the 
authors and an empirical term that depends on the curvature of free 
DNA is introduced. To justify the latter term, the authors observe that 
DNA elastic energies alone give a satisfactory agreement for relatively 
straight DNA but exhibit large deviations for intrinsically curved DNA. 
The magnitude of these deviations shows a strong correlation with hA0 

f i, 
the average integral curvature of free DNA. On the basis of this observa­
tion the authors added an empirical contribution of 4:5hA0 

f i3=2 to the 
model. 
The De Santis et al. approach leads to accurate predictions of free 

energies of nucleosome formation (r = 0.92 on a set of �100 mononu­
cleosomal sequences collected from the literature) (Scipioni et al., 2009). 
The authors also compute free-energy profiles for several genomic loci 
and compare them with experimental data from Yuan et al. (2005) and 
Kaplan et al. (2009). Unfortunately, the authors do not provide overall 
measures of performance such as ROC curves, making it difficult to 
compare their approach with other methods. 
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Another model that considers DNA to be an elastic rod is due to Vaillant 
et al. (2007). Although DNA is formally described by all three local angles 
(roll, tilt, and twist), only the roll degree of freedom is sequence-dependent, 
while the equilibrium value of tilt is set to 0 and the equilibrium value of 
twist is set to 2�/10.5 for all dinucleotides. Because the geometry of nucleo­
somal DNA is assumed to be described by an ideal superhelix, only the roll 
degree of freedom contributes to the overall elastic energy (cf. Eq. (1)). 
Equilibrium values of roll are based on a trinucleotide coding table from 
Goodsell and Dickerson (Goodsell and Dickerson, 1994), who in turn adopt 
it from Satchwell et al. (1986). The coding table uses a relatively small set of 
NPSs to compute the fractional preference of each base pair triplet to be 
outside or inside of the DNA wound around the histone octamer. “Outside” 
and “inside” refer to the position of the major groove with respect to the 
histone surface: for example, the GGC triplet has a 45% preference for 
locations on a bent double helix in which its major groove faces inward and 
is compressed by the curvature (corresponding to the region of the positive 
roll), whereas the AAA triplet has a 36% preference for the opposite 
orientation, with the major groove facing outward (corresponding to the 
region of the negative roll). 

Despite being phrased in the language of DNA elastic energies, the 
Vaillant et al. model has more in common with statistical nucleosome 
positioning scores described in Section III.B (Ioshikhes et al., 2006; Segal 
et al., 2006; Field et al., 2008; Kaplan et al., 2009) than with physical 
models. The roll degree of freedom is simply used to quantify the relative 
orientational preferences of trinucleotides with respect to the helical twist 
and could have been replaced by position-dependent scores without any 
explicit reference to DNA geometry. 

B. Bioinformatics Models of Nucleosome Sequence Preferences 

An alternative approach to predicting nucleosome positions is based on 
training bioinformatics models to discriminate various sequence features 
that differentiate nucleosomal and linker DNA. This approach requires 
extensive collections of nucleosomal sequences available from recent 
high-throughput nucleosome positioning experiments described in Sec­
tion II.A (we note in passing that two “first-generation” nucleosome 
positioning models, Ioshikes et al. (2006) and Segal et al. (2006), used  
much smaller, �200, collections of NPSs. These early approaches have 
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been largely superseded by the more recent models trained on high-
throughput data.) 

1. Segal et al. Model Based on Dinucleotide Distributions and 5-mer Counts 

One bioinformatics model that positions nucleosomes according to 
their sequence preferences was developed in Field et al. (2008) and 
Kaplan et al. (2009). This model assigns a nucleosome formation score 
to each 147-bp long DNA sequence. The score accounts for two major 
nucleosome positioning signals: the higher affinity of histone octamers 
for periodic distributions of certain dinucleotides due to anisotropic 
sequence-dependent DNA bending (rotational positioning), and longer 
motifs that function as nucleosome favoring or disfavoring signals, such 
as poly(dA-dT) tracts found mainly in the nucleosome-depleted regions 
(translational positioning). Similarly to DNA elastic energies, the bioin­
formatics score can be used to evaluate genome-wide nucleosome occu­
pancies with steric exclusion, as described in Section III.C below. 
The latest iteration of this model is trained on the in vitro high-
throughput sequencing data set discussed in Section II.A.1.2, and is 
capable of predicting genome-wide nucleosome occupancies with a cor­
relation coefficient of 0.89 for in vitro data and 0.75 for in vivo data 
(Kaplan et al., 2009). 
As mentioned above, the Segal et al. model consists of two components: 

PN and PL. The first component, PN, captures position-dependent 
periodicity of dinucleotide distributions (Fig. 5). In analogy with position-
specific scoring matrices (Stormo and Fields, 1998), the nucleosome-
bound DNA sequences and their reverse complements are aligned 
around the dyad axis. The alignment is used to estimate the conditional 
dinucleotide distribution PN,i(Si|Si–1) for each i = 2,…,147 – that is, 
the probability of observing the nucleotide Si at position i given the 
nucleotide Si–1 at position i – 1. The first component of the model is 
then defined as: 

147 

PN ðSÞ ¼ PN ;1ðS1Þ# PN ;iðSijSi�1Þ: ð5Þ 
i¼2 

Thus to any DNA sequence S of length 147 bp, one can assign a prob­
ability using Eq. (5). As this component captures nucleosomal 
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dinucleotide sequence preferences, the probability is higher for 
sequences with �10–11 bp phased patterns of A/T- and G/C-rich dinu­
cleotides (Fig. 5). 

The second component of the score, PL, accounts for the difference in 
global, position-independent distributions of 5 bp long words in nucleo­
somal and linker sequences (5-mers are chosen here for computational 
reasons). To find out which of the 1,024 sequences of length 5 is favored 
or disfavored by nucleosomes, probability Pl is evaluated for each word of 
length 5 as the ratio between the frequency of that word in linkers and its 
frequency in the nucleosomal sequences. This ratio is normalized by the 
sum of all ratios across all words of length 5. So, by definition, sequences 
with higher probability will be less favorable for nucleosomes than 
sequences with lower probability. The position-independent component 
PL(S) for a given sequence S of length 147 is then defined as a product 
over all instances of 5-mers in S: 

147 

PLðSÞ ¼ # PlðSijSi�4; …; Si�1Þ: ð6Þ 
i¼5 

By construction PL is higher for nucleosome-depleted sequences, in con­
trast to PN, which is higher for nucleosome-bound sequences. Both of 
these components are used to predict nucleosome occupancies genome­
wide (Field et al., 2008; Kaplan et al., 2009; Segal and Widom, 2009): PN 

captures rotational positioning, while PL describes translational position­
ing. The log-ratio between the components 

PN ðSÞ EðSÞ ¼ �log ; ð7Þ 
PLðSÞ

assigns a nucleosome formation “energy” to each sequence S of 
length 147 bp. Eq. (7) scores are then used to formulate a thermody­
namic model for predicting nucleosome occupancies and positions 
(see Section III.C). 

2. Ioshikes et al. Comparative Genomics Model 

Another computational model that employed position-dependent 
periodicity of nucleosomal dinucleotide distributions was developed by 
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Ioshikhes et al. (2006). The authors used a periodic 139-bp dinucleotide 
AA/TT signal as an empirical definition of an NPS. The periodic pattern 
used in this work was compiled by Ioshikhes et al. in a previous study 
(Ioshikhes et al., 1996), where a collection of 204 nucleosomal DNA 
sequences was used to compute the AA/TT positional frequency distribu­
tions. The substantial noise in the data had been reduced by employing 
five different multiple sequence alignment techniques with subsequent 
averaging of the AA/TT positional frequency profiles. 
In Ioshikhes et al. (2006) the entire S. cerevisiae genome was scanned 

for correlations with the NPS. To increase the method’s resolution the 
authors utilized a comparative genomics approach; specifically, they 
calculated NPS correlation profiles for each gene between �1,000 bp 
and þ800 bp, relative to the þ1 ATG start codon, in six sequenced 
Saccharomyces species. The authors argued that well-positioned nucleo­
somes should be conserved at orthologous locations in all related species. 
Thus averaging across orthologous locations in different Saccharomyces 
species would suppress noise and increase the sensitivity of the method 
compared to a single-genome approach. The Ioshikhes et al. study 
revealed several nucleosome positioning features conserved across 
related yeast species. Specifically, most yeast promoters have a 
nucleosome-depleted region, revealed by the most negative correlation 
between the underlying DNA sequence and the periodic NPS. Well-
positioned þ1 nucleosomes just downstream of the NDR (Fig. 3) exhibit 
maximum positive correlation between the underlying DNA sequence 
and the NPS. The authors also pointed out a difference in correlation 
patterns for TATA-less and TATA-containing genes: TATA-less genes 
tend to have a more consistent NPS–NDR–NPS pattern. 

3. Support Vector Machine for Identifying the Nucleosome Formation Potential 

A discriminative approach to predicting nucleosome positions was devel­
oped by Peckham et al. (2007). Specifically, Pekham et al. implemented a 
support vector machine (SVM) (Vapnik, 1998) to distinguish between 
nucleosome-forming and nucleosome-inhibiting DNA sequences. Because 
the SVM algorithm performs discriminative data classification in vector 
space, Pekham et al. converted each 50-bp long DNA sequence into a vector 
of k-mer frequencies, where k runs from 1 to 6. By means of this procedure 
every DNA sequence can be uniquely mapped into a 2,772-dimensional 
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vector space. The SVM algorithm finds a hyperplane in this vector space 
that separates two groups of training data in such a way that the distance 
from the hyperplane to the nearest data point is maximized. 

The training data used by Pekham et al. was taken from a low-
resolution microarray study by Yuan et al. (2005) (see Section II.A.1.1), 
where nucleosome occupancies were measured for yeast chromosome 
III. The training set consisted of 1,000 nucleosome-forming (50 bp long) 
DNA sequences with the highest hybridization scores and 1,000 
nucleosome-inhibiting (50 bp long) DNA sequences with the lowest hybri­
dization scores. An SVM trained on this data set can classify DNA seg­
ments as nucleosome-forming or nucleosome-inhibiting after mapping 
them into the vector space. 

