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Esercizio 1. Calcolare larea della superficie il cui sostegno é il grafico della funzione

x2  x2 2 x2
f(X1,X2)=II+Z2 con xeD:{I'+32<1}CrR2
ESERCIZIO 2. Calcolare larea della superficie ¥, porzione del luogo degli zeri dellequazione {x12 + x% = 2x1} delimitata

dalle falde del cono {xg = x12 + x%}

ESERCIZIO 3. Calcolare larea della superficie ottenuta dalla rotazione intorno allasse x; della curva

(x1(t),x(t)) = (e"sin(t),e'cos(t))  t [0, 7/2]

Esercizio 4. Calcolare il volume del solido S ottenuto ruotando intorno allasse x3 la figura contenuta nel piano
{x, = O} definita come D = {(x,x3) € R2:0 < x3 < 1—x?}.

Esercizio 5. Data la densita di massa §(x) = I(O(x12 + x%), si trovi il baricentro del solido C = {0 < x3 < H,x12 + x% <
R2}.

ESeRrcIzIO 6. Calcolare l'integrale JJI [x12 + x%] dx,dx,dx3 dove B = B(O,R) = {x12 + x% + xg <RZ}.
B

ESERCIZIO 7. Sia M = {G(xq,%3,x3) = O} C R3 un sottoinsieme dello spazio tale che G € C®(R3),0 € Me
93G(0O) = 0. Allora si scriva

i. lequazione del piano tangente ad M in O,

ii. lequazione del versore normale ad M in O,

iii. lespressione della prima forma fondamentale di M in O.

Infine si spieghi perché M, intorno ad O, é una superficie regolare.

Esercizio 8. Calcolare larea dell'insieme D delimitato dalla curva
vi o {x(®) = (4(0).%2(1)) = (cos(t) sin?(t),sin(t) cos(t)) t € [0, x/2]}

ESERCIZIO 9. Sia D = {(x4,x3) € R2: x12 (X =12 <2,x >1— x12}, si disegni D e se ne calcoli larea.

ESERCIZIO 10. Calcolare il flusso del campo vettoriale F(x) = (x4, X, xg) uscente dalla superficie ¥ del cilindro x12 +x% =
4, delimitato dai pianix3 = —1e x3 = 2.
1



Esercizio 11. Calcolare il flusso di F = (X3,X12X2,X%X3) uscente dalla superficie che delimita il solido

3. 2 2
E={xeR>:2 X12+X%§X3§1+X1+X2}

Esercizio 12. Sia ¥ C R3 limmagine della parametrizzazione
o(w,z) = (w2 — zz,wz,zz) con (w,z) € [0,112

i. si mostri che ¥ é una superficie regolare orientabile,
ii. se ne calcoli larea,
iii. si calcoli il flusso del campo F(x) = (x4,%3,X3) attraverso la superficie.

Esercizio 13. Assegnati la regione dello spazio D = {1 < x12 +x% <x3< 2(x12 + x%) < 4} CR3eil campo vettoriale

F(x) = (x1,%7,0), si calcoli la quantita ®p (F).

ESeRCIzIO 14. Sicalcoliil flusso Dzp(F), dove D = B(O,r) e F = (a, b, c).

SVOLGIMENTI

Esercizio 1. Calcolare larea della superficie il cui sostegno é il grafico della funzione

2 2 2 2
x2 X x2  x
f(x1,x2)=71+zz con xeD={Z1+32§1}grR2

DiscussioNE. Verifichiamo che abbiamo a che fare con una superficie regolare introducendo la seguente
parametrizzazione ricavata dallespressione della funzione

U2 U2
il ) o

Tale parametrizzazione ha come componenti funzioni differenziabili (in realta di classe C*°) ed € iniettiva, visto
che la restrizione alle prime due componenti & l'identita di RZ, quindi verifichiamo la condizione sul rango della
matrice jacobiana
Uy up . u U
51(1’(“):(1'0'7) 52¢>(U)=(0,1,?) da cui e (u)=(—7,—?,1)

quindi la superficie & regolare, visto che la terza componente del prodotto vettoriale & sempre diversa da O.
A questo punto ricordiamo che usiamo ¥ per indicare il sostegno della superficie, cioe limmagine ¢(D) e che,
per definizione, vale

