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Using stem cells for therapy

Regenerative medicine is the process of creating living, functional tissues to repair or
replace tissue or organ function lost due to age, disease, damage, or congenital
defects.

Cell therapy: treat a disease by introducing new cells into a tissue.

Tissue engineering: combining cells, engineering and materials methods, and suitable
biochemical and physio-chemical factors to improve or replace biological functions.




This lesson

1. What are stem cells? Adult and Embryonic stem cells.
2. Unique properties of pluripotent cells.

3. Generating pluripotent cells from somatic cells through
epigenetic reprogramming.

4. Applications of pluripotent cells, from basic research to
regenerative medicine.



Where does the term
“Stem Cell” come from?e

Stem Cell (18668): “the unicellular ancestor of
all multicellular organisms” and “the fertilized
egg that gives rise to all cells of the organism”.

Such definition is in agreement to Haeckel's
recapitulation theory ("ontogeny recapitulates

phylogeny”).

Ernst Haeckel (1634-1919)
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“Stem cell”, “Anthropogeny”, “Ecology”,
“Phylum”, “Phylogeny” are all terms
coined by Haeckel, who was also a major
supporter of Darwin’s theory.




What does the term Stem mean?

Stamen, staminis (Lat.): “string” (Eng.).

Differentiation
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Adult Stem Cells

Adult Stem Cells are present in some organs for the entire
life of the organism.

They represent immortal populations of cells, able to
regenerate the tissues in which they reside.

Prometeus

‘Hrap (liver) is derived from Amdouon (repair).



Stem Cell Niches
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Niche: highly organized microenvironment that controls stem

cells homeostasis.

Signals from the niche influence proliferation of stem cells and help to maintain

their undifferentiated state.
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HSC Niche: the Bone Marrow
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Unlike most other stem cells, which reside either within their niche or within a
relatively limited range of travelling distