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ESERCIZIO 1. Calcolare l’area della superficie il cui sostegno è il grafico della funzione

f(x1, x2) =
x2

1
4 +

x2
2

6 con x ∈ D =

x2
1

4 +
x2

2
9 ≤ 1

⊆�
2

ESERCIZIO 2. Calcolare l’area della superficieÎ, porzione del luogo degli zeri dell’equazione
{
x2

1 + x2
2 = 2x1

}
delimitata

dalle falde del cono
{
x2

3 = x2
1 + x2

2
}
.

ESERCIZIO 3. Calcolare l’area della superficie ottenuta dalla rotazione intorno all’asse x1 della curva

(x1(t),x2(t)) =
(
et sin(t),et cos(t)

)
t ∈ [0,π/2]

ESERCIZIO 4. Calcolare il volume del solido S ottenuto ruotando intorno all’asse x3 la figura contenuta nel piano
{x2 = 0} definita come D = {(x1, x3) ∈�

2 : 0≤ x3 ≤ 1− x2
1 }.

ESERCIZIO 5. Data la densità di massa δ(x) = K0(x2
1 + x2

2), si trovi il baricentro del solido C = {0≤ x3 ≤ H,x2
1 + x2

2 ≤
R2}.

ESERCIZIO 6. Calcolare l’integrale
$

B

[
x2

1 + x2
2
]

dx1dx2dx3 dove B = B(O,R) = {x2
1 + x2

2 + x2
3 ≤ R2}.

ESERCIZIO 7. Sia M = {G(x1, x2, x3) = 0} ⊆ �
3 un sottoinsieme dello spazio tale che G ∈ C∞(�3), O ∈ M e

∂3G(O) , 0. Allora si scriva
i. l’equazione del piano tangente ad M in O,
ii. l’equazione del versore normale ad M in O,
iii. l’espressione della prima forma fondamentale di M in O.
Infine si spieghi perché M, intorno ad O, è una superficie regolare.

ESERCIZIO 8. Calcolare l’area dell’insieme D delimitato dalla curva
γ :

{
x(t) = (x1(t),x2(t)) =

(
cos(t)sin2(t), sin(t)cos(t)

)
, t ∈ [0,π/2]

}
ESERCIZIO 9. Sia D = {(x1, x2) ∈�

2 : x2
1 + (x2− 1)2 ≤ 2,x2 ≥ 1− x2

1 }, si disegni D e se ne calcoli l’area.

ESERCIZIO 10. Calcolare il flusso del campo vettoriale F(x) = (x1, x2, x2
3) uscente dalla superficieÎdel cilindro x2

1 +x2
2 =

4, delimitato dai piani x3 =−1 e x3 = 2.
1



2 ��

ESERCIZIO 11. Calcolare il flusso di F = (x3, x2
1 x2, x2

2x3) uscente dalla superficie che delimita il solido

E = {x ∈�
3 : 2

√
x2

1 + x2
2 ≤ x3 ≤ 1 + x2

1 + x2
2}

ESERCIZIO 12. Sia Î⊆�
3 l’immagine della parametrizzazione

φ(w,z) =
(
w2− z2,w2, z2) con (w,z) ∈ [0, 1]2

i. si mostri che Î è una superficie regolare orientabile,
ii. se ne calcoli l’area,
iii. si calcoli il flusso del campo F(x) = (x1, x2, x3) attraverso la superficie.

ESERCIZIO 13. Assegnati la regione dello spazio D =
{
1≤ x2

1 + x2
2 ≤ x3 ≤ 2(x2

1 + x2
2)≤ 4

}
⊆ �

3 e il campo vettoriale
F(x) = (x1, x2,0), si calcoli la quantità Ð∂D(F).

ESERCIZIO 14. Si calcoli il flusso Ð∂D(F), dove D = B(O, r) e F = (a,b,c).

SVOLGIMENTI

ESERCIZIO 1. Calcolare l’area della superficie il cui sostegno è il grafico della funzione

f(x1, x2) =
x2

1
4 +

x2
2

6 con x ∈ D =

x2
1

4 +
x2

2
9 ≤ 1

⊆�
2

DISCUSSIONE. Verifichiamo che abbiamo a che fare con una superficie regolare introducendo la seguente
parametrizzazione ricavata dall’espressione della funzione

φ(u) =
u1,u2,

u2
1

4 +
u2

2
6

 u ∈ D

Tale parametrizzazione ha come componenti funzioni differenziabili (in realtà di classe C∞) ed è iniettiva, visto
che la restrizione alle prime due componenti è l’identità di �2, quindi verifichiamo la condizione sul rango della
matrice jacobiana