2 2 1/2
mz(»;):ﬂ do=J H[a1¢Aaz¢](u)H2du1du2=ﬂ L0200 dudy,
s D p|4 9

Il calcolo dell'integrale doppi risulta pit semplice ricorrendo al seguente cambio di variabili

uy = 2pcos(6) 2cos(f) —2psin(6)
up = 3psin(9) 3sin(d)  3pcos(d)

Il cambio proposto trasforma l'integrale nel seguente modo

e 12 ! )
mz(z)=fUo (0% +1) 6pd9]dp=67r£)[zp(p2+1) ]dp

di matrice jacobiana (

[0}
321!
=47r[(p2+1) ]O =47r[2\/§—1]
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e, salvo sviste, abbiamo ottenuta larea desiderata. ]

ESERCIZIO 2. Calcolare larea della superficie 3, porzione del luogo degli zeri dellequazione {x12 + x% = 2x1} delimitata

dalle falde del cono {xg = x12 + x%}

DISCUSSIONE.  E (relativamente) facile accorgersi che il luogo degli zeri dellequazione {x12 + x% = 2x1} puo es-

sere riscritto come {(x1 —1)2 +x% = 1}, questo rivela che si tratta di un cilindro con asse di simmetria la retta

{x; —1=0} N{x; = 0} e avente intersezione con il piano {x3 = O} la circonferenza centrata in (1,0) di raggio 1.

Per contro il cono di equazione {x% = x12 + x%} ha asse di simmetria asse x3, quindi la superficie ¥ & una porzione

di cilindro, delimitata dalle curve che sono intersezione tra cono e cilindro.

Per ottenere una parametrizzazione della superficie ¥ possiamo procedere nel seguente modo: innanzitutto
sfruttiamo il fatto di avere a che fare con una porzione di un cilindro, il che ci permette di scrivere la seguente
parametrizzazione per la circonferenza (cioé la sezione del cilindro)

(x1(0),%7(60)) = (1+ cos(6),sin(6)) 0 € [0,27]

A questo punto notiamo che

xg = x12 + x% = 2X4 da cui otteniamo X3 = £4/2X

il precedente calcolo mostra che, per ogni punto della circonferenza, che € la sezione del cilindro, la superficie
Y & un segmento verticale con estremi dipendenti da x4, cioé che

X3 =+/2x15=[1+ cos(G)]V2 s sc[-1,1]
Riassumendo abbiamo ottenuto la parametrizzazione
X(6,5) = (xq(6,5),%7(6,5),x3(6,5)) = (1+ cos(6),sin(6), [1+ cos(6)]"*s) ~ (6,5) € K=[0,27] x [-1,1]

tale parametrizzazione € iniettiva e composta di funzioni differenzialbili, quindi dobbiamo solo calcolare il
rango della matrice jacobiana dellapplicazione tramite il seguente prodotto vettoriale

B sin(0)s
"2 [1+ cos(@)]'/ 2
[O1x A Oyx](6,s) = (COS(@) [1+ COS(@)]VZ ,sin(6)[1+ COS(@)]VZ ,O)

ox(8,s) = (—sin(@),cos(@) ) 9,x(6,s) = (0,0, [ +cos(0)]1/2)

Si noti che tale vettore non & definito per 6 = 7 e per ogni s, quindi la parametrizzazione, cosi come scritta,
non produce una superficie regolare nel senso della definizione data a lezione. Per fortuna possiamo risolvere
facilmente utilizzando la parametrizzazione

X(6,5) = (x1(6,5),%2(6,5),x3(6,5)) = (1+ cos(6),sin(6), [1+ cos(6)]"*s)  (8,5) € K=[—m, 7] x [1,1]

che sposta i valori incriminati sul bordo di K, rendendo la superficie regolare nell'interno di K! Per terminare
calcoliamo larea della superficie ricordando la definizione

1 o7
A(Y) = j do = JI [[(B1x A 37%)(0,5)||,dOds = f J [1+cos(8)]dods = 27
Y K oJ—m

e concludendo lo svolgimento. n

Esercizio 3. Calcolare larea della superficie ottenuta dalla rotazione intorno allasse x; della curva
(xq(t),xp(1)) = (e'sin(t).e'cos(t))  te [0, m/2]

