

UNIVERSITA' DEGLI STUDI DI ROMA "LA SAPIENZA" INGEGNERIA DELLE NANOTECNOLOGIE

PROF. MARCO STOLLER DIPARTIMENTO DI INGEGNERIA CHIMICA MATERIALI AMBIENTE PIANO 2 - UFFICIO 204b TEL: +390644585580 MARCO.STOLLER@UNIROMA1.IT

Indice

- Operazione di reazione-precipitazione mediante la tecnica del disco rotante
- Elaborazione del modello CFD
- Validazione del modello CFD
- Sperimentazione: produzione di nanoparticelle di idrossiapatite
- > Analisi dei risultati del modello CFD
- Interpretazione dei risultati sperimentali tramite impiego del modello CFD
- Ottimizzazione dell'operazione di reazione-precipitazione mediante impiego del modello elaborato
- Conclusioni e sviluppi futuri

Produzione di nanoparticelle mediante operazione reazione-precipitazione

due o più soluzioni reagenti miscelate tra loro danno origine a:

- Reazione istantanea
- Elevata sovrassaturazione del prodotto
- Forte nucleazione
- Basso accrescimento nuclei
- Intensi fenomeni di agglomerazione e aggregazione

bassi tempi di miscelazione dei reagenti:

- $t_m + t_r \ll t_{i nd}$ \longrightarrow $t_m \sim 1 ms$
 - massima concentrazione possibile del prodotto di reazione
 - bassa velocità di accrescimento e agglomerazione delle particelle prodotte
 - maggiore velocità possibile di nucleazione
 - > omogeneità dimensionali delle particelle prodotte

Il reattore a disco rotante:

Reattore a disco rotante utilizzato:

- diametro del disco: 8,5 cm;
- superficie del disco in metallo;
- velocità di rotazione del disco regolabile (max 1400 rpm)
- entrata delle correnti dall'alto mediante iniettori di 1 mm di diametro;
- uscita del prodotto dal basso mediante tubicino di scarico in continuo.

La fluidodinamica computazionale o CFD (Computational Fluid Dynamics)

permette la simulazione dei sistemi fluidi e di tutti i fenomeni ad essi correlati

Il codice utilizzato è Fluent

Pre-processing: caratterizzazione del problema da studiare (discretizzazione del dominio, definizione modello e materiali)

> Solving: risoluzione delle equazioni che governano il sistema (volumi finiti)

Post-processing: analisi dei risultati delle simulazioni.

Modellizzazione del problema

Campo di velocità	Equazioni di Navier Stokes (NS)
Scambio di materia	Equazioni di trasferimento di materia
Multifase	Volume of fluids (VOF)
Turbolenza	Large eddy simulation (LES)

Equazioni ui navier Stokes

- Equazione di continuità:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial v_{\varphi}}{\partial \varphi} + \frac{\partial v_z}{\partial z} = 0$$

- Equazioni di bilancio locale di quantità di moto (Equazioni di Navier-Stokes):

$$\rho \left[\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_{\varphi}}{r} \frac{\partial v_r}{\partial \varphi} - \frac{v_{\varphi}^2}{r} + v_z \frac{\partial v_r}{\partial z} \right]$$
$$= \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \varphi^2} - \frac{2}{r^2} \frac{\partial v_{\varphi}}{\partial \varphi} + \frac{\partial^2 v_r}{\partial z^2} \right] - \frac{\partial P}{\partial r} + \rho g_r$$

$$\rho \left[\frac{\partial v_{\varphi}}{\partial t} + v_r \frac{\partial v_{\varphi}}{\partial r} + \frac{v_{\varphi}}{r} \frac{\partial v_{\varphi}}{\partial \varphi} - \frac{v_r v_{\varphi}}{r} + v_z \frac{\partial v_{\varphi}}{\partial z} \right]$$
$$= \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_{\varphi}) \right) + \frac{1}{r^2} \frac{\partial^2 v_{\varphi}}{\partial \varphi^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \varphi} + \frac{\partial^2 v_{\varphi}}{\partial z^2} \right] - \frac{1}{r} \frac{\partial P}{\partial \varphi} + \rho g_{\varphi}$$

