

UNIVERSITA' DEGLI STUDI DI ROMA "LA SAPIENZA" INGEGNERIA DELLE NANOTECNOLOGIE

Reattori per la precipitazione

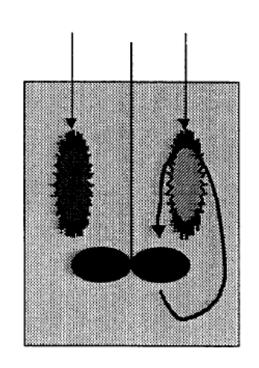
PROF. MARCO STOLLER
DIPARTIMENTO DI INGEGNERIA CHIMICA MATERIALI AMBIENTE

PIANO 2 - UFFICIO 204b

TEL: +390644585580

MARCO.STOLLER@UNIROMA1.IT

APPLICAZIONI PER REATTORI DI PRECIPITAZIONE

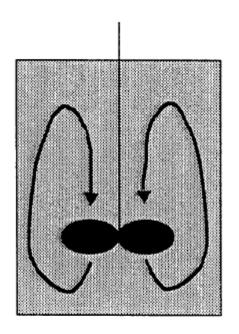

- 1. Produzione di particelle solide con proprietà specifiche e con elevate resa
- Pigmenti non organici
- Fillers: CaCO3 nella carta, BaSO4 nella copertura di polveri
- Reagenti chimici: Al(OH)3
- Ag per la fotografia
- Prodotti farmaceutici
- Polimeri
- 2. Rimozione di inquinanti da reflui (bassa resa)
- Processi per il trattamento acqua per l'industria alimentare
- Rimozione di fosfati per il trattamento reflui civili
- Rimozione selettiva di metalli pesanti

FATTORI PER IL CORRETTO DESIGN

Mixing e cinetica

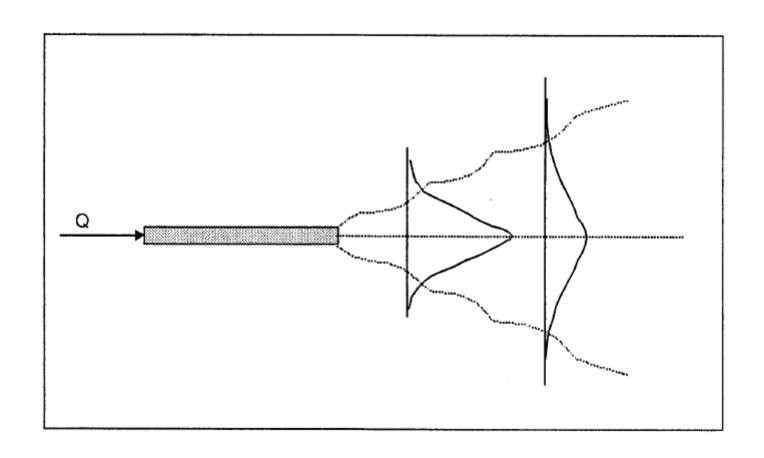
CINETICA

Reazione Nucleazione Ascrescimento Agglomerazione


MIXING

Macro Meso Micro

MACROMIXING

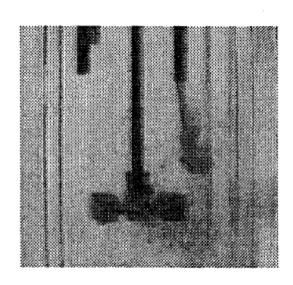
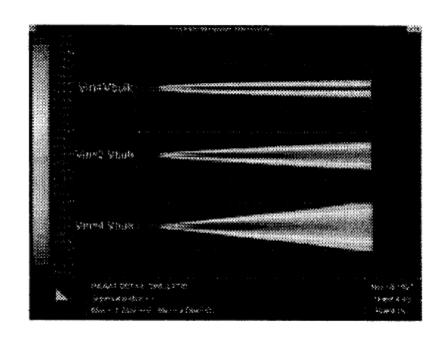

Tempi di circolazione nel reattore

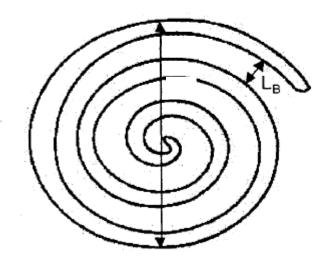
$$t_{macro} = \frac{V}{bNd_{stir}^3}$$

Dipende fortemente dal valore dell'energia specifica media

MESOMIXING

MESOMIXING


Foto in condizioni di mesomixing

Simulazioni CFD a differenti velocità del fluido all'orifizio dell'iniettore

MICROMIXING

$$t_{micro} = 12 \left(\frac{v}{\varepsilon}\right)^{\frac{1}{2}}$$

Se è nota la scala del micromixing, λ_k :

tmicro=
$$0.5 (\lambda_k^2 / D)$$

con D coefficiente diffusivo

TEMPI DI MIXING

MACROMIXING

Processo: Circolazione del fluido nel reattore

Scala: volume del reattore

Ordine di scala: 1-10m

Tempo: tempo di circolazione

Ordine di tempo: 10-50 s

MESOMIXING

Processo: Mixing agli iniettori
Scala: diametro dell'iniettore

Ordine di scala: 1-10cm

Tempo: Tempo di impatto idrodinamico

Ordine di tempo: 1-10 s

MICROMIXING

Processo: Vortici e diffusione

Scala: Vortice Ordine di scala: 30um

Tempo: Tempo di vita del vortice

Ordine di tempo: 10ms

DIFFUSIONE

Processo: Diffusione tra lamelle fluide Scala: Metà dello spessore di lamella

Ordine di scala: 1um

Tempo: Tempo di penetrazione diffusionale

Ordine di tempo: 1ms

TEMPI CINETICI

Tempo di reazione

$$t_r = \frac{1}{kc_0^{n-1}}$$

Tempo di nucleazione

$$t_n = \frac{6d_m^2 n^*}{D_i \ln S}$$

Tempo di accrescimento

$$t_G = \frac{M}{\rho G a} \Delta c$$

$$\sim 10^{0} \, \mathrm{s}$$

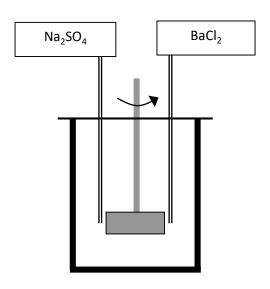
Tempo di induzione

$$t_i = \left(JG^3\right)^{\frac{1}{4}}$$

$$\sim 10^{-4} - 10^{0} \, \mathrm{s}$$

SELEZIONE DEL TIPO DI REATTORE

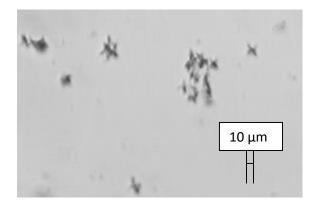
- L'obiettivo principale è lo sviluppo di un reattore per la precipitazione chimica, che intensifica il fenomeno del mixing per produrre nanoparticelle in quantità.
- Possibili apparecchiature sono il T-mixer e il reattore a disco rotante (spinning disk reactor, SDR). Entrambi assicurano condizioni di micromixing ideali per indurre condizioni di nucleazione primaria omogenea.
- In un primo momento, le apparecchiature sono state confrontate per la produzione di barrio solfato sub-micronico, modello di riferimento per la valutazione delle prestazioni delle apparecchiature investigate.


REATTORE MISCELATO

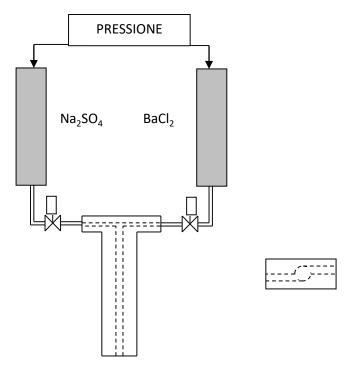
• La reazione per la produzione di barrio solfato è:

$$BaCl_2 \cdot 2H_2O + Na_2SO_4 = BaSO_4 \downarrow + 2NaCl + 2H_2O$$

La concentrazione all'equilibrio del barrio solfato è pari a 10⁻⁵ M a 20°C.


 La precipitazione è stata eseguita per immissione dei due reagenti alla portata di 50 ml/s in un volume di reazione di 1000 ml. La concentrazione dei reagenti nelle correnti acquose è stato pari a 0,1 M.

Il reattore è stato preliminarmente riempito con 300 ml di acqua distillate. La velocità di rotazione della girante è stata impostata a 2000 rpm.