DISCUSSIONE. Le superfici di rotazione costituiscono una classe di superfici molto interessante, con pro-
prieta peculiari, naturalmente per poter studiare la superficie & necessario ottenre una sua parametrizzazione.
Dunque scriviamo che

x(t,s) = (et sin(t), et cos(t) cos(s), et cos(t)sin(s)) (t,s) € [0,7/2] x [O, 2]
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dove la parametrizzazione é stata ottenuta nel seguente modo: partendp dalla curva iniziale e pensandola nel
piano {x3 = O}, la rotazione attorno allasse x; fa si che le componenti ortogonali x; e x3 variano descrivendo
una circonferenza, il parametro s & il parametro angolare della rotazione.
Le superfici costruite in questo modo sono sempre superfici regolari, a patto che la curva di partenza sia regolare
e non abbia intersezioni con la retta intorno alla quale ruota. Verifichiamo la condizione diindipendenza lineare
dei vettori tangenti

Byx(t,s) = €' (sin(t) + cos(t), (cos(t) — sin(t)) cos(s), (cos(t) — sin(t)) sin(s))

Oyx(t,s) = e (0, — cos(t) sin(s), cos(t) cos(s))

[O1x A Opx](t,s) = et cos(t) ((cos(t) — sin(t)), —(cos(t) + sin(t)) cos(s), —(cos(t) + sin(t)) sin(s))

I[81x A B5x1(t,5) |12 = V'2€*t cos(t)

con (t,s) € [0,7/2] x [0, 27]. Il calcolo dellarea della superficie si riduce al seguente integrale

/2 2T
A= ﬂ |8x A 89|, dsdt = ﬂ V/2e? cos(t)dsdt = [ V2elt cos(t)dt] U ds}
K K

0 (0]
/2 Zﬁ

= 2 re™ - 2]
o 5

=2V2rw [%eZt(Z cos(t) + sin(t))]

dove abbiamo integrato per parti un paio di volte per ottenere un primitiva della funzione integranda.
(]

ESERcCIZIO 4. Calcolare il volume del solido S ottenuto ruotando intorno allasse x3 la figura contenuta nel piano
{x5 = O} definita come D = {(xq,x3) € R2:0 < x3 <1— x12}.

DISCUSSIONE. La regione D C {x, = O} & la porzione del piano delimitata da un arco di parabola e dallasse
X1, rappresentata nella seguente figura

X3

(0,1

D*

(1,0)

Poiché la regione deve ruotare intorno allasse x3, per descrivere il solido, per motivi di parita possiamo limitarci
a considerare la rotazione completa della zona avente il bordo azzurro, che possiamo descrivere come dominio
normale nei seguenti due modi

D*={O§X1§1;O§X3§1—X12}={0§X3§1;0§X1§ 1—X3}

Il calcolo del volume del solido S pud essere compiuto (almeno) in quattro modi che andremo a analizzare
uno per volta: quindi procederemo per fili, per sezioni, tramite le coordinate cilindriche e usando il teorema di
Guldino.

Teorema di Guldino: questa strategia consiste nella semplice applicazione di un risultato (valido solo per solidi
ottenuti tramite rotazione), lenunciato afferme che il volume del solido € pari alla lunghezza della circonferenza
descritta dal baricentro b della sezione D* moltiplicato per larea della regione piana che ruota, in formule

m3(S) = 27rb1m2(D*) =27 J\J‘ X1dX1dX3
D*
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dove la seconda formula discende dal fatto che

« X dxqdx
p, - Jor s
m,(D*)
Da quanto detto otteniamo che

1 1-x2 1 K2 x4 o
m3(S)=27rf X1 f dxz | dxq =27rf x1(1—x12)dx1 |- =2
o "o o 2 4|, 2

Coordinate cilindriche: in questa tecnica impieghiamo un cambio di variabili molto comodo per lo studio di
solidi di rotazione (che di fatto € alla base del teorema di Guldino), il solido ha la seguente descrizione, in
termini di coordinate cartesiane

S={x€ R3 :x12+x% <1,0 <x3 §1—(x12+x%)}

e ricordando che

X1 = rcos(6)
X5 = rsin(6) e che det[f]]=r
x3=t

otteniamo la seguente descrizione del solido S, in qualita di dominio normale, nel nuovo sistema di riferimento
§={0<6<2m0<r<10 <t<1-r2} elintegrale si trasforma nel seguente modo

1 1—r2 1
m3(S) = —[r dxqdx,dxs = .UIN rdrd@dt = ZWJ r[f dt] dr= ZWJ r(1— rz)dr I
S § o [Jo 0 2

ottenendo (come deve essere) lo stesso risultato ricavato tramite il teorema di Guldino.
Integrazione per sezioni: questa strategia sfrutta il seguente risultato valido per la misura di Lebesgue

m3(S) = j M, (S(t))dt dove S(t)=Sn{x3 =t}
R

questa tecnica di integrazione si rivela facile, almeno in questo caso, perché le sezioni S(t) sono dei cerchi e la
loro misura si calcola rapidamente, infatti vale

ma(S() = my(SN {x3=t}) =my ([ +x <(1-1)})=m(1—1)  solopertc[O,1]

visto che S(t) = () se t [0, 1]. Quindi otteniamo che

1 1
m3(S) = j 7(1— t)X[O,ﬂ (t)dt = J T(1—t)dt=7 [t - %tz]
R 0

om
o 2

Integrazione per fili: quest'ultimo approccio & analogo al precedente, infatti possiamo scrivere che
m3(S) = J my(S(w))dw;dw, dove S(w) =SN{x=wy,x; =w,}
R2
Nel nostro caso vale

2, w2
S(w) = { o< <i-wiewp} wes equindi  my(Sw)) = (1 - w? — w2)xa(w)

) altrimenti
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dove B=B(0,1)={w e RZ: w12 + w2 < 1}. Dalla precedente osservazione possiamo dedurre che

m3(S) f my(S(w))dw;dw, = ﬂ [1 - w? — w]dwidw,
N 1 AJ1-w?
=4J lj 1 [1w12w§]dw2‘dw1=4j- [wzwfwzlw%] 1dw1
o|JO 0]

3 %o

1 1 8 1
=4L[(1—w,),/1—w —§(1—w1)‘/1— f]dw1=§L(1—w12) 1— w2dw

8 m1 in2(0) 2(9)d@—8 e 1+2cos(20) 1(1 (40))|do
—§L (*Sln )COS —§L Z + LCOS +i + COS

/2
f dg==
0 2

nello svolgimento del calcolo abbiamo impiegato il cambio di variabile wy = sin().

Questa breve rassegna di tecniche di integrazione suggerisce che la strategia migliore & (quasi) sempre quella
di sfruttare le eventuali simmetrie del dominio di integrazione, piuttosto che preoccuparsi della funzione in-
tegranda: il punto chiave é che il calcolo degli integrali multipli presenta due livelli di difficolta, uno dovuto al
calcolo di primitive (che & una difficolta ineludibile), laltro &€ dovuto alla complicazione della descrizione dell'in-
sieme di integrazione come dominio normale e tale complicazione puo essere semplificata solo trasformando
ildominio in un parallelepipedo, cioé usando una strategia di integrazione che miri prima di tutto a semplificare
lespressione del dominio. [

Esercizio 5. Data la densita di massa §(x) = I(O(x12 + x%), si trovi il baricentro del solido C = {0 < x3 < H,x1 % <
R2}.

DiscussIONE. il baricentro di C, che € un cilindro avente cerchio di base di raggio R ed altezza H & il punto
b € R3 tale che

bj = 1 J:[r x;0(x)dxqdx;dx3 perj=1,2,3 e m = jJ] 0(x)dxqdx,dx3
m JJJc C

Prima diiniziare a svolgere calcoli osserviamo che le funzioni x;0(x) e x,(x) sono dispari rispetto ai piani {x; = 0}
e {x; = 0}, quindi il loro integrale su C, che invece & simmetrico rispetto a tali piani, &€ nullo, per cui segue
by =b; = 0. Per il resto, grazie alle coordinate cilindriche, abbiamo che