The authors employed the trained SVM to estimate the nucleosome 
formation potential of a collection of �200 nucleosomal DNA sequences 
studied in Segal et al. (2006). The nucleosome formation potential corre­
lated with the dinucleotide AA/TT/AT periodic signal found by Segal 
et al. (2006). The authors argued that G/C and A/T content of a sequence 
is the strongest predictive factor in determining the nucleosome forma­
tion potential: G/C-rich sequences favor nucleosome formation, whereas 
A/T-rich sequences disfavor it. They also pointed out that A-tracts tend to 
prevent nucleosome formation. Based on how well the SVM discrimi­
nated between nucleosome-bound and nucleosome-free genomic 
sequences, the authors concluded that only �50% of all nucleosomes 
are positioned by intrinsic DNA sequence signals. 

4. Wavelet-Based Approach to Discriminating Nucleosome-Bound from 
Nucleosome-Free Sequences 

Yuan and Liu (2008) proposed an alternative computational model for 
predicting nucleosome positions, based on a wavelet transform. Similarly 
to Peckham et al. (2007), the authors developed a classification algorithm 
that distinguishes nucleosome-bound sequences from linker DNA. Each 
DNA sequence S of length 131 bp is decomposed into 16 numerical 
vectors of length 130 bp, where each vector describes one of 16 dinucleo­
tides. The ith component of this vector is 1 if the corresponding dinucleo­
tide is found at location i in sequence S, and 0 otherwise. The moving 
average with a 3 bp window is applied to the vectors resulting in 

27 sequences of length 128 bp (the length 128 = is motivated by the 
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discrete wavelet transform). Thus each of the 16 vectors holds informa­
tion about the corresponding dinucleotide frequency in S. 
The method used by Yuan and Liu (2008) is based on a wavelet trans­

form which allows to detect periodic patterns in the signal over multiple 
scales (Mallat, 1999). In the wavelet analysis the signal is decomposed into 
orthogonal components corresponding to different frequency bands. 
The advantage of this approach over Fourier spectral analysis is that 
the wavelet transformation captures not only the frequency component 
but also the position of this component in the signal. The coefficients of 
the wavelet transform characterize periodic patterns embedded in the 
dinucleotide frequency signal. 
Thus, if a certain frequency is associated with a putative NPS, it can be 

detected by comparing the contributions (defined by the coefficients of the 
wavelet transform) from nucleosomal versus linker DNA sequences. The 
probability for a DNA sequence S to be a nucleosomal sequence is then 
defined through a logistic regression model with the co-variates given by 
the coefficients of the discrete wavelet transform. The model was trained 
on previously identified nucleosome and linker sequences (Yuan et al., 
2005; Segal et al., 2006). In contrast to the Pekham et al. (2007) model, this 
approach only accounts for dinucleotide frequencies. The authors con­
clude that sequence information is highly predictive of local nucleosome 
enrichment or depletion, whereas predictions of the exact nucleosome 
positions are only moderately accurate, suggesting the importance of 
other regulatory factors in fine-tuning nucleosome positions. 

C.	 Statistical Physics of One-Dimensional Liquids and the Nucleosome 
Positioning Problem 

The recent high-resolution maps of nucleosome locations in eukaryotic 
genomes (Lee et al., 2007; Mavrich et al., 2008a, 2008b; Schones et al., 
2008; Shivaswamy et al., 2008; Valouev et al., 2008) reveal that nucleo­
somes are arranged in quasi-periodic arrays, covering �70–80% of genomic 
DNA. Furthermore, regions upstream of open reading frames (ORFs) are 
typically depleted of nucleosomes. Nucleosome-depleted promoter regions 
are flanked on both sides by the so-called ±1 nucleosomes (Jiang and Pugh, 
2009). It is believed (Mavrich et al., 2008a) that these nucleosomes act as 
boundaries, inducing periodic oscillations in the neighboring nucleosome 
occupancy (Fig. 3). These oscillations are caused by steric exclusion and can 
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be explained with a simple statistical model of a one-dimensional (1D) 
liquid. In this model the nucleosomes are treated as a uniform 1D liquid 
of 147-bp hard rods. The simplest approach of this kind assumes that 
nucleosomes have no intrinsic sequence specificity and are positioned solely 
by steric exclusion (Kornberg and Stryer, 1988). To induce periodic oscilla­
tions in the nucleosome occupancy, a boundary constraint is introduced at 
some point along the DNA. The boundary may be due to the sequence­
specific ±1 nucleosomes or to DNA-bound non-histone proteins. 

Nucleosome reconstitution in vitro involves stepwise dialysis from 
concentrated salt solutions (when DNA molecules have low affinity for 
the histone octamer due to electrostatic screening) down to physiological 
salt concentrations (Shrader and Crothers, 1989, 1990; Lowary and 
Widom, 1997). This is expected to lead to an equilibrium distribution 
of nucleosomes, which can be described by equilibrium statistical 
mechanics. Nucleosome positions in vivo are influenced by the presence 
of chromatin remodelers and TFs, and many other factors that in 
principle may perturb the system out of equilibrium. However, Kaplan 
et al. found that correlation between in vitro and in vivo occupancy 
profiles is quite high, more than 70% on average (Kaplan et al., 2009). 
Thus both in vivo and in vitro chromatin can be described using equili­
brium methods. 

In the Kornberg and Stryer model nucleosomal arrays can be regarded 
as an ensemble of two kinds of objects: nucleosomes of length a bp and 
DNA linkers with a mean length of L bp. The probability of selecting a 
nucleosome from the ensemble of a single nucleosome and L linkers of 
unit length is p = (1þL)�1, and the probability of selecting a linker is 1 – p. 
A stretch of DNA of length x can contain any number of nucleosomes 
between 0 and x/a. Let M : int(x/a) be the maximum number of nucleo­
somes that can still fit into the DNA domain of length x. The partition 
function for this domain is then defined as a binomial sum over all 
possible configurations of nucleosomes and linkers: 

M � � X n þ x � an x�an�ðxÞ ¼  pnð1 � pÞ : ð8Þ 
n 

n¼0 

Kornberg and Stryer used this model to demonstrate how nucleosomes 
without intrinsic sequence preferences can nonetheless be organized into 
periodic arrays (Kornberg and Stryer, 1988). Equation (8) is used to 
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FIG. 8. Statistical positioning of nucleosomes by the boundaries. Linker 
probabilities computed using Eq. (9) with N = 4000, a = 147, and three different 
average linker lengths L are shown. The period of the oscillations depends on the 
linker length as a þL. 
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calculate the probability of any configuration of nucleosomes and linkers 
on a DNA molecule of arbitrary length N. The probability P(i) that site i is 
occupied by a linker (i.e. is nucleosome-free) is derived by noting that the 
linker site i divides the DNA molecule into two regions with lengths i–1 
and N–i and the linker site itself: 

1 � p
PðiÞ ¼ �ði � 1Þ �ðN � iÞ: ð9Þ 

�ðNÞ 

The normalization factor ��1(N) corresponds to all possible configura­
tions of nucleosomes and linkers over the entire DNA molecule. 
The linker probability profiles (Eq. (9)) evaluated for various values of L 

are shown in Fig. 8. We observe a regular spacing of nucleosomes near the 
boundaries with an oscillation period of a þL. The oscillations decay with 



40 TOLKUNOV AND MOROZOV 

the distance from the boundary. Thus the boundary constraint alone leads 
to an array of regularly spaced nucleosomes at non-random locations. 
However, the significance of such boundaries in genomes and their mole­
cular nature are unclear. The nucleosome positioning boundaries may be 
defined by sequence-specific DNA-bound proteins (Fedor et al., 1988; 
Roth et al., 1990; Pazin et al., 1997) or by rigid DNA sequences such as 
Poly(dA-dT) tracts that tend to exclude nucleosomes (Iyer and Struhl, 
1995; Suter et al., 2000; Anderson and Widom, 2001; Bao et al., 2006; 
Lee et al., 2007; Mavrich et al., 2008a; Segal and Widom, 2009). 

In the Kornberg and Stryer statistical model nucleosome positions are 
dictated solely by steric constraints. Such a model does not account for 
histone–DNA interactions, which should introduce a certain amount of 
sequence specificity into nucleosome positioning on DNA. However, it is 
straightforward to extend the model to the sequence-specific case and 
thus predict nucleosome occupancies for histone–DNA interactions of 
arbitrary magnitude. 

For DNA sequence S and a set of k nucleosomes at positions n1,n2,…,nk, 
one defines a statistical weight function as a product of the corresponding 
Boltzmann factors: 

k 

W ½S; n� ¼  # � exp f��EðSni;niþ146Þg; ð10Þ 
i¼1 

where n denotes the specific configuration of nucleosomes, � is the 
inverse temperature, Sni

,niþ146 is the part of sequence S covered by the 
nucleosome ni, and � is the apparent nucleosome concentration (Field 
et al., 2008). The nucleosome positions n1,n2,…nk are chosen in such a 
way that no two nucleosomes overlap. To find the probability of a given 
configuration n of nucleosomes on S the statistical weight is divided by a 
partition function, which is the sum over all allowed nucleosome config­
urations: P(W[S,n])= W[S,n]/Sn0W[S,n0]. 

The number of allowed configurations for long DNA sequences is 
exponentially large. Nevertheless, the probability of starting a nucleo­
some at every genomic base pair can be efficiently computed using the 
dynamic programming method (Durbin et al., 1998). The idea behind 
the method is similar to that used in deriving Eq. (9): the nucleosome that 
starts at bp i divides DNA sequence S of length N into three sub­
sequences S1,i–1, Si,i þ 146, and Si þ 147,N. In the forward step one finds the 
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FIG. 9. Schematic representation of the forward and backward steps (Eq. (11)) in the  
determinationofpossible nucleosome configurations. Thepositions ofnucleosomesof size 
a close to the boundary (light ovals) are restricted: no nucleosome can end at positions 1… 
a�1 or start at positions N�a þ 2…N. This leads to a set of boundary conditions for 
forward and backward partial partition functions. The forward partition function Fi 
corresponds to all possible configurations of nucleosomes in the interval from 1 to i. If  
i � a there exist two possibilities: (1) position i is empty; this corresponds to the first term 
Fi 1, which indicates that the nucleosome configuration is unchanged from i�1 to  i; (2)  a  �
nucleosome that started at position i – aþ1 ends at position i (dark ovals); this case is 
accounted for by the second term in the recursive equation, which is the product of the 
nucleosomeBoltzmann factor and the partition function Fi–a for the interval [1…i – a]. The 
backward partition function Ri is evaluated in the opposite direction and describes 
nucleosome configurations in the interval from i to N. 
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partial partition function Fi–1, which is the sum of the nucleosome 
weight functions over all possible configurations on S1,i–1. The partition 
function Riþ147 corresponding to the sequence Siþ147,N is found in the 
backward step. The forward and backward steps are further explained 
in Fig. 9. The probability that a nucleosome starts at bp i of DNA 
sequence S is then given by 
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Fi�1�expf�EðSi;iþ146ÞgRiþ147Pi ¼ ; ð11Þ 
R1 

where R1 = FN in the denominator is the complete partition function. 
The corresponding nucleosome occupancy Oi is found as the probability 
that a given bp i is covered by any nucleosome, and is defined as the sum 
of probabilities from Pi–146 to Pi. 

Although steric exclusion is taken into account in the probability profile 
Pi, this profile is derived for a specific value of the chemical potential �, 
which enters the model through the nucleosome concentration � = exp 
(��) in  Eq. (11). Variation of this parameter leads to different probability 
and occupancy profiles due to the competition between the nucleosome 
formation energy and the excluded volume interaction. The resulting 
change in occupancy can be quite substantial, so it is reasonable to ask 
about the behavior of the model with respect to �. In principle, this 
question can be addressed by re-running the dynamic programming 
algorithm for various values of � . However, Schwab et al. (2008) used a 
more physical approach that employs statistical mechanics of a 1D liquid 
of hard rods in an arbitrary external field (Percus, 1976). 

The system is assumed to be a grand canonical ensemble. The first 
component of the statistical model is the potential energy Vi of a 
nucleosome positioned at bp i and related to the probability Pi from 
Eq. (11) through Vi = �kBT0 log Pi. The second component of the 
model is the interparticle potential responsible for steric hindrance. 
This model is solvable in a sense that the nucleosome distribution can 
be computed exactly for various values of the chemical potential � and 
the temperature T0, which specifies the characteristic energy scale 
(Schwab et al., 2008). 

Both the energy profile Vi and the excluded volume interaction define 
the final disposition of nucleosomes on DNA. Due to the competition 
between these two terms a small change in the chemical potential or the 
strength of nucleosome binding can lead to repositioning of some of the 
nucleosomes (Schwab et al., 2008), as shown schematically in Fig. 10. 
Whereas positions of more stable nucleosomes remain unchanged, posi­
tions of less stable nucleosomes shift with �. The mean number of nucleo­
somes hNi as a function of the chemical potential is shown in Fig. 10 for 
two values of temperature T/T0. The observed behavior, which resembles 
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FIG. 10. Top: A nucleosome configuration is shown for two different values of the 
chemical potential. Stable nucleosomes (dark ovals) remain at their positions while 
unstable nucleosomes (light ovals) are shifted and another nucleosome appears as m is 
increased. Bottom: The average number of nucleosomes on an arbitrary DNA 
segment is shown schematically as a function of m for two different temperatures. 
Dashed line corresponds to the higher temperature. 
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a first-order phase transition, is a consequence of the fact that at the 
transition point the free energy of a given nucleosome arrangement is 
degenerate with respect to N. It has been demonstrated by Schwab et al. 
(2008) that changes in nucleosome occupancy are localized to certain 
regions and that the genomic locations of these regions correlate with 
known positions of TF-binding sites. 
In the statistical models discussed here it is assumed that, apart from 

the steric overlap, nucleosome positions are independent and are dic­
tated solely by intrinsic sequence preferences. In general this approxima­
tion may not hold. An internucleosomal potential can originate, for 
instance, from the higher order structure of the chromatin fiber. Fiber 
formation causes linker lengths to be quantized (Kato et al., 2003; Coha­
nim et al., 2006; Wang et al., 2008) because relative spatial positions of 
adjacent nucleosomes depend on the length of their linker DNA (Widom, 
1992; Schalch et al., 2005). Another possible source of internucleosomal 
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potential is electrostatic interactions between spatially close nucleosomes 
(Luger et al., 1997; Dorigo et al., 2004; Chodaparambil et al., 2007). 
Quantized linker lengths can be described with an effective nearest-
neighbor internucleosomal potential. The thermodynamic model of Eq. 
(11) can be modified to account for nearest-neighbor interactions by 
introducing an additional term that assigns different statistical weights 
to different linker lengths (Lubliner and Segal, 2009). 

D. Hidden Markov Models for Predicting Nucleosome Occupancies 

Log-intensity profiles obtained from microarray-based nucleosome 
positioning experiments are often analyzed using HMMs (Rabiner, 
1989). Although HMMs were originally developed for analyzing sequen­
tial stochastic signals such as noisy time-series data, they have recently 
found many uses in bioinformatics. In the context of chromatin structure 
prediction the use of HMMs was pioneered by Yuan et al. (2005) and 
later adopted with modifications by Lee et al. (2007) and Zawadzki et al. 
(2009). In each of these applications, hybridization values from the tiled 
array (i.e. log2 ratios of the nucleosomal DNA to the total genomic DNA 
for each microarray probe) were used as input to the HMM, which then 
predicted the probability of a nucleosome to start at every genomic base 
pair as well as nucleosome occupancy. Thus HMMs can be used to 
calculate nucleosome occupancies directly from the log-intensity data, 
in contrast to the approaches that first predict a sequence-specific nucleo­
some free-energy profile and then use dynamic programming to infer 
nucleosome positions. 

HMMs are defined by the transition matrix between hidden states 
probabilistically assigned to each consecutive probe on the tiling micro­
array. For Affymetrix arrays with probes tiled at every 4bp, 37 nucleoso­
mal nodes and 1 linker node need to be defined, resulting in a 148-bp long 
nucleosome core particle (Zawadzki et al., 2009). As shown in Fig. 11A, 
from the linker state a transition can be made to another linker state with a 
probability PLL, or to the first nucleosome state with a probability PLN = 1 
PLL. However, once a new nucleosome is started all subsequent nodes are 
placed with probability 1 until the next linker state is reached. 

The model used by Zawadzki et al. employs a mixture of two Gaus­
sians to represent both the nucleosome state and the linker state 
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(earlier models used a single Gaussian). Thus the final set of fitting 
parameters includes means and widths of four 1D Gaussians, two 
independent mixture coefficients, and 38 initial probabilities for the 
nucleosome and linker states. To reduce the number of fitting para­
meters, 37 nucleosome states were forced to share the same mixture of 
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N2 

PLN 
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PDN 
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N37 L 
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FIG. 11. (A) The transition matrix of the Hidden Markov Model (HMM) used for 
predicting nucleosome probabilities and occupancies from microarray log-intensity 
profiles. Nodes N1 through N37 represent consecutive nucleosomal states (green 
circles), while L is the linker state (yellow circle). Once a new nucleosome is started 
36 subsequent nodes are placed with a probability 1. From N37 a transition is made to 
the linker state with a probability PNL, or else the nucleosome is extended indefinitely 
to create “delocalized” nucleosomal states (Yuan et al., 2005; Lee et al., 2007). The 
linker state can also be extended indefinitely with a probability PLL, or else the 
transition is made back to the first nucleosome state N1. Note that PNL 

  
þ PDN = 1, 

PLL þPLN = 1. (B) Nucleosome positions prior to glucose addition at the CHA1 
promoter predicted by the HMM. Top: Log ratio of nucleosomal DNA to genomic 
DNA as determined by separate hybridizations to Affymetrix tiling arrays is plotted as 
a function of genomic position. Increasing values represent increasing protection from 
MNase digestion. Middle: Nucleosome positions predicted by the HMM (Zawadzki 
et al., 2009). Black trace represents predicted nucleosome occupancy, from 
unoccupied (0) to fully occupied (1). Blue trace represents the probability of starting 
a nucleosome at a given base pair. Bottom: Previously mapped in vivo nucleosome 
positions (Moreira and Holmberg, 1998) are shown as dark orange ovals. (See color 
plate 4). 
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FIG. 11. (Continued) 

two Gaussians. All fitting parameters were found by maximum like­
lihood using standard methods (Rabiner, 1989; Durbin et al., 1998). 
Note that the probability of starting a new nucleosome (PLN in 
Fig. 11A), fit by maximum likelihood in Yuan et al. (2005) and Lee 
et al. (2007), was adjusted manually in Zawadzki et al. (2009) in order 
to achieve a pre-defined average nucleosome occupancy of �80%. The 
manual adjustment reflects a lack of control over the zero-intensity 
baseline, which may shift depending on the relative amounts of DNA 
used in the nucleosomal and control samples. 

In Lee et al. (2007) and Zawadzki et al. (2009), which employ high-
density Affymetrix arrays, HMM parameters were fit for only a relatively 
small set of genomic loci (e.g. promoters and coding sequences of 19 
genes whose expression was unaffected by adding glucose to the medium 
in Zawadzki et al. (2009)), and averaged. The resulting model was then 
run genome-wide with fixed parameters. As a typical example, an HMM 
prediction for the CHA1 locus in which nucleosomes were previously 
mapped using low-throughput methods (Moreira and Holmberg, 1998) 
is shown in Fig. 11B. 
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Another important distinction between the three HMM approaches is 
that Yuan et al. (2005) and Lee et al. (2007) allow “delocalized” nucleo­
somes of arbitrary length (the modified topology of the transition matrix 
is shown in Fig. 11A with dashed lines), whereas Zawadzki et al. (2009) 
postulate only canonical, 148 bp nucleosomes and thus interpret longer 
stretches with high log-intensity ratios as shifted but overlapping nucleo­
some positions in distinct subpopulations of cells. 

IV. SUMMARY AND CONCLUSIONS 

It is amazing to see by how much the field of high-throughput 
mapping of nucleosome positions has advanced over just a few years. 
Whereas in 2005 the first tiling microarray covered only yeast 
chromosome III with 20-bp resolution (Yuan et al., 2005), today’s 
high-throughput sequencing platforms can yield hundreds of millions 
of nucleosome positions. Microarray and high-throughput sequencing 
technologies are to some extent complementary: interrogating a genomic 
region with tiled microarrays yields nucleosome occupancy in that 
region, but the approach does not easily scale up to higher eukaryotes 
with much longer genomes. Thus the best currently available microarray 
data for bulk nucleosomes in D. melanogaster (122.6-Mbp genome length) 
is at 36-bp resolution (Mavrich et al., 2008b), while in H. sapiens (3,300­
Mbp genome length) only select regions have been interrogated (Dennis 
et al., 2007; Ozsolak et al., 2007). 
Unlike microarrays, high-throughput sequencing is not restricted to a 

particular genomic region: nucleosome sequence reads can come from 
any locus. However, even the latest parallel sequencing data sets do not 
provide enough read coverage to measure relative nucleosome occupan­
cies in longer genomes, although the data can still be used to infer 
common nucleosome-positioning motifs (such as the periodic distribu­
tion of AA/AT/TA/TT dinucleotides shown in Fig. 5) and to study nucleo­
some organization in the vicinity of coding sequences and TF-binding 
sites. To circumvent the problem of low sequence read coverage, several 
recent studies of chromatin structure in human and fly chose to focus on 
the nucleosomes that incorporate the H2A.Z histone variant or have 
acetylated/methylated histone tails (Barski et al., 2007; Mavrich et al., 
2008b). These partial maps yield comprehensive genome-wide 
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coverage for a given nucleosomal subspecies but in general cannot be 
extrapolated to account for bulk nucleosomes. 

Most collections of nucleosome sequences published to date have uti­
lized single-end reads: only one end of the �150-bp mononucleosome 
cores is sequenced and mapped onto the reference genome. The other 
end of the nucleosome core particle has to be inferred by adding 147 bp 
to the starting position of the sequence read. This procedure assumes 
that MNase treatment liberates nucleosome core particles precisely, with­
out leaving undigested DNA at the nucleosome termini or digesting 
nucleosome-covered DNA. A measure of MNase-cutting precision is pro­
vided by plotting a correlation function between the starting coordinates 
of the sequence reads mapped onto the Watson (W) and Crick (C) DNA 
strands, respectively (Fig. 4). Although there is a distinct maximum at 
0 bp lag (which corresponds to the 147-bp separation between the start­
ing positions of the sequence reads mapped onto the W and C strands), 
the width of the peak clearly shows that the majority of mononucleosome 
cores are not isolated with a bp-level precision. The question of how 
precisely nucleosome core particles are located with respect to sequence 
read coordinates can be further addressed using paired-end reads (in 
which, as its name suggests, both ends of the DNA molecule are 
sequenced and mapped, so that its length is known exactly). 

Another potential issue in nucleosome-positioning studies is MNase 
sequence specificity. It is unlikely that MNase actively repositions nucleo­
somes, because experiments done with and without nucleosome cross-
linking yield similar patterns of nucleosome organization and similar 
sequence determinants of nucleosome positioning (Kaplan et al., 2009). 
However, the question of whether MNase-binding specificity can bias 
which nucleosomes get sequenced (by preferentially isolating mononu­
cleosome cores flanked by “good” MNase-binding sites) is not fully 
resolved in the literature. While some authors argue that MNase-binding 
specificity is negligible (Ozsolak et al., 2007; Field et al., 2008), others 
explain observed A/T enrichment in regions flanking nucleosome core 
particles as a consequence of preferential cleavage by micrococcal nucle­
ase (Johnson et al., 2006; Valouev et al., 2008). 

High-throughput nucleosome-positioning studies have established a 
canonical picture of nucleosome organization in genic and intergenic 
regions. As shown in Fig. 3, most yeast genes are flanked by 50 and 30 

NDRs, which help arrange genic nucleosomes into quasi-periodic 
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arrays. Although most authors agree that intrinsic sequence preferences 
play a certain role in establishing in vivo nucleosome positions, there is a 
range of opinions as to how important this role is. 
One series of studies argues on the basis of the strong correlation 

between sequence-based bioinformatics models and in vivo occupancy 
profiles that most nucleosomes in living cells are positioned by sequence 
(Segal et al., 2006; Field et al., 2008; Kaplan et al., 2009). A competing 
view, the so-called barrier model of nucleosome positioning, emphasizes 
that regular nucleosomal arrays can be created simply by steric exclusion 
(Mavrich et al., 2008a; Zhang et al., 2009). The ends of such arrays may 
be defined by nucleosome-excluding sequence elements, by “anchoring” 
nucleosomes optimized for binding affinity and/or stabilized by interac­
tions with other proteins and protein complexes, or by DNA-bound TFs. 
According to this view, most nucleosomes need not be sequence-specific. 
It is interesting to note that there are significant differences between 
in vitro and in vivo nucleosome occupancy profiles: the 50 NDR is signifi­
cantly less pronounced in vitro and there are no nucleosome-size oscilla­
tions over ORFs (Fig. 3). Thus nucleosomes are not intrinsically ordered 
with respect to the TSS and borders of in vivo arrays are shaped by (yet 
unknown) external factors, for example, by interactions with the compo­
nents of transcription initiation machinery (Zhang et al., 2009). Surpris­
ingly, there is no difference between in vitro and in vivo 30 NDRs, which 
thus appear to be established mainly through nucleosome-disfavoring 
sequences. 
In this review we have deliberately not focused on the nucleosome 