∂1φ(u) =
(
1,0, u1

2

)
∂2φ(u) =

(
0,1, u2

3

)
da cui [

∂1φ∧ ∂2φ
] (u) =

(
−

u1
2 ,−u2

3 , 1
)

quindi la superficie è regolare, visto che la terza componente del prodotto vettoriale è sempre diversa da 0.
A questo punto ricordiamo che usiamo Î per indicare il sostegno della superficie, cioè l’immagine φ(D) e che,
per definizione, vale

m2(Î) =
"

Î

dσ =
"

D
∥
[
∂1φ∧ ∂2φ

] (u)∥2du1du2 =
"

D

u2
1

4 +
u2

2
9 + 1

1/2

du1du2

Il calcolo dell’integrale doppi risulta più semplice ricorrendo al seguente cambio di variabili{
u1 = 2ρcos(θ)
u2 = 3ρsin(θ) di matrice jacobiana

(
2cos(θ) −2ρsin(θ)
3sin(θ) 3ρcos(θ)

)
Il cambio proposto trasforma l’integrale nel seguente modo

m2(Î) =
∫ 1

0

[∫ 2π

0

(
ρ2 + 1

)1/2
6ρdθ

]
dρ = 6π

∫ 1

0

[
2ρ

(
ρ2 + 1

)1/2]
dρ

= 4π
[(
ρ2 + 1

)3/2]1

0
= 4π

[
2
√

2− 1
]
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e, salvo sviste, abbiamo ottenuta l’area desiderata.

ESERCIZIO 2. Calcolare l’area della superficieÎ, porzione del luogo degli zeri dell’equazione
{
x2

1 + x2
2 = 2x1

}
delimitata

dalle falde del cono
{
x2

3 = x2
1 + x2

2
}
.

DISCUSSIONE. È (relativamente) facile accorgersi che il luogo degli zeri dell’equazione
{
x2

1 + x2
2 = 2x1

}
può es-

sere riscritto come
{
(x1− 1)2 + x2

2 = 1
}
, questo rivela che si tratta di un cilindro con asse di simmetria la retta

{x1− 1 = 0}∩ {x2 = 0} e avente intersezione con il piano {x3 = 0} la circonferenza centrata in (1,0) di raggio 1.
Per contro il cono di equazione

{
x2

3 = x2
1 + x2

2
}

ha asse di simmetria l’asse x3, quindi la superficie Î è una porzione
di cilindro, delimitata dalle curve che sono intersezione tra cono e cilindro.
Per ottenere una parametrizzazione della superficie Î possiamo procedere nel seguente modo: innanzitutto
sfruttiamo il fatto di avere a che fare con una porzione di un cilindro, il che ci permette di scrivere la seguente
parametrizzazione per la circonferenza (cioè la sezione del cilindro)(x1(θ), x2(θ)) = (1 + cos(θ), sin(θ)) θ ∈ [0,2π]

A questo punto notiamo che

x2
3 = x2

1 + x2
2 = 2x1 da cui otteniamo x3 =±

√
2x1

il precedente calcolo mostra che, per ogni punto della circonferenza, che è la sezione del cilindro, la superficie
Î è un segmento verticale con estremi dipendenti da x1, cioè che

x3 =
√

2x1s = [1 + cos(θ)]1/2 s s ∈ [−1, 1]

Riassumendo abbiamo ottenuto la parametrizzazione

x(θ, s) = (x1(θ, s), x2(θ, s), x3(θ, s)) =
(
1 + cos(θ), sin(θ), [1 + cos(θ)]1/2 s

)
(θ, s) ∈ K = [0,2π]× [−1, 1]

tale parametrizzazione è iniettiva e composta di funzioni differenzialbili, quindi dobbiamo solo calcolare il
rango della matrice jacobiana dell’applicazione tramite il seguente prodotto vettoriale

∂1x(θ, s) =
(
−sin(θ), cos(θ),− sin(θ)s

2[1 + cos(θ)]1/2

)
∂2x(θ, s) =

(
0,0, [1 + cos(θ)]1/2)

[∂1x∧ ∂2x](θ, s) =
(
cos(θ) [1 + cos(θ)]1/2 , sin(θ) [1 + cos(θ)]1/2 ,0

)
Si noti che tale vettore non è definito per θ = π e per ogni s, quindi la parametrizzazione, cos̀ı come scritta,
non produce una superficie regolare nel senso della definizione data a lezione. Per fortuna possiamo risolvere
facilmente utilizzando la parametrizzazione

x(θ, s) = (x1(θ, s), x2(θ, s), x3(θ, s)) =
(
1 + cos(θ), sin(θ), [1 + cos(θ)]1/2 s

)
(θ, s) ∈ K = [−π,π]× [−1, 1]

che sposta i valori incriminati sul bordo di K, rendendo la superficie regolare nell’interno di K! Per terminare
calcoliamo l’area della superficie ricordando la definizione

A(Î) =
∫
Î

dσ =
"

K
∥(∂1x∧ ∂2x)(θ, s)∥2dθds =

∫ 1

0

∫ π
−π

[1 + cos(θ)]dθds = 2π

e concludendo lo svolgimento.