=Ko Hj (x? + x3)dxydx,dx3 = Ko ﬂf r - rdrdtd6
C C

2T H R 1 1
=|<Oj U U r3dr}dt]d9=Ko~27r~H-—R4=—7r|(oHR4
o lJo lJo 4 2
e anche

JI x30(x1,X;)dxqdx,dx3 = Kg J:[J x3(x +x2 )Jdxqdx,dx3 = Kg fJ-J tr? - rdrdtds

3 T Tha 2p4
-KOJ; UOtUO dr]dt]de Ko - 27 - 2H 4R 47TKOH R

da cui ricaviamo che il baricentro & il punto b = (O, O, %H) [

ESerciziO 6. Calcolare lintegrale JJ] [x1 +X2]dX1dX2dX3 dove B = B(O,R) = {x +X +x§ < RZ},

DIScUSSIONE.  Per il calcolo dell'integrale ricorriamo alle coordinate sferiche, visto che il dominio di integra-
zione B ossiede una evidente simmetria sferica e, quasi sempre, il cambio di variabile che pit semplifica il
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calcolo degli integrali multipli & suggerito dalla geometria del dominio di integrazione piu che dallespressione
della funzione integranda. Allora ricordando che

X1 = rcos(6) sin(¢)
X9 = rsin(0) sin(¢) (r,¢,0) € K=[0,+00) x [0, 7] x [0, 27]
X3 = rcos(¢)

otteniamo

™ R
ﬂL [x? +x2] dxyxpdxs = ﬂf 2 sin2(¢) - r2 sin(¢)drd¢do = Zﬂj sin3(¢)d¢>L rdr
= 27r— J. sin(¢)(1 — cosz(qb))dqb = —7rR5

e lesercizio € portato a compimento. ]

ESERCIZIO 7. Sia M = {G(x1,%7,x3) = O} C R3 un sottoinsieme dello spazio tale che G € C*°(R3), 0 € Me
93G(O) = 0. Allora si scriva

i. lequazione del piano tangente ad M in O,

ii. lequazione del versore normale ad M in O,

iii. lespressione della prima forma fondamentale di M in O.

Infine si spieghi perché M, intorno ad O, é una superficie regolare.

DISCUSSIONE. i.&ii. Le ipotesi contenute nel testo ci permettono di applicare il teorema delle funzioniimplici-
te perrispondere alle richeste dellesercizio. Dunque osserviamo subito che il teorema di Dini assicura lesistenza
di una funzione g € C*°(B,R), con B = B(O,¢) C R2, tale che
i. g(0)=0
ii. G(xq,%2,8(x1,%2)) =0 per ogni (x1,%7) € B
ii. se |x—0O|;<6 e G(x)=0 allora X3 = g(x1,%7)

inoltre sappiamo che

1
63G(X1,X2,g(X1,X2))

Vg(x1,%z) = — (601G (xq,%2,8(x1,%2)), O G (%1, X2, 8 (%1, %2)) )

quindi, in particolare, vale che

G(0),0,G(O
w00 -G

questo ci permette di ottenere lequazione del piano tangente ad M in O, come lequazione del piano tangente
al grafico di g nel punto O = (0,0,g(0,0)), che &
&G(O)X1 + 82G(O)X2

93G(O)

X3 = g(0,0) + Vg(0,0) . (X1,X2) = —

che possiamo riscrivere, pit elegantemente, nel seguente modo
81G(O)X1 + 82G(O)x2 + 83G(O)X3 = VG(O) -x=0

VG(O)
VGOl
iii. M &, nei dintorni di O, una superficie regolare in quanto & il grafico di una funzione di classe C', come prova
il teorema della funzione implicita, e il teorema in questione suggerisce anche una buona parametrizzazione
della superficie

Dalla precedente espressione segue che il versore normale al piano tangente, e quindiad M, &

x(u) = (ug,uz,g(uq,uz)) con u=(uup) €B



V3/4 x(/6)
x(m/3)

o

FIGURA 1. Curva dellesercizio 22.

inoltre vale

Ax(u) = (1,0,04g(uy,uy)) = (1101_ 01G(x1,x2,8(%1,%7)) )

836(x1,x2,g(x1,x2))
9,G(x1,%7,8(x1,%7)) )
93G(x,X7,8(x1,%7))
01G(x1,x2,8(X1,%2)) 8 G(x1,%2,8(x1,X2)) )
93G(x1,x2,8(x1,%2))" B3Gx1, X2, 8(%1,%2))”