occupancy in the vicinity of TF-binding sites. It is harder to see the 
general picture here because the relationship between nucleosomes and 
TFs is much more varied, and because precise genomic locations of TF-
binding sites are not always known. Nevertheless, it appears that nucleo­
somes are intrinsically depleted over some types of TF-binding sites, 
whereas for other factors (such as Abf1 and Reb1 in yeast) there are 
marked differences between in vivo and in vitro nucleosome occupancies 
(Kaplan et al., 2009). In accordance with this view, chromatin appears 
surprisingly stable with respect to environmental (Shivaswamy et al., 
2008; Zawadzki et al., 2009) and genetic (Whitehouse et al., 2007) 
perturbations. Overall, there are only minor changes in nucleosome 
positions and numbers, indicating that chromatin is largely “pre-set” for 
transcriptional response. 
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Computational approaches to predicting nucleosome occupancies can 
be based on either physics or bioinformatics. Physical models of nucleo­
some formation energies employ DNA elasticity theory (in some cases 
augmented with additional terms that take into account conformational 
entropy, intrinsic DNA curvature, etc.) to compute the sequence-
dependent free energy of bending the 147-bp long DNA into a nucleo­
somal superhelix. Free energies computed at every base pair along the 
DNA sequence can then be used as input to the dynamic programming 
algorithm (Morozov et al., 2008), which solves the many-body problem of 
positioning multiple nucleosomes on DNA without steric overlap (even 
though most physics-based studies do not attempt to derive nucleosome 
occupancies from free-energy predictions). Unlike bioinformatics 
approaches, physical models do not utilize training sets of NPSs, which 
could lead to biased predictions if all sequences came from a particular 
genome or if the sequence set was not sufficiently large. However, elastic 
potentials typically depend on empirical coefficients such as equilibrium 
values of DNA geometric parameters. Such coefficients have to be esti­
mated from structural data or molecular mechanics simulations, making 
the models dependent on the quality of the estimates. 

In contrast to the bioinformatics approaches designed to search for 
DNA sequence signals that discriminate between nucleosome-enriched 
and nucleosome-depleted regions, physical models can explain observed 
sequence patterns in terms of elastic energies associated with DNA bend­
ing and the corresponding geometries of the nucleosomal DNA. If the 
DNA conformation is allowed to relax, such models are even capable of 
predicting the minimum-energy DNA conformation for comparison with 
crystal structures (Morozov et al., 2008). It appears that physical models 
can predict free energies and in vitro positions of single nucleosomes 
reconstituted on artificial and natural sequences reasonably well (Tolstor­
ukov et al., 2007; Morozov et al., 2009; Scipioni et al., 2009). Their 
genome-wide accuracy is less clear: some papers do not make genome-
wide predictions at all (Tolstorukov et al., 2007; Morozov et al., 2009) 
while others provide limited comparisons that do not include latest 
data sets or bioinformatics models (Miele et al., 2008; Scipioni et al., 
2009). It would be of great interest to test physical models against 
each other and against their bioinformatics counterparts using latest 
high-throughput parallel sequencing data sets and a uniform set of 
performance metrics. 
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Bioinformatics approaches employ a wide range of statistical techni­
ques (including support vector machines, wavelet analysis, and Markov 
models) to assign nucleosome-positioning scores. Although a rigorous 
comparison between all published models is not available, it is fair to 
say that the latest generation of bioinformatics models can be used to 
discriminate nucleosome-enriched from nucleosome-depleted regions 
with high accuracy and to predict general features of nucleosome orga­
nization such as 50 and 30 NDRs. An interesting hybrid approach has been 
developed by Eran Segal and coworkers (Segal et al., 2006; Field et al., 
2008; Kaplan et al., 2009). As discussed in detail in Section III.B.1, the 
authors compute a nucleosome-positioning score by first making an 
alignment of a large number of nucleosomal sequences obtained from a 
high-throughput parallel sequencing run. Next they define a log-score 
based on: a) the dinucleotide distribution at each position in the nucleo­
somal site; and b) the position-independent distribution of 5 bp words 
inside and outside nucleosomes. The bioinformatics scores at each 
genomic position are then treated as “energies” and used to predict 
genome-wide nucleosome occupancy profiles by solving the many-body 
problem of positioning multiple nucleosomes on the genomic DNA (Sec­
tion III.C). The latest iteration of this model is based on the in vitro 
nucleosome-positioning data set and is capable of predicting the in vitro 
occupancy profile with a correlation coefficient of 0.89 (Kaplan et al., 
2009). 
We expect that a more uniform view of the factors responsible for in vivo 

nucleosome positioning will emerge in the near future. Comparisons 
between various models and a careful analysis of the observed nucleosome 
sequence featureswill help establish the limits of applicability and the relative 
strengths and weaknesses of alternative modeling approaches. Future com­
putational predictions of nucleosome positions should be equally applicable 
to genomic sequences from multiple organisms and to synthetic DNA, and 
will establish the relative importance of intrinsic nucleosome sequence pre­
ferences in maintaining and regulating in vivo chromatin. 
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