ESERCIZIO 3. Calcolare l’area della superficie ottenuta dalla rotazione intorno all’asse x1 della curva

(x1(t),x2(t)) =
(
et sin(t),et cos(t)

)
t ∈ [0,π/2]

DISCUSSIONE. Le superfici di rotazione costituiscono una classe di superfici molto interessante, con pro-
prietà peculiari, naturalmente per poter studiare la superficie è necessario ottenre una sua parametrizzazione.
Dunque scriviamo che

x(t, s) =
(
et sin(t),et cos(t)cos(s),et cos(t)sin(s)

)
(t, s) ∈ [0,π/2]× [0,2π]
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dove la parametrizzazione è stata ottenuta nel seguente modo: partendp dalla curva iniziale e pensandola nel
piano {x3 = 0}, la rotazione attorno all’asse x1 fa s̀ı che le componenti ortogonali x2 e x3 variano descrivendo
una circonferenza, il parametro s è il parametro angolare della rotazione.
Le superfici costruite in questo modo sono sempre superfici regolari, a patto che la curva di partenza sia regolare
e non abbia intersezioni con la retta intorno alla quale ruota. Verifichiamo la condizione di indipendenza lineare
dei vettori tangenti

∂1x(t, s) = et (sin(t) + cos(t), (cos(t)− sin(t))cos(s), (cos(t)− sin(t)) sin(s))
∂2x(t, s) = et (0,−cos(t)sin(s), cos(t)cos(s))

[∂1x∧ ∂2x](t, s) = e2t cos(t) ((cos(t)− sin(t)),−(cos(t) + sin(t))cos(s),−(cos(t) + sin(t)) sin(s))

∥[∂1x∧ ∂2x](t, s)∥2 =
√

2e2t cos(t)

con (t, s) ∈ [0,π/2]× [0,2π]. Il calcolo dell’area della superficie si riduce al seguente integrale

A =
"

K
∥∂1x∧ ∂2x∥2dsdt =

"
K

√
2e2t cos(t)dsdt =

[∫ π/2

0

√
2e2t cos(t)dt

][∫ 2π

0
ds

]
= 2
√

2π
[

1
5 e2t(2cos(t) + sin(t))

]π/2

0
= 2
√

2
5 π[eπ − 2]

dove abbiamo integrato per parti un paio di volte per ottenere un primitiva della funzione integranda.

ESERCIZIO 4. Calcolare il volume del solido S ottenuto ruotando intorno all’asse x3 la figura contenuta nel piano
{x2 = 0} definita come D = {(x1, x3) ∈�

2 : 0≤ x3 ≤ 1− x2
1 }.

DISCUSSIONE. La regione D ⊆ {x2 = 0} è la porzione del piano delimitata da un arco di parabola e dall’asse
x1, rappresentata nella seguente figura

x1

x3

O
(1,0)

(0, 1)

D∗

Poiché la regione deve ruotare intorno all’asse x3, per descrivere il solido, per motivi di parità possiamo limitarci
a considerare la rotazione completa della zona avente il bordo azzurro, che possiamo descrivere come dominio
normale nei seguenti due modi

D∗ =
{
0≤ x1 ≤ 1;0≤ x3 ≤ 1− x2

1
}

=
{
0≤ x3 ≤ 1;0≤ x1 ≤

√
1− x3

}
Il calcolo del volume del solido S può essere compiuto (almeno) in quattro modi che andremo a analizzare
uno per volta: quindi procederemo per fili, per sezioni, tramite le coordinate cilindriche e usando il teorema di
Guldino.
Teorema di Guldino: questa strategia consiste nella semplice applicazione di un risultato (valido solo per solidi
ottenuti tramite rotazione), l’enunciato afferme che il volume del solido è pari alla lunghezza della circonferenza
descritta dal baricentro b della sezione D∗ moltiplicato per l’area della regione piana che ruota, in formule

m3(S) = 2πb1m2(D∗) = 2π
"

D∗
x1dx1dx3
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dove la seconda formula discende dal fatto che

bj =

!
D∗ xjdx1dx3
m2(D∗) j = 1,3

Da quanto detto otteniamo che

m3(S) = 2π
∫ 1

0
x1

∫ 1−x2
1

0
dx3

dx1 = 2π
∫ 1

0
x1(1− x2

1 )dx1 = 2π
x2

1
2 −

x4
1

4

1

0
= π2

Coordinate cilindriche: in questa tecnica impieghiamo un cambio di variabili molto comodo per lo studio di
solidi di rotazione (che di fatto è alla base del teorema di Guldino), il solido ha la seguente descrizione, in
termini di coordinate cartesiane