<u>RISULTATI</u>

- All'inizio, il valore della sovrasaturazione relative è stato calcolato pari a 5000.
- Probabilmente, sono stati ottenuti valori molto più bassi di S, localmente laddove il mixing è stato poco efficace.
- Dopo ogni produzione, 2 ml di campione sono stati prelevati e messi in una soluzione di 20 ml con 0.02% wt. in gelatina. In questa maniera. È stato evitato che le particele prodotte potessero agglomerarsi.
- Con le condizioni operative adottate, I cristalli prodotti hanno una forma stellate con diametro medio di 15 micron e una densità pari a 3 10⁸ #/cm³.

T-MIXER

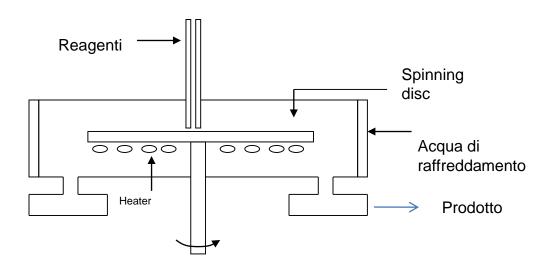
- Il T-mixer consiste di due iniettori ad altra pressione, con diametro pari a 1 mm, posizionati in maniera non coassiale per aumentare gli effetti di mescolamento mediante la formazione di un vortice.
- L'uscita al T-mixer è lungo 30 cm e ha un diametro pari a 2 mm.
- I diametri sono stati scelti per mantenere, in tutto il T-mixer, il valore di Re costante.

T-MIXER RISULTATI

• In un primo momento, è stata usata dell'acqua per il calcolo delle velocità di attraversamento.

Tanks Pressure [bar]	Flow Rate [ml s ⁻¹]	Re number
1	4,12	2624
2	5,96	3796
3	6,74	4292
4	7,66	4878

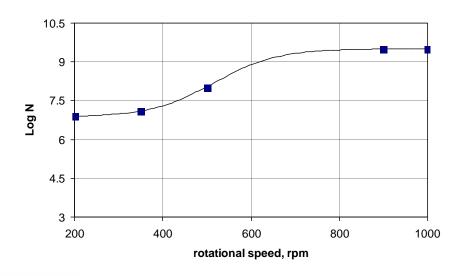
- Attraverso un test colorimetrico è stato misurato anche il tempo di mixing.
- Il tempo di mixing è pari a 0,76 ms a 4 bar.


CRISTALLI PRODOTTI DAL T-MIXER

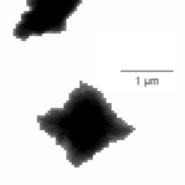
- Si sono osservati cristalli di dimensioni pari a 0,7 ÷ 1μm.
- I cristalli più piccolo hanno forma sferica, mentre quelli più grandi stellata.
- La densità dei cristalli prodotti è stata valutata essere intorno ai 6,5 10⁹ #/cm³

SDR

- Il disco rotante, fatto di ottone, ha un diametro di 0.5 m.
- Un inverter regola la velocità di rotazione del disco, tra 100 and 1500 rpm.
- I reagenti sono stati iniettati sulla superfice del disco ad una distanza dal centro del disco pari a 0,05 m.
- La temperatura dei reagenti è stata pari a 25 \pm 0,5 °C.



SDR - RISULTATI


Effetto della sovrasaturazione

S	Numero di cristalli	
	#/cm3	
100	6,9 10 ⁷	
2000	3,2 109	
2500	4,0 109	

Effetto della velocità del disco

Cristalli prodotti

CONFRONTO DEI RISULTATI OTTENUTI

	Stirred Tank Reactor	T-mixer	SDR
Condizioni operative	N = 2000 rpm $S_0 = 5000$	P = 4 bar $S_0 = 2000$	N = 1000 rpm $S_0 = 2000$
Numero cristalli per cm3	$2 \div 4 \cdot 10^8$	6,5 · 10 ⁹	$3,2 \cdot 10^9$
Diametro cristalli (µm)	10 ÷ 15	0,7 ÷ 2	1 ÷ 2
Energia specifica dispersa (W/kg)	661	197596	115
Tempo di mixing (ms)	N/A	0,76	0,9

ENERGIA SPECIFICA DISPERSA

T-Mixer (espressione suggerita da Mohanty):

$$\varepsilon = \frac{\Delta p \cdot Q_L}{\rho_L \cdot \frac{\pi \cdot d^2}{4} \cdot L}$$