$$\begin{split} \rho \left[\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_{\varphi}}{r} \frac{\partial v_z}{\partial \varphi} + v_z \frac{\partial v_z}{\partial z} \right] \\ = \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \varphi^2} + \frac{\partial^2 v_z}{\partial z^2} \right] - \frac{\partial P}{\partial z} + \rho g_z \end{split}$$

Equazioni ui navier Stokes

- Equazioni di bilancio locale di energia

$$\left[\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_{\varphi}}{r} \frac{\partial T}{\partial \varphi} + v_z \frac{\partial T}{\partial z}\right] = \frac{k}{\rho c_p} \left[\left(\frac{1}{r} \frac{\partial T}{\partial r}\right) + \frac{\partial^2 T}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2} \right]$$

- Equazioni di bilancio locale di materia

$$\left[\frac{\partial c_A}{\partial t} + v_r \frac{\partial c_A}{\partial r} + \frac{v_{\varphi}}{r} \frac{\partial c_A}{\partial \varphi} + v_z \frac{\partial c_A}{\partial z}\right] = D_{AB} \left[\left(\frac{1}{r} \frac{\partial c_A}{\partial r}\right) + \frac{\partial^2 c_A}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 c_A}{\partial \varphi^2} + \frac{\partial^2 c_A}{\partial z^2} \right]$$

PROFILI DI VELOCITA' E TEMPERATURA SU UN DISCO ROTANTE

Modello VOF (Volume Of Fluid)

Si applica in presenza di due o più fasi tra le quali si stabilisce una netta e definita interfaccia

Ad ogni fase presente nel sistema corrisponde la variabile una frazione volumetrica della fase nella cella computazionale α_i , da determinare nel corso della simulazione.

In ogni cella sono possibili tre condizioni:

- α_i = 0: la cella computazionale è priva della i-esima fase;
- α_i = 1: la cella computazionale è piena della i-esima fase;
- 0 < α_i < 1: la cella computazionale presenta un'interfaccia tra la i-esima fase e una o più altre fasi.

Nel modello elaborato, l'uso del VOF è necessario per la determinazione dell'interfaccia tra l'aria e la fase acquosa che costituisce il film

Modello di turbolenza LES (Large Eddy Simulation)

Tecnica LES

processo di filtraggio che separa i medi e grandi vortici da quelli più piccoli della dimensione della cella computazionale considerata

i vortici maggiori sono risolti direttamente dalle equazioni di NS, mentre i vortici minori sono modellizzati

Principio fondamentale:

- I vortici di dimensioni maggiori hanno le dimensioni caratteristiche dei gradienti del flusso e sono simulati tramite la griglia assegnata
- i più piccoli sono modellizzati mediante sottogriglie costruite da Fluent

Realizzazione della griglia

Raggio del disco: 8,5 cm Spessore del film: 30-200 µm

- ricorso ad una griglia fine
- mantenimento di un tempo computazionale sostenibile

mesh grossolani e inadeguati allo studio del problema

difficoltà nello sviluppo delle celle computazionali

Realizzazione della griglia ottimale

Tecnica di discretizzazione del dominio per lo sviluppo dimensionale delle celle computazionali

D = 8,5 cm

Metodo elaborato nel presente lavoro per lo sviluppo della griglia:

- Suddivisione del dominio in 18 volumetti cilindrici sovrapposti e tra loro interconnessi, di altezza variabile (5-150µm)
- Generazione di mesh strutturati all'interno di ciascun volumetto avente quadrato di base con lato 500 μm