Oy%(u) = (0,1,0,8(uy,u3)) = (0,1,

81X/\82X=(

a questo punto é facile ricavare i coefficienti della prima forma fondamentale della superficie, che sono

01G(x1,%7,8(x1,%7)) ]2
63G(X1,X2,g(X1,X2))
F = Bix - Oyx = 81Glx1,%2,804,%7)) 52G(X1vX2218(X11X2))
103G 0x1,%2,8(x1,%2))|
GZG(X1,x2,g(x1,x2))]2
63G(X1,X2,g(X1,X2))
il che mette fine allo svolgimento.

E=61X'61X=1+[

G=82X-62X=1+[

EM

ESERCIZIO 8. Calcolare larea dell'insieme D delimitato dalla curva
v: o {x(0 = (xq(t) (1)) = (cos(t) sin? (1), sin(t) cos(t)) t € [0,7/2])

DISCUSSIONE. La curva é rappresentata in figura ?? e la parametrizzazione assegnata percorre la curva in

verso orario (quindi negativo), infatti x(t) percorre il sostegno di vy in verso orario dato che

x(0)=(0,0) X(I)=(£§)

6/ \8 4 X(%)(%?)

Per il calcolo dellarea, come in altri esercizi, usiamo le formule di Gauss-Green, cioé

1
A(D) = J xqdx; = —f xpdxq = —f xqdxa — Xdxq
D" D" 2 Jop

in questo caso utilizziamo la prima formula ottenendo

/2
A(D) = —j x1dx, = —J. sin(t) cos(t) (cosz(t) — sinz(t))dt
oD* (0]

/2 1
= —J sinz(t) (1 — 25in2(t))cos(t)dt = —J u2(1 — 2u2)du = l
0 0 15

Osserviamo che nella risoluzione degli integrali abbiamo impiegato la sostituzione u = sin(t).
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ESERCIZIO 9. Sia D = {(x,xp) € RZ: x12 txg =12 < 2% >1— x12}, si disegni D e se ne calcoli larea usando le
formule di Gauss-Green.

DISCUSSIONE. Linsieme D & la porzione del cerchio di raggio v/2 e centro (0,1) che si trova al di sopra della
parabola di equazione x; =1— x12, come suggerito dal disegno

~___“

Il bordo di D € costituito dallunione di due curve: un arco di parabola -y; e un arco di circonferenza -y, le cui
parametrizzazioni sono

"= {x(t) =(t1-t%):te [—1,1]} e M= {y(@) = (ﬁcos(@),h \/isin(g)) 0 c [%577’}}

da cui
X(M)=(-2t) e  y(6)=(-V2sin(6),V2cos(6))

Applicando Gauss-Green abbiamo che

1 5m/4
A(D)=J x|dx2=f x1dx2+J x1dx2=—2J tzdt+2f cos?(6)do
aD* v Y2 —1 —7/4

4 : St/d 43 11 3 1
= _§ + [9+5In(0)cos(9)]_7r/4 = —§ + iﬂ"" i + i = iﬂ' — §
Il calcolo dellarea tramite un integrale doppio si sarebbe rivelato pit impegnativo del precedente, il lettore &

invitato a sincerarsi di questa affermazione... ]

EsercIzio 10. Calcolare il flusso del campo vettoriale F(x) = (x4, X7, x%) uscente dalla superficie ¥ del cilindro x12 +X

4, delimitato dai piani x3 = —1ex3 = 2.

2 =
2
DiscussIONE. ¥ é la superficie che delimita il solido

E={x=(x;Xz,x3) € R3: —1<x3 < 2,x12 +x% <4}

e per il teorema della divergenza, possiamo scrivere che

JI F-ndo = Jjj div(F)(x)dx;dx,dx3 = J:JI V - F(x)dxqdx,dxs3
by E E

Dato che
dIV(F)(X) = 81F1(X) + 82F2(X) + 83F3(X) =1+1+ 2X3 = 2(1 + X3)

il calcolo del flusso pud essere ricondotto al calcolo del seguente integrale triplo

2 jj (1+ x3)dx;dx,dx3
E

Applichiamo la strategia d'integrazione per strati dato che possiamo descrivere il cilindro come segue