Reattore miscelato:

$$\varepsilon = \frac{N_P \rho N^3 D^5}{V}$$

SDR:

$$\varepsilon = \frac{1}{2 \cdot t_{res}} \cdot \left\{ \left(r^2 \cdot \omega^2 + u^2 \right)_o - \left(r^2 \cdot \omega^2 + u^2 \right)_i \right\}$$

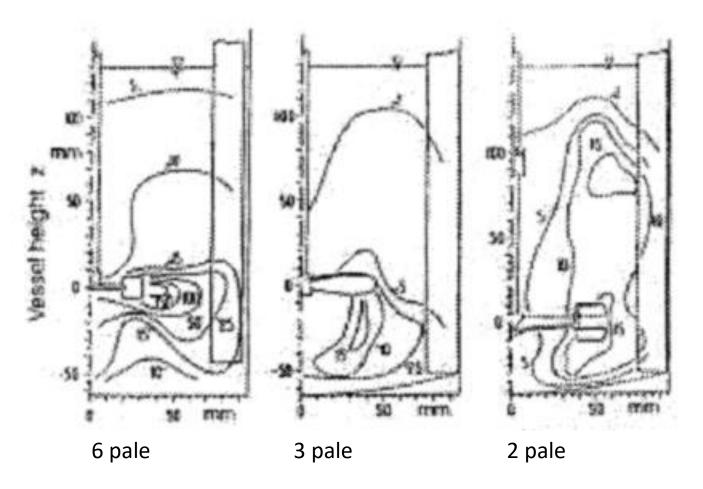
con t_{res} tempo di residenza del liquido sul disco, r la distanza radiale dal centro del disco, ω la velocità angolare del disco and u la velocità media del liquido sul disco, con pedici "o" and "i" ad indicare il raggio esterno (outer) o interno (inner).

SDR

La velocità media de liquido sul disco è dato dall'espressione:

$$u = \left(\frac{\rho_L \cdot Q_L^2 \cdot \omega^2}{12 \cdot \pi^2 \cdot \mu_L \cdot r}\right)^{1/3}$$

con Q_L portata di liquido immessa sulla superfice del disco, ρ_L la densità e μ_L la viscosità della soluzione.

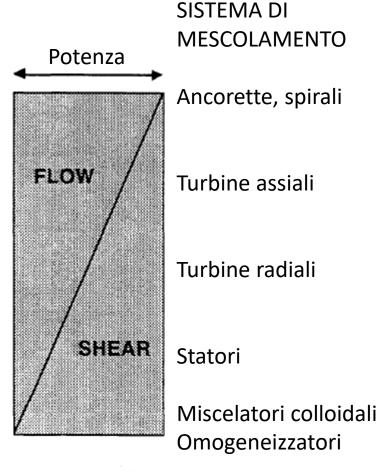

• Il tempo di residenza può essere quindi calcolato come:

$$t_{res} = \frac{3}{4} \cdot (12 \cdot \pi^2)^{1/3} \cdot \left[\frac{\mu_L \cdot (r_o^4 - r_i^4)}{\rho_L \cdot \omega^2 \cdot Q_L^2} \right]^{1/3}$$

CRITERI PER LO SCALE UP

- Per incrementare la capacità dell'apparecchiatura si può operare su 3 parametri:
 - Il diametro del disco
 - Il numero di dischi in parallelo su una stessa pila
 - Il numero di pile di dischi
- La condizione operativa da mantenere costante è il valore dell'energia dispersa localmente nel punto di immissione dei reagenti.
- Il criterio di ottimizzazione è la minimizzazione dei costi di investimento, salvaguardando la stabilità della struttura rotante.