S =
{
x ∈�

3 : x2
1 + x2

2 ≤ 1,0≤ x3 ≤ 1− (x2
1 + x2

2)
}

e ricordando che
x1 = rcos(θ)
x2 = rsin(θ)
x3 = t

e che det[J] = r

otteniamo la seguente descrizione del solido S, in qualità di dominio normale, nel nuovo sistema di riferimento
S̃ = {0≤ θ ≤ 2π,0≤ r≤ 1,0≤ t≤ 1− r2} e l’integrale si trasforma nel seguente modo

m3(S) =
$

S
dx1dx2dx3 =

$
S̃

rdrdθdt = 2π
∫ 1

0
r
∫ 1−r2

0
dt

dr = 2π
∫ 1

0
r(1− r2)dr = π2

ottenendo (come deve essere) lo stesso risultato ricavato tramite il teorema di Guldino.
Integrazione per sezioni: questa strategia sfrutta il seguente risultato valido per la misura di Lebesgue

m3(S) =
∫
�

m2(S(t))dt dove S(t) = S∩{x3 = t}

questa tecnica di integrazione si rivela facile, almeno in questo caso, perché le sezioni S(t) sono dei cerchi e la
loro misura si calcola rapidamente, infatti vale

m2(S(t)) = m2(S∩{x3 = t}) = m2
({

x2
1 + x2

2 ≤ (1− t)
})

= π(1− t) solo per t ∈ [0, 1]

visto che S(t) = ∅ se t < [0, 1]. Quindi otteniamo che

m3(S) =
∫
�

π(1− t)χ[0,1](t)dt =
∫ 1

0
π(1− t)dt = π

[
t− 1

2 t2
]1

0
= π2

Integrazione per fili: quest’ultimo approccio è analogo al precedente, infatti possiamo scrivere che

m3(S) =
"

�
2

m1(S(w))dw1dw2 dove S(w) = S∩{x1 = w1, x2 = w2}

Nel nostro caso vale

S(w) =
{ {

0≤ x3 ≤ 1− (w2
1 + w2

2)
}

w ∈ B
∅ altrimenti

e quindi m1(S(w)) = (1−w2
1 −w2

2)χB(w)
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dove B = B(O, 1) = {w ∈�
2 : w2

1 + w2
2 ≤ 1}. Dalla precedente osservazione possiamo dedurre che

m3(S) =
"

�
2

m1(S(w))dw1dw2 =
"

B

[
1−w2

1 −w2
2
]

dw1dw2

= 4
∫ 1

0


∫ √

1−w2
1

0

[
1−w2

1 −w2
2
]

dw2

dw1 = 4
∫ 1

0

[
w2−w2

1 w2−
1
3 w3

2

]√1−w2
1

0
dw1

= 4
∫ 1

0

[
(1−w2

1 )
√

1−w2
1 −

1
3 (1−w2

1 )
√

1−w2
1

]
dw1 = 8

3

∫ 1

0
(1−w2

1 )
√

1−w2
1 dw1

= 8
3

∫ π/2

0

(
1− sin2(θ)

)
cos2(θ)dθ = 8

3

∫ π/2

0

1
4

[
1 + 2cos(2θ) + 1

2 (1 + cos(4θ))
]

dθ

=
∫ π/2

0
dθ = π2

nello svolgimento del calcolo abbiamo impiegato il cambio di variabile w1 = sin(θ).
Questa breve rassegna di tecniche di integrazione suggerisce che la strategia migliore è (quasi) sempre quella
di sfruttare le eventuali simmetrie del dominio di integrazione, piuttosto che preoccuparsi della funzione in-
tegranda: il punto chiave è che il calcolo degli integrali multipli presenta due livelli di difficoltà, uno dovuto al
calcolo di primitive (che è una difficoltà ineludibile), l’altro è dovuto alla complicazione della descrizione dell’in-
sieme di integrazione come dominio normale e tale complicazione può essere semplificata solo trasformando
il dominio in un parallelepipedo, cioè usando una strategia di integrazione che miri prima di tutto a semplificare
l’espressione del dominio.

ESERCIZIO 5. Data la densità di massa δ(x) = K0(x2
1 + x2

2), si trovi il baricentro del solido C = {0≤ x3 ≤ H,x2
1 + x2

2 ≤
R2}.