E = {(x,%2,X3) € R3: =1 < x3 < 2,(xq,Xp) € D} conD = {x € R? :x12 +x% < 4}
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per cui otteniamo che

2 2 2
2 -[[f (1+x3)dxqdxydx3 = ZJ (1+x3)my(D)dx3 = 87rj (1+x3)dz=87 [X3 + %xg] =36m
E —1 —1 —1

Si poteva anche calcolare il flusso usando direttamente la sua definizione come integrale di superficie, per
completezza seguiamo anche questa strada e iniziamo notando che ¥ &€ composta dallunione di tre superfici
regolari: la superficie laterale del cilindro

1 {x12+x%=4,—1§X3§2}
la base del cilindro

P {x12 +x% <4,x3= 71}
il coperchio (o tappo) del cilindro

Y3: {X12+X%§4,X3=1}

Calcoliamo separatamente il flusso attraverso le tre parti regolari che compongono la superficie. Una possibile
parametrizzazione per ¥ ¢ €

x(u) = (2cos(uq), 2sin(uy),u;) (u,up) e D=[0,27] x [-1,2]
La normale uscente indotta dalla parametrizzazione su ¥ risulta n(u) = (cos(u;), sin(uy), 0), quindi
F-n=2 evale do = 2dujdu,

per cui possiamo scrivere che

2T 2
J- [Fn]da=4f dU1dU2 =167T=4J [J dU1]dU1 =247
px] D (o] -1

ILfondo X, pud essere parametrizzato con le seguenti equazioni

x(r,8) = (rcos(6),rsin(6), —1) con (r,0) e D=[0,2] x [0,27]
La normale uscente & n = (0,0, —1) = —e3, quindi

[ 2 212
J [F-n]do Jf —x3da = jj rdrdf = —j f rdr] do=—27- [ 3 ] = —47
Y, Y, 0 0 0

Il tappo ¥ 3 ha, per esempio, equazioni parametriche analoghe a quelle di X5, per cui possiamo scrivere

= {rcos(6),rsin(6),2) con(r,8) e D=[0,2] x [0,27]

la normale uscente é n = (0, 0,1) = e3e quindi segue

f [F-n]do = 4JI rdrdd = 167
T3 D

Si ottiene quindi

ff[F-n]da=J [F-n]dcr+f [F~n]da+f [F-nldo =247 — 47 +167 =367
Y Y, Y X3

Ovviamente i due risultati coincidono, come suggerisce la teoria. n

Esercizio 11. Calcolare il flusso di F = (X3,X12X2,X%X3) uscente dalla superficie che delimita il solido

E={xecR3:2/x2+x2 < 3<1+x12+x%}
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DiscussioNE.  Cerchiamo di capire come é fatto E. La superficie x3 = 2 x12 + x% é una falda di cono con vertice
% & un paraboloide con vertice in (0,0,1) e x3
asse di simmetria. Lintersezione tra le due superfici € il disco {x12 + x% =1} contenuto nel piano x3 = 2.

Per il teorema della divergenza il flusso richiesto & dato dall'integrale

ﬂLdiv(F)(x)dx = ﬂfE (x? +x2)dx

scrivendo E nella forma

nellorigine e asse x3 come asse di rotazione, mentre x3 = 1+ x12 +X

E = {(x1,x2,x3) € R3:2 x12+x% <x3 < 1+x12+x%,(x1,x2) € D}

dove D = {(x1,%;) : x12 + x% <1} e usando la formula di integrazione per fili otteniamo

Tex2+x2
J] (x? + x2)dxydx,dx3 = jf (x? + x%)J " dxg - JJ- (2 +x2) (1 axEaxd —2,[x2+ x%)dx1dx2
E D 2, [x2ex2 D

Introducendo un sistema di coordinate polari nel piano (x4,X,) si trova che

1
2.2 3 2 7T
HE(X1 +x2)dx=27er (1+p° —2p)d “30

E facile intuire che calcolare il flusso tramite integrali di superficie risulta un po’ piti impegnativo. ]

ESERCIZIO 12. Sia ¥ C R3 limmagine della parametrizzazione

o(w,z) = (w2 — zz,wz,zz) con (w,z) € [0,1]?

i. si mostri che ¥ é una superficie regolare orientabile,
ii. se ne calcoli larea,
iii. si calcoli il flusso del campo F(x) = (xq,%3,X3) attraverso la superficie.