538992 celle computazionali

Validazione sperimentale del modello

Il Modello è validato

Produzione di nanoparticelle di idrossiapatite

 $10CaCl_{2} + 6 (NH_{4})_{2}HPO_{4} + 8 NH_{4}OH \rightarrow Ca_{10}(PO_{4})_{6}(OH)_{2} + 20 NH_{4}Cl + 6H_{2}O$ Ca/P=1.67

temperatura ambiente

pH di reazione pari a 10: per garantire purezza e minori dimensioni

alimentazione	Portata (ml/min)	Composizione (g per 100 g di H ₂ O)
centrale	80	10 g di NH ₄ OH
laterale 1	100	5,58 g di CaCl ₂
laterale 2	100	3,49 g di (NH₄)₂HPO₄

velocità di rotazione del disco: 560-1400 rpm

Misura delle dimensioni delle nanoparticelle di idrossiapatite

Strumento di misura DLS: Plus 90 della Brokhaven

Elevata tendenza delle particelle prodotte ad agglomerarsi ed aggregarsi

 \longrightarrow

Difficoltà nella valutazione dimensionale dei cristalli

Messa a punto di un protocollo di misura

Riproducibilità delle misure

Utilizzo del bagno ultrasonico su sospensione additivata con Tween 60

L'aggiunta del tensioattivo inibisce la formazione di aggregati sfavorendo il legame tra le particelle per ingombro sterico

- 1) riempire un becker con una soluzione 0,1 M di NaOH a pH 10
- 2) immettere 0,5 g di Tween 60 nella soluzione
- 3) sciogliere con ultrasuoni il Tween 60 nella soluzione
- 4) immettere 5 gocce di sospensione nella soluzione sottoposta ad ultrasuoni
- 5) continuare ad ultrasonicare per circa 3 minuti
- 6) effettuare la misura del campione al Nanosizer

Implementazione del modello CFD in Fluent

Obiettivo:

Indagare le condizioni idrodinamiche nel punto di immissione dei reagenti

Caratterizzazione delle correnti in ingresso

- Portata delle correnti:
 - uguale a quella usata nella sperimentazione
- Proprietà fisiche (ρ,μ, D):
 - ρ , μ pari a quelle delle soluzioni alimentate sul disco
 - per ciascuna corrente si è assunta una diffusività pari a quella di una corrente acquosa che diffonde in un bulk costituito da acqua (self diffusivity)
- Non è stata presa in considerazione la reazione chimica

Simulazione con un'unica immissione al centro del disco valutazione dello spessore del film

Aumento della velocità di rotazione del disco

Diminuzione dello spessore

Simulazione con un'unica immissione al centro del disco Profilo della velocità radiale nel film

ω = 1400 rpm

ω = 560 rpm

Congruenza con osservazioni sperimentali

Presenza di tre zone a diverso comportamento del film sul disco

- Zona di iniezione
- Zona di accelerazione
- Zona di sincronizzazione

Simulazione con immissione delle 2 correnti laterali

L'immissione delle correnti reagenti avviene in un bulk costituito dalla corrente acquosa centrale

Andamento dello spessore del film lungo la posizione radiale del disco

Interpretazione dei risultati sperimentali mediante utilizzo del modello

Calcolo della potenza dispersa per unità di massa del film

dal grafico risulta: d $\sim \epsilon^{-0.5}$

Correlazione di Bourne:

$$au_m = 12 \left(rac{
u}{arepsilon}
ight)^{0.5}$$

proporzionalità esistente tra tempo di micromixing e dimensione delle particelle

Interpretazione dei risultati sperimentali mediante utilizzo del modello

 ω =560 rpm; piano a 5 μ m di altezza dalla superficie del disco

del pH ottimale

particelle di dimensioni maggiori e con elevata tendenza ad agglomerarsi e ad aggregarsi