DISCUSSIONE. il baricentro di C, che è un cilindro avente cerchio di base di raggio R ed altezza H è il punto
b ∈�

3 tale che

bj = 1
m

$
C

xjδ(x)dx1dx2dx3 per j = 1,2,3 e m =
$

C
δ(x)dx1dx2dx3

Prima di iniziare a svolgere calcoli osserviamo che le funzioni x1δ(x) e x2δ(x) sono dispari rispetto ai piani {x1 = 0}
e {x2 = 0}, quindi il loro integrale su C, che invece è simmetrico rispetto a tali piani, è nullo, per cui segue
b1 = b2 = 0. Per il resto, grazie alle coordinate cilindriche, abbiamo che

m = K0

$
C

(x2
1 + x2

2)dx1dx2dx3 = K0

$
C̃

r2 · rdrdtdθ

= K0

∫ 2π

0

[∫ H

0

[∫ R

0
r3dr

]
dt

]
dθ = K0 · 2π ·H ·

1
4 R4 = 1

2πK0HR4

e anche"
C

x3δ(x1, x2)dx1dx2dx3 = K0

$
C

x3(x2
1 + x2

2)dx1dx2dx3 = K0

$
C̃

tr2 · rdrdtdθ

= K0

∫ 2π

0

[∫ H

0
t
[∫ R

0
r3dr

]
dt

]
dθ = K0 · 2π ·

1
2 H2 ·

1
4 R4 = 1

4πK0H2R4

da cui ricaviamo che il baricentro è il punto b =
(
0,0, 1

2 H
)
.

ESERCIZIO 6. Calcolare l’integrale
$

B

[
x2

1 + x2
2
]

dx1dx2dx3 dove B = B(O,R) = {x2
1 + x2

2 + x2
3 ≤ R2}.

DISCUSSIONE. Per il calcolo dell’integrale ricorriamo alle coordinate sferiche, visto che il dominio di integra-
zione B ossiede una evidente simmetria sferica e, quasi sempre, il cambio di variabile che più semplifica il
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calcolo degli integrali multipli è suggerito dalla geometria del dominio di integrazione più che dall’espressione
della funzione integranda. Allora ricordando che

x1 = rcos(θ) sin(φ)
x2 = rsin(θ) sin(φ)
x3 = rcos(φ)

(r,φ,θ) ∈ K = [0,+∞)× [0,π]× [0,2π]

otteniamo$
B

[
x2

1 + x2
2
]

dx1dx2dx3 =
$

B̃
r2 sin2(φ) · r2 sin(φ)drdφdθ = 2π

∫ π
0

sin3(φ)dφ
∫ R

0
r4dr

= 2πR5

5

∫ π
0

sin(φ)(1− cos2(φ))dφ = 8
15πR5

e l’esercizio è portato a compimento.

ESERCIZIO 7. Sia M = {G(x1, x2, x3) = 0} ⊆ �
3 un sottoinsieme dello spazio tale che G ∈ C∞(�3), O ∈ M e

∂3G(O) , 0. Allora si scriva
i. l’equazione del piano tangente ad M in O,
ii. l’equazione del versore normale ad M in O,
iii. l’espressione della prima forma fondamentale di M in O.
Infine si spieghi perché M, intorno ad O, è una superficie regolare.

DISCUSSIONE. i. & ii. Le ipotesi contenute nel testo ci permettono di applicare il teorema delle funzioni implici-
te per rispondere alle richeste dell’esercizio. Dunque osserviamo subito che il teorema di Dini assicura l’esistenza
di una funzione g ∈ C∞(B,�), con B = B(O,ε)⊆�

2, tale che

i. g(O) = 0
ii. G(x1, x2, g(x1, x2)) = 0 per ogni (x1, x2) ∈ B
iii. se ∥x−O∥2 ≤ δ e G(x) = 0 allora x3 = g(x1, x2)

inoltre sappiamo che

∇g(x1, x2) =− 1
∂3G(x1, x2, g(x1, x2))

(
∂1G(x1, x2, g(x1, x2)),∂2G(x1, x2, g(x1, x2)))

quindi, in particolare, vale che

∇g(0,0) =−
(
∂1G(0),∂2G(O))
∂3G(O)

questo ci permette di ottenere l’equazione del piano tangente ad M in O, come l’equazione del piano tangente
al grafico di g nel punto O = (0,0,g(0,0)), che è

x3 = g(0,0) +∇g(0,0) · (x1, x2) =−∂1G(0)x1 + ∂2G(O)x2
∂3G(O)

che possiamo riscrivere, più elegantemente, nel seguente modo

∂1G(0)x1 + ∂2G(O)x2 + ∂3G(O)x3 =∇G(O) · x = 0

Dalla precedente espressione segue che il versore normale al piano tangente, e quindi ad M, è ∇G(O)
∥∇G(O)∥2

.

iii. M è, nei dintorni di O, una superficie regolare in quanto è il grafico di una funzione di classe C1, come prova
il teorema della funzione implicita, e il teorema in questione suggerisce anche una buona parametrizzazione
della superficie

x(u) = (u1,u2, g(u1,u2)) con u = (u1,u2) ∈ B
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O

x(π/6)
x(π/3)

√
3/4

FIGURA 1. Curva dell’esercizio ??.

inoltre vale

∂1x(u) = (1,0,∂1g(u1,u2)) =
(
1,0,− ∂1G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2))

)
∂2x(u) = (0,1,∂2g(u1,u2)) =

(
0,1,−∂2G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2))

)
∂1x∧ ∂2x =

(
∂1G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2)) , ∂2G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2)) , 1
)

a questo punto è facile ricavare i coefficienti della prima forma fondamentale della superficie, che sono

E = ∂1x · ∂1x = 1 +
[
∂1G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2))

]2

F = ∂1x · ∂2x = ∂1G(x1, x2, g(x1, x2)) · ∂2G(x1, x2, g(x1, x2))
|∂3G(x1, x2, g(x1, x2))|2

G = ∂2x · ∂2x = 1 +
[
∂2G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2))

]2

il che mette fine allo svolgimento.