DIScUSSIONE. i. Lapplicazione ¢ ha tutte le componenti polinomiali nelle variabili w e z, quindi di classe C*°,
liniettivita segue facilmente notando che se
o(w,z) = (w2 — zz,wz,zz) = (u2 - v2,u2,v2) = p(u,v)

2 2 2

le ultime due relazioni implicano che w? = u? e z2 = v, e siccome lapplicazione t — t2 & iniettiva e suriettiva

su [0, 1] laffermazione € provata. Infine notiamo che
O1(w,z) = 2w(1,1,0) Oy0(w,z) = 22(—1,0,1)

e che
1
01p(w,z) A Oy p(w,z) = 4wz(1,—1,1)  n(w,z) = \73(1, -1,1)

il che implica che il campo di versori normali (essendo costante) & prolungabile fin sul bordo della superficie.
Si noti che il versore normale & costante, questo perché % & una porzione del piano di equazione cartesiana
{x1=%7 —x3} C R3.

ii. Per calcolare l'area della superficie ricorriamo alla definizione, cioé al seguente integrale

A(Y) = j do = f |O1¢(w,z) A By p(w,z)|dwdz = J 4\/3wzdwdz
Y [0112 [01]2

=43 wdwf zdz=V3
[01] [01]

iii. Anche questo quesito richiede il calcolo di un integrale, ricordando la definizione introdotta a lezione abbia-
mo

Py (F) = f (F-n)do = f (w2 — ZZ,WZ,ZZ) - (4wz, — 4wz, 4wz)dwdz = 8J w3zdwdz
by [0,112

[0,112
=8J w3dwj zdz=8-l~l=1
(0.1 [0.1] 4 2
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Si noti che abbiamo tacitamente assunto che la normale alla superficie indotta dalla parametrizzazione stabi-
lisca il verso positivo di attraversamento di ¥ per il flusso. n

2
1

2

+X2

EserciziO 13. Assegnati la regione dello spazio D = {1 < x12 +x% < x3 <2(x
F(x) = (x1,%7,0), si calcoli la quantita ®p (F).

) < 4} C R3 el campo vettoriale

DiscussIONE. Il flusso del campo vettoriale F attraverso la frontiera del dominio D (superficie regolare a tratti
composta da piu superfici) pud essere calcolato, grazie al teorema della divergenza, aggirando il calcolo di piu
integrali superficiali e riducendo il tutto ad un unico integrale di volume, infatti vale

Pyp(F) = J (F-n)do = J div(F)(x)dx = f 2dxqdx,dx3 = 2m3(D)
oD D D

Osserviamo che il dominio D C R3 & un solido avente simmetria assiale e la sua sezione S ha il seguente profilo

X2+ x% é la distanza dall'asse x3 di rotazione. Quindi possiamo calcolare la misura di D grazie alle

dove p = /x|
coordinate cilindriche nel seguente modo
2T V2
f dé} dz} odp = Zﬂf (4— pz)pdp
1

V[ 4
m3(D) = J dxjdx,dxs = JN pdpdddz = J [J [
D D 1 o2

0
=27 |20% — ﬁ v = §7r
B Y A
cosi da concludere che ®gp(F) = 57. [

ESeRCIzIO 14. Si calcoliil flusso Dp (F), dove D = B(O,r) e F = (a, b, c).

DiscUsSIONE. Lesercizio non presenta particolari difficolta, il calcolo del flusso in questione (cioé dell'in-
tegrale di superficie) puo essere aggirato tramite il teorema della divergenza, visto che il campo vettoriale &
sufficientemente regolare e la superficie € regolare ed & il bordo di un dominio. In particolare notiamo che

div(F) = 81F1 +62F2 +83F3 = 81a+62b+83c =0

da cui segue che
Ppp(F) = j [F-n]ldo = J- div(F)(x)dxdx;dx3 = O
aD D

si noti che ogni campo vettoriale costante ha divergenza nulla, quindi il risultato ottenuto resta vero per ogni
dominio D per cui vale il teorema della divergenzal n