Interpretazione dei risultati sperimentali mediante utilizzo del modello

 ω =1400 rpm; piano a 5 μ m di altezza dalla superficie del disco

Frazione volumetrica corrente H₂O+(NH₄)₂HPO₄ Frazione volumetrica corrente H₂O+ CaCl₂ Frazione volumetrica corrente H₂O+ NH₄OH

Alta velocità di rotazione del disco (>1000 rpm) Elevata potenza dispersa per unità di massa di film (Argomentare rapido mix, reazione, nucleazione, scarso accrescimento)

Assenza di segregazione delle correnti immesse

le correnti si mescolano rapidamente tra loro

> reazione in presenza del pH ottimale

corrente centrale è presente nella zona di reazione

particelle di dimensioni minori e con minor tendenza ad agglomerarsi e ad aggregarsi

Completo mesomixing non raggiunto

Conclusioni

Dal punto di vista modellistico:

- Efficace tecnica di discretizzazione del dominio considerato ottenuto grazie al metodo sviluppato per la generazione della griglia
- Soddisfacente simulazione dell'idrodinamica di una corrente sul disco validata sulla base di dati sperimentali
- > Utilizzo del modello per l'interpretazione dei dati sperimentali:
 - Determinazione dell'influenza della velocità di rotazione sulla dimensione delle particelle simile a quella sul tempo di micromixing, a dimostrazione della stretta interdipendenza fra tempo di micromixing e dimensione delle particelle.
 - Evidenziazione dei fenomeni di mesomixing che si attenuano all'aumentare della velocità di rotazione
 - Influenza del punto di immissione in dipendenza dei fenomeni di mesomixing.
 - Segregazione delle correnti per basso macromixing (velocità di rotazione < 100 rpm)

Dal punto di vista sperimentale:

- Produzione di particelle di dimensioni ottimali (100 nm)
- Messa a punto di un protocollo di misura efficace (aggiunta di un tensioattivo, il Tween 60, alla sospensione)

Impianto Pilota SDC

Diametro disco 30 mm

Velocità 500 -1500 rpm

Possibilità di posizionamento delle alimentazioni a raggi prefissati

Possibilità di operare sotto atmosfera di azoto.

Impianto Pilota SDC

Posizionamento delle alimentazioni

Utilizzo di un nefelometro per monitoraggio della concentrazione della sospensione

Sistema di monitoraggio e controllo impianto Pliota SDC

Interfaccia grafica

Sistema di controllo Impianto Pilota SDC

Correlazione tra segnale del Luxscan e densità della sospensione di idrosiiapatite prodotta dal reattore SDR

Operazione controllata di reazione-precipitazione

t [min]	T [°C]	рН [-]	Portata bulk [ml/min]	Intensità _{Hz}	Dimensioni [nm]	Magma density [g HAP / cl soluzione]
0	40	10.0	83	13416	102	0.231
10	40	10.0	78	14016	122	0.221
20	40	10.0	75	11934	100	0.189
35	40	10.1	71	10278	92	0.200
50	40	10.3	73	11722	92	0.193
65	40	10.0	84	14124	104	0.207

Il sistema di controllo sviluppato permette di ottenere attraverso la produzione tramite reattore a disco rotante soluzioni di nano-HAP con dimensioni tra 92nm e 104 nm.

✤ LE PARTI ESSENZIALI DELLA TECNICA SDR

- FORMA GEOMETRICA DEL REATTORE
- VELOCITA' DEL DISCO
- CARATTERISTICHE DELLA SUPERFICIE ROTANTE
- IL POSIZIONAMENTO E LA FORMA DEGLI INIETTORI DEI REAGENTI
- TRASFERIMENTO DI CALORE
- ESEMPI DI REATTORI SDR PER LE NANOTECNOLOGIE
 CONFRONTO TRA APPARECCHIATURE SDR
 CONCLUSIONI

Quando si sviluppa una tecnica in laboratorio, spesso non è adatta per uso industriale perché:

- Le quantità prodotte sono insufficienti.
- La produzione non avviene di continuo.
- La produzione non è di sufficiente qualità.
- L'efficienza del processo di abbassa nello scale-up.
- Lo scale-up a livello industriale non è fattibile mantenendo la stessa tecnologia.
- Il controllo del processo risulta essere completamente o

parzialmente compromesso.