ESERCIZIO 8. Calcolare l’area dell’insieme D delimitato dalla curva
γ :

{
x(t) = (x1(t),x2(t)) =

(
cos(t)sin2(t), sin(t)cos(t)

)
, t ∈ [0,π/2]

}
DISCUSSIONE. La curva è rappresentata in figura ?? e la parametrizzazione assegnata percorre la curva in
verso orario (quindi negativo), infatti x(t) percorre il sostegno di γ in verso orario dato che

x(0) = (0,0) x
(
π

6

)
=
(√

3
8 ,
√

3
4

)
x
(
π

3

)
=
(

3
8 ,
√

3
4

)
Per il calcolo dell’area, come in altri esercizi, usiamo le formule di Gauss-Green, cioè

A(D) =
∫
∂D+

x1dx2 =−
∫
∂D+

x2dx1 = 1
2

∫
∂D+

x1dx2− x2dx1

in questo caso utilizziamo la prima formula ottenendo

A(D) =−
∫
∂D+

x1dx2 =−
∫ π/2

0
sin2(t)cos(t)

(
cos2(t)− sin2(t)

)
dt

=−
∫ π/2

0
sin2(t)

(
1− 2sin2(t)

)
cos(t)dt =−

∫ 1

0
u2(1− 2u2)du = 1

15
Osserviamo che nella risoluzione degli integrali abbiamo impiegato la sostituzione u = sin(t).
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ESERCIZIO 9. Sia D = {(x1, x2) ∈ �
2 : x2

1 + (x2 − 1)2 ≤ 2,x2 ≥ 1− x2
1 }, si disegni D e se ne calcoli l’area usando le

formule di Gauss-Green.

DISCUSSIONE. L’insieme D è la porzione del cerchio di raggio
√

2 e centro (0, 1) che si trova al di sopra della
parabola di equazione x2 = 1− x2

1 , come suggerito dal disegno

Il bordo di D è costituito dall’unione di due curve: un arco di parabola γ1 e un arco di circonferenza γ2, le cui
parametrizzazioni sono

γ1 =
{
x(t) = (t, 1− t2) : t ∈ [−1, 1]

}
e γ2 =

{
y(θ) =

(√
2cos(θ), 1 +

√
2sin(θ)

)
: θ ∈

[
−
π

4 , 5π
4

]}
da cui

x′(t) = (1,−2t) e y′(θ) =
(
−
√

2sin(θ),
√

2cos(θ)
)

Applicando Gauss-Green abbiamo che

A(D) =
∫
∂D+

x1dx2 =
∫
γ1

x1dx2 +
∫
γ2

x1dx2 =−2
∫ 1

−1
t2dt + 2

∫ 5π/4

−π/4
cos2(θ)dθ

=−4
3 +

[
θ + sin(θ)cos(θ)

]5π/4

−π/4
=−4

3 + 3
2π + 1

2 + 1
2 = 3

2π−
1
3

Il calcolo dell’area tramite un integrale doppio si sarebbe rivelato più impegnativo del precedente, il lettore è
invitato a sincerarsi di questa affermazione...

ESERCIZIO 10. Calcolare il flusso del campo vettoriale F(x) = (x1, x2, x2
3) uscente dalla superficieÎdel cilindro x2

1 +x2
2 =

4, delimitato dai piani x3 =−1 e x3 = 2.

DISCUSSIONE. Î è la superficie che delimita il solido

E = {x = (x1, x2, x3) ∈�
3 :−1≤ x3 ≤ 2,x2

1 + x2
2 ≤ 4}

e per il teorema della divergenza, possiamo scrivere che"
Î

F ·ndσ =
$

E
div(F)(x)dx1dx2dx3 =

$
E
∇ · F(x)dx1dx2dx3

Dato che

div(F)(x) = ∂1F1(x) + ∂2F2(x) + ∂3F3(x) = 1 + 1 + 2x3 = 2(1 + x3)

il calcolo del flusso può essere ricondotto al calcolo del seguente integrale triplo

2
$

E
(1 + x3)dx1dx2dx3

Applichiamo la strategia d’integrazione per strati dato che possiamo descrivere il cilindro come segue

E = {(x1, x2, x3) ∈�
3 :−1≤ x3 ≤ 2, (x1, x2) ∈ D} con D = {x ∈�

2 : x2
1 + x2

2 ≤ 4}
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per cui otteniamo che