MIXING


Micromixing su scala locale solo vicino alle pale Macromixing nel volume di reazione

FUNZIONE DEL SISTEMA DI AGITAZIONE

→ Macromixing

SISTEMA DI
MESCOLAMENTO

→ Meso e micromixing

Characterization of impellers (Oldshue 1983)

SCALE UP

Stesso valore di energia specifica dispersa medio

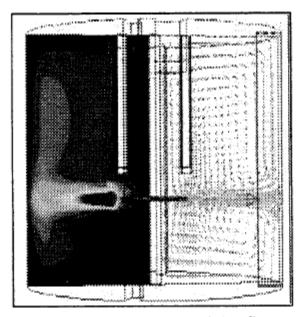
 $\overline{\epsilon}$

ε

Sistema mixing differente

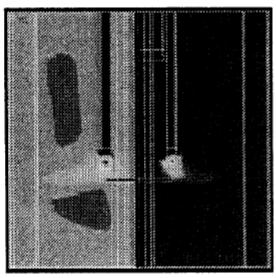
Diversi valori di energia specifica dispersa locale

ε


Stesso valore di energia specifica dispersa medio

Differente volume reattore

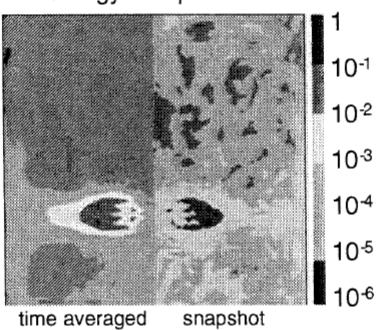
Diversi valori di energia specifica dispersa locale


ε

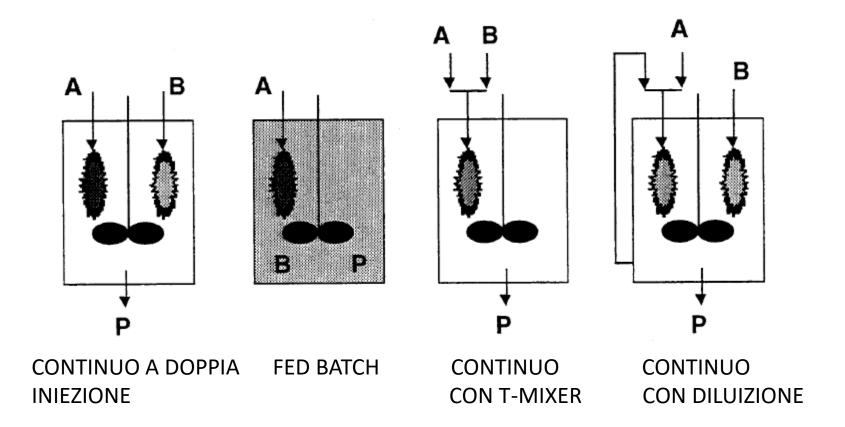
CFD IN UN REATTORE AGITATO

Left: energy

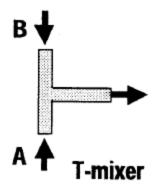
Right: flow

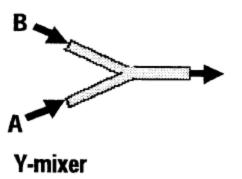


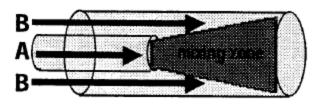
Left: supersaturation

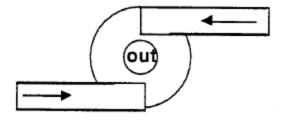

Right: nucleation rate

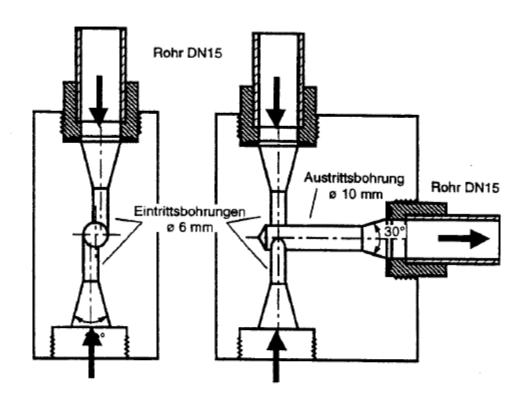
IDRODINAMICA DEL SISTEMA DI AGITAZIONE A PALE