→Il processo non è più economicamente valido !!!

La tecnica SDR è stata sviluppata nell'ambito di una *PROCESS INTENSIFICATION* per precipitazioni chimiche che mirano alla produzione di nanoparticelle. In laboratorio la precipitazione chimica (con la <u>speranza</u> di produrre interessanti quantità di nanoparticelle) si opera tramite **BSTR**.....

Immettete il reagente A nella zona a maggior micromixing!

REAGENTE B (GIALLO) REAGENTE A (BLU) DOVE STANNO LE ZONE VERDI, GIALLE E **ROSSE IN QUESTO CASO...**

BSTR	SDR
Produce in batch	Produce in continuo
Produce quantità piccole	Produce quantità grandi
Scale-up impossibile	Scale-up semplice
Produce poche nanoparticelle	Produce molte nanoparticelle
Favorisce l'agglomerazione	Inibisce l'aggolemrazione
Il controllo del processo è difficile	Il controllo del processo è facile
L'apparecchiatura costa poco	L'apparecchiatura costa

Visto che la tecnica SDR incorpora tutti i vantaggi della Process Intensification, migliorando il sistema di riferimento di laboratorio (BSTR), si ottimizza la tecnologia:

- Riducendo i costi di investimento
- Aumentando l'efficienza del reattore

(maggiore micromixing con minor spesa energetica)

- Evitando accumuli di precipitato nel reattore, intasamenti del sistema iniezioni, altro.

I reattori SDR possono essere usati sua per sistemi G-L, V-L che L-L. Nella precipitazione chimica interessa soprattutto l'ultimo caso.

- FORMA GEOMETRICA DEL REATTORE
- VELOCITA' DEL DISCO
- CARATTERISTICHE DELLA SUPERFICIE ROTANTE
- IL POSIZIONAMENTO E LA FORMA DEGLI INIETTORI DEI REAGENTI
- TRASFERIMENTO DI CALORE

- FORMA GEOMETRICA DEL REATTORE

- FORMA GEOMETRICA DEL REATTORE VANTAGGI: pulizia del reattore, film a spessore costante SVANTAGGI: trascinamento prodotto grossi

- FORMA GEOMETRICA DEL REATTORE

VANTAGGI: cattura particelle grosse SVANTAGGI: micromixing inibito, stabilità rotore, pulizia

- FORMA GEOMETRICA DEL REATTORE

VANTAGGI: compatto, cattura particelle grosse SVANTAGGI: pulizia

$$\varepsilon = \frac{1}{2 \cdot t_{res}} \cdot \left\{ \left(r^2 \cdot \omega^2 + u^2 \right)_o - \left(r^2 \cdot \omega^2 + u^2 \right)_i \right\}$$

$$\boldsymbol{U} = \left(\frac{\rho_L \cdot \boldsymbol{Q}_L^2 \cdot \boldsymbol{\omega}^2}{12 \cdot \pi^2 \cdot \mu_L \cdot \boldsymbol{r}}\right)^{1/3} \qquad \boldsymbol{t}_{res} = \frac{3}{4} \cdot (12 \cdot \pi^2)^{1/3} \cdot \left[\frac{\mu_L \cdot (\boldsymbol{r}_o^4 - \boldsymbol{r}_i^4)}{\rho_L \cdot \boldsymbol{\omega}^2 \cdot \boldsymbol{Q}_L^2}\right]^{1/3}$$

L'energia specifica dispersa è proporzionale a ω alla 8/3, a Q alla 4/3, a r alla -4/3.