2
$

E
(1 + x3)dx1dx2dx3 = 2

∫ 2

−1
(1 + x3)m2(D)dx3 = 8π

∫ 2

−1
(1 + x3)dz = 8π

[
x3 + 1

2 x2
3

]2

−1
= 36π

Si poteva anche calcolare il flusso usando direttamente la sua definizione come integrale di superficie, per
completezza seguiamo anche questa strada e iniziamo notando che Î è composta dall’unione di tre superfici
regolari: la superficie laterale del cilindro

Î1 :
{
x2

1 + x2
2 = 4,−1≤ x3 ≤ 2

}
la base del cilindro

Î2 :
{
x2

1 + x2
2 ≤ 4,x3 =−1

}
il coperchio (o tappo) del cilindro

Î3 :
{
x2

1 + x2
2 ≤ 4,x3 = 1

}
Calcoliamo separatamente il flusso attraverso le tre parti regolari che compongono la superficie. Una possibile
parametrizzazione per Î1 è

x(u) = (2cos(u1),2sin(u1),u2
) (u1,u2) ∈ D = [0,2π]× [−1,2]

La normale uscente indotta dalla parametrizzazione su Î1 risulta n(u) = (cos(u1), sin(u1),0), quindi

F ·n = 2 e vale dσ = 2du1du2

per cui possiamo scrivere che"
Î1

[F ·n]dσ = 4
"

D
du1du2 = 16π = 4

∫ 2π

0

[∫ 2

−1
du1

]
du1 = 24π

Il fondo Î2 può essere parametrizzato con le seguenti equazioni

x(r,θ) = (rcos(θ), r sin(θ),−1) con (r,θ) ∈ D = [0,2]× [0,2π]

La normale uscente è n = (0,0,−1) =−e3, quindi"
Î2

[F ·n]dσ
"

Î2

−x2
3dσ =−

"
D

rdrdθ =−
∫ 2π

0

[∫ 2

0
rdr

]
dθ =−2π ·

[
r2

2

]2

0
=−4π

Il tappo Î3 ha, per esempio, equazioni parametriche analoghe a quelle di Î2, per cui possiamo scrivere

x(r,θ) = {rcos(θ), r sin(θ),2) con (r,θ) ∈ D = [0,2]× [0,2π]

la normale uscente è n = (0,0, 1) = e3e quindi segue"
Î3

[F ·n]dσ = 4
"

D
rdrdθ = 16π

Si ottiene quindi"
Î

[F ·n]dσ =
"

Î1

[F ·n]dσ +
"

Î2

[F ·n]dσ +
"

Î3

[F ·n]dσ = 24π−4π + 16π = 36π

Ovviamente i due risultati coincidono, come suggerisce la teoria.

ESERCIZIO 11. Calcolare il flusso di F = (x3, x2
1 x2, x2

2x3) uscente dalla superficie che delimita il solido

E = {x ∈�
3 : 2

√
x2

1 + x2
2 ≤ x3 ≤ 1 + x2

1 + x2
2}
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DISCUSSIONE. Cerchiamo di capire come è fatto E. La superficie x3 = 2
√

x2
1 + x2

2 è una falda di cono con vertice
nell’origine e asse x3 come asse di rotazione, mentre x3 = 1 + x2

1 + x2
2 è un paraboloide con vertice in (0,0, 1) e x3

asse di simmetria. L’intersezione tra le due superfici è il disco {x2
1 + x2

2 = 1} contenuto nel piano x3 = 2.
Per il teorema della divergenza il flusso richiesto è dato dall’integrale$

E
div(F)(x)dx =

$
E

(
x2

1 + x2
2
)

dx

scrivendo E nella forma

E = {(x1, x2, x3) ∈�
3 : 2

√
x2

1 + x2
2 ≤ x3 ≤ 1 + x2

1 + x2
2, (x1, x2) ∈ D}

dove D = {(x1, x2) : x2
1 + x2

2 ≤ 1} e usando la formula di integrazione per fili otteniamo$
E

(x2
1 + x2

2)dx1dx2dx3 =
"

D
(x2

1 + x2
2)

∫ 1+x2
1 +x2

2

2
√

x2
1 +x2

2

dx3 =
"

D
(x2

1 + x2
2)

(
1 + x2

1 + x2
2− 2

√
x2

1 + x2
2

)
dx1dx2

Introducendo un sistema di coordinate polari nel piano (x1, x2) si trova che$
E

(x2
1 + x2

2)dx = 2π
∫ 1

0
ρ3(1 + ρ2− 2ρ)dρ = π30

È facile intuire che calcolare il flusso tramite integrali di superficie risulta un po’ più impegnativo.