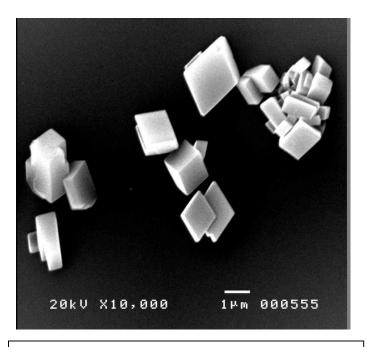

MODALITA' OPERATIVE


REATTORE A MIXER



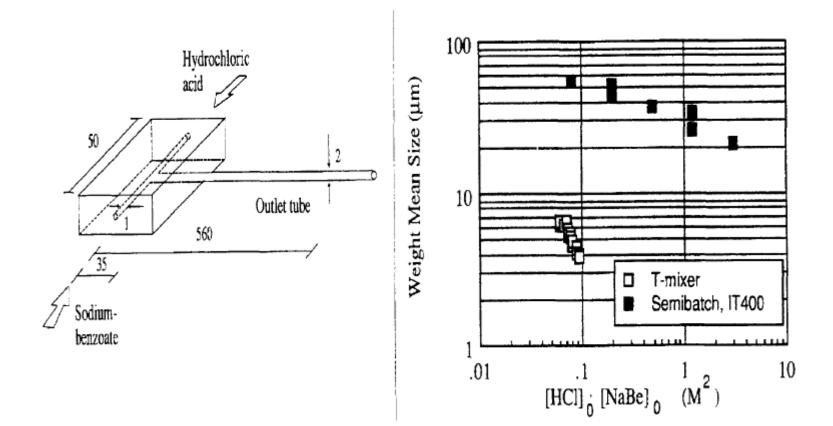
Two concentric tubes Well defined mixing

Two impinging jets


APPLICAZIONE INDUSTRIALE DI UN T-MIXER

Two impinging jets - Stephan Kabasci (1997) High efficiency mixing

<u>SDR</u>



Carbonato di calcio prodotto mediante SDR

Reference

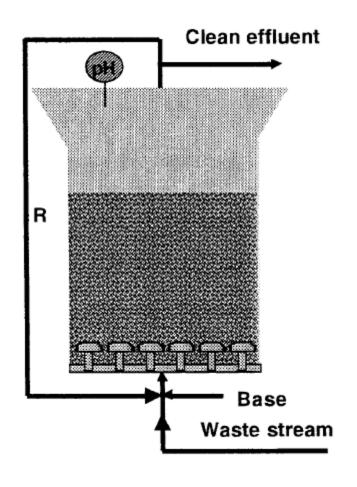
- •Process Intensification: Spinning Disc Reactor for Styrene Polymerisation, K. Boodhoo & R. Jachuck, Applied Thermal Engineering, Vol. 20 (2000) 1127-1146.
- •Precipitation of Barium Sulphate Using a Spinning Disc Crystallizer, L.M. Cafiero, A. Chianese and R. Jachuck, 14th International Symposium on Industrial Crystallization, Cambridge October 1999

PRECIPITAZIONE DI ACIDO BENZOICO

PRECIPITATORI A LETTO FLUIDIZZATO

Problema:

- Il composto da rimuovere è presente a basse concentrazioni (<1%)
- Alte portate


Richieste:

- Tempi di residenza bassi (minuti)
- Particelle grandi da separare facilmente dal refluo

Soluzione:

Precipitatore a letto fluidizzato

TRATTAMENTO ACQUE REFLUE

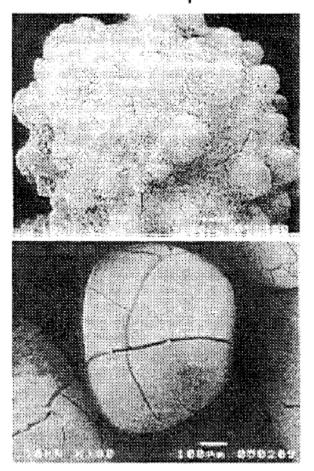
Compounds removed:

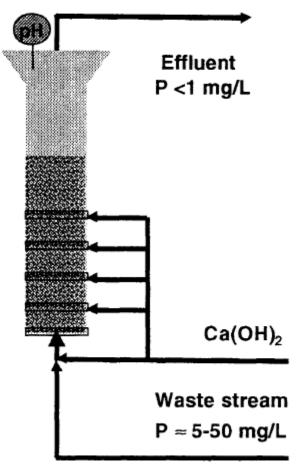
- Ca as Calcium Carbonate
- P as Amorphous Calcium Phosphate
- Heavy metals as carbonates or hydroxydes

Fluidized bed characteristics

- seeds: sand grains

-H = 5 m


 $-v_{sup} = 1 \text{ cm/s}$


– τ_{particles} ≈1 year

– τ_{liquid} ≈10 min

TRATTAMENTO ACQUE REFLUE

Fluidised bed precipitator Phosphate removal from wastewater