Esiste poi un limite fisico di ω :

- Per vincoli meccanici.
- Per vincoli della velocità di rotazione

Il disco può essere liscio, sagomato o ruvido. Cambiano le forze tangenziali τ (di frizione).

Nelle nanotecnologie le superfici ruvide possono essere perse velocemente: il nanomateriale si deposita nei pori, effetti di coating, altro.

Per le nanotecnologie servono scanalature o sagomature submicroniche. Una scanalatura di 1mm per una particella di 100nm è 1000 volte più grande (e quindi sarebbe come tuffarsi in una piscina di 2km) Inoltre ce il rischio di zone stagnanti...

- H : altezza del film liquido
- T : distanza dal centro
- M : fattore di ruvidezza

LE ZONE ROSSE, GIALLE E VERDI DI UNO SDR

♦ 10 Hz – 2 Iniettori a 180°

$20 \text{ Hz} - 2 \text{ Iniettori a } 180^{\circ}$

$30 \text{ Hz} - 2 \text{ Iniettori a } 180^{\circ}$

$40 \text{ Hz} - 2 \text{ Iniettori a } 180^{\circ}$

♦ 50 Hz – 2 Iniettori a 180°

♦ 10 Hz – 2 Iniettori a 30°

Hz	10	20	30	40	50
Giri al minuto del disco	288	576	864	1152	1440

	Tipo reattore	Acido e quantità	Condizioni operative di dispersione	Post-trattamenti dopo 24h di dispersione
Ι	SDR 10Hz	HNO ₃ 0.1M	25°C, senza agitazione	essiccato a
Π	SDR 30Hz	HNO ₃ 0.1M	25°C, senza agitazione	essiccato a
III	SDR 50Hz	HNO ₃ 0.1M	25°C, senza agitazione	essiccato a
IV	SDR 30Hz	HNO ₃ 0.1M	25°C, senza agitazione	liofilizzato
V	SDR 30Hz	HNO ₃ 0.1M	25°C, con agitazione	liofilizzato
VI	SDR 30Hz	HNO ₃ 0.1M	80°C, senza agitazione	liofilizzato
VII	BSTR 1440rpm	HNO ₃ 0.1M	25°C, senza agitazione	essiccato a
VIII	BSTR 1440rpm	HCl 0.1M	25°C, senza agitazione	essiccato a
IX	BSTR 1440rpm	-	25°C, senza agitazione	essiccato a
X	BSTR 1440rpm	HNO ₃ 0.1M	25°C, senza agitazione	essiccato a , poi calcinato a per 6h
XI	BSTR 1440rpm	HCl 0.1M	25°C, senza agitazione	essiccato a , poi calcinato a per 6h
XII	BSTR 1440rpm	-	25°C, senza agitazione	essiccato a , poi calcinato a per 6h

✤ CAMPIONI I-III

✤ FASE CRISTALLINA

0.35 0.3 0.25

0.2

0.15

0.1 0.05 0

0.1

Rel. Intensity

CAMPIONE IV

d001,60°

1000

Hydrod. Radius [nm]

100000

10

837A - TEM, 100kV, 300.000x

CAMPIONE VI

✤ SEM

Disco distributore

Peso scaling e percentuali

	RAGGIO	PESO (g)	PERCENTUALE (su 60
			ml di TTIP)
2 INIEZIONI	3 cm	10.9652	67.32 %
	6.5 cm	11.421	70.12 %
	10.5 cm	10.3042	63.27 %
	14 cm	10.2977	63.16 %
	RAGGIO	PESO (g)	PERCENTUALE (su 100
			ml di TTIP)
<u>4 INIEZIONI</u>	3 cm	6.524	24.03 %
	6.5 cm	8.491	31.28 %
	10.5 cm	9.926	36.57 %
	14 cm	17.3966	64.09 %
	RAGGIO	PESO (g)	PERCENTUALE (su 100
		1 200 (8)	ml di TTIP)
8 INIEZIONI	3 cm	8.9513	32.98 %
	6.5 cm	11.3696	41.89 %
	10.5 cm	14.0407	51.73 %
_	14 cm	15.5642	57.34 %