ESERCIZIO 12. Sia Î⊆�
3 l’immagine della parametrizzazione

φ(w,z) =
(
w2− z2,w2, z2) con (w,z) ∈ [0, 1]2

i. si mostri che Î è una superficie regolare orientabile,
ii. se ne calcoli l’area,
iii. si calcoli il flusso del campo F(x) = (x1, x2, x3) attraverso la superficie.

DISCUSSIONE. i. L’applicazione φ ha tutte le componenti polinomiali nelle variabili w e z, quindi di classe C∞,
l’iniettività segue facilmente notando che se

φ(w,z) =
(
w2− z2,w2, z2) =

(
u2− v2,u2, v2) = φ(u,v)

le ultime due relazioni implicano che w2 = u2 e z2 = v2, e siccome l’applicazione t 7→ t2 è iniettiva e suriettiva
su [0, 1] l’affermazione è provata. Infine notiamo che

∂1φ(w,z) = 2w(1, 1,0) ∂2φ(w,z) = 2z(−1,0, 1)
e che

∂1φ(w,z)∧ ∂2φ(w,z) = 4wz(1,−1, 1) n(w,z) = 1√
3

(1,−1, 1)

il che implica che il campo di versori normali (essendo costante) è prolungabile fin sul bordo della superficie.
Si noti che il versore normale è costante, questo perché Î è una porzione del piano di equazione cartesiana
{x1 = x2− x3} ⊆�

3.
ii. Per calcolare l’area della superficie ricorriamo alla definizione, cioè al seguente integrale

A(Î) =
∫
Î

dσ =
∫

[0,1]2
|∂1φ(w,z)∧ ∂2φ(w,z)|dwdz =

∫
[0,1]2

4
√

3wzdwdz

= 4
√

3
∫

[0,1]
wdw

∫
[0,1]

zdz =
√

3

iii. Anche questo quesito richiede il calcolo di un integrale, ricordando la definizione introdotta a lezione abbia-
mo

ÐÎ(F) =
∫
Î

(F ·n)dσ =
∫

[0,1]2

(
w2− z2,w2, z2) · (4wz,−4wz,4wz)dwdz = 8

∫
[0,1]2

w3zdwdz

= 8
∫

[0,1]
w3dw

∫
[0,1]

zdz = 8 · 1
4 ·

1
2 = 1
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Si noti che abbiamo tacitamente assunto che la normale alla superficie indotta dalla parametrizzazione stabi-
lisca il verso positivo di attraversamento di Î per il flusso.

ESERCIZIO 13. Assegnati la regione dello spazio D =
{
1≤ x2

1 + x2
2 ≤ x3 ≤ 2(x2

1 + x2
2)≤ 4

}
⊆ �

3 e il campo vettoriale
F(x) = (x1, x2,0), si calcoli la quantità Ð∂D(F).

DISCUSSIONE. Il flusso del campo vettoriale F attraverso la frontiera del dominio D (superficie regolare a tratti
composta da più superfici) può essere calcolato, grazie al teorema della divergenza, aggirando il calcolo di più
integrali superficiali e riducendo il tutto ad un unico integrale di volume, infatti vale

Ð∂D(F) =
∫
∂D

(F ·n)dσ =
∫

D
div(F)(x)dx =

∫
D

2dx1dx2dx3 = 2m3(D)

Osserviamo che il dominio D⊆�
3 è un solido avente simmetria assiale e la sua sezione S ha il seguente profilo

S

dove ρ =
√

x2
1 + x2

2 è la distanza dall’asse x3 di rotazione. Quindi possiamo calcolare la misura di D grazie alle
coordinate cilindriche nel seguente modo

m3(D) =
∫

D
dx1dx2dx3 =

∫
D̃
ρdρdθdz =

∫ √2

1

[∫ 4

ρ2

[∫ 2π

0
dθ

]
dz

]
ρdρ = 2π

∫ √2

1
(4− ρ2)ρdρ

= 2π
[
2ρ2−

ρ4

4

]√2

1
= 5

2π

cos̀ı da concludere che Ð∂D(F) = 5π.

ESERCIZIO 14. Si calcoli il flusso Ð∂D(F), dove D = B(O, r) e F = (a,b,c).

DISCUSSIONE. L’esercizio non presenta particolari difficoltà, il calcolo del flusso in questione (cioè dell’in-
tegrale di superficie) può essere aggirato tramite il teorema della divergenza, visto che il campo vettoriale è
sufficientemente regolare e la superficie è regolare ed è il bordo di un dominio. In particolare notiamo che

div(F) = ∂1F1 + ∂2F2 + ∂3F3 = ∂1a + ∂2b + ∂3c = 0
da cui segue che

Ð∂D(F) =
∫
∂D

[F ·n]dσ =
∫

D
div(F)(x)dx1dx2dx3 = 0

si noti che ogni campo vettoriale costante ha divergenza nulla, quindi il risultato ottenuto resta vero per ogni
dominio D per cui vale il teorema della divergenza!