28.4

Disco distributore

run 4

CAMPIONE : 2 INIEZIONI, R = 10.5 cm

RUN	DIAMETRO (nm
run 1	26.0
run 2	25.5
run 3	24.7
run 4	24.5

<u>CAMPIONE : 8 INIEZIONI, R = 3 cm</u> <u>1 campione</u>

		RUN	DIAMETRO (nm)
CAMPIONE : 2 INIEZIO	NI. $R = 14$ cm. evaporato	run 1	31.9
		run 2	29.8
KUN	DIAMETRO (nm)	run 3	29.2
run 1	29.9	run 4	30.2
run 2	30.4		
run 3	29.0		

CAMPIONE : 4 INIEZIONI, R = 3 cm, evaporato

DIAMETRO (nm)
25.0
24.7
24.7
23.8

CAMPIONE : 4 INIEZIONI, R = 10.5 cm

RUN	DIAMETRO (nm)
run 1	49.3
run 2	39.8
run 3	35.3
run 4	34.3

✤ DISPERSIONE

✤ DISPERSIONE

D		Dimensione (nm)		7 Dat (mal)
R	Appar.	Minima	Picco	\neg Z- Pot. (mv)
AOH). Quest	beaker	438	542	-22.6
0.5	SDR	228.4	228.4	-12.8
	beaker	573	573	-23.7
1	SDR	324	406	-18.2
(V(1)1109 -S	beaker	804	922	-24.8
	SDR	502	589	-22.3
	beaker	1088	1102	19.8
1.67	SDR	939	939	-9.2
-22.5	beaker	1366	1366	26.3
2	SDR	1024	1031	19.7

Tab. V.1: Confronto tra i valori di dimensioni e di Z-potenziale di particelle prodotte in BSTR e SDR a parità di R.

R	pH	Dimensione (nm)		7 Det (mV)
		Minima	Picco	\Box Z- Pot. (mv)
0.5	10	228.4	228.4	-12.8
	13	934.7	1087.6	-25.5
1.66	10	939	939	-9.2
	13	331.6	422.6	-22.5
2.67	10	1164.8	1731	15.8
	13	1454.6	1661.4	27

Tab. V.2: Confronto fra i valori di dimensioni e di Z-potenziale di particelle prodotte in reattore SDR a pH=10 e pH=13 a parità di R. Analizzando i dati è possibile osservare come i campioni prodotti a pH=13 siano, in confronto con quelli prodotti a pH=10, di dimensioni maggiori nel primo caso, di dimensioni minori nel secondo e di dimensioni simili nel terzo caso. Tale variabilità nei risultati ha consigliato di non procedere con la produzione a pH=13.

R	Trattamento	Dimensione (nm)		7 Dot (mV)
		Minima	Picco	\square \square \square \square \square \square \square
0.5	/	228.4	228.4	-12.8
	Ridisp.	164.5	164.5	-14.9
1.67	/	939	939	-9.2
	Ridisp.	690	739	-22.5
2.67	/	1164.8	1731	15.8
	Ridisp.	555.4	657.2	6.3
3.33	1	1491.3	1700	15.4
	Ridisp.	201.6	266.8	8

Tab. V.3 confronto tra valori di Z-potenziale e dimensioni delle particelle prima e dopo il trattamento di ridispersione.

Fig. prodotto in SDR con R=1.67 a 10000 ingrandimenti acquisita mediante SEM.

VI.3: Immagine del campione Fig. VI.4: Immagine del camp prodotto in SDR con R=1.67 a ingrandimenti acquisita mediante SEN

Fig. VI.5: Immagine del campione prodotto in SDR con R=1.67 a 10000 ingrandimenti acquisita mediante SEM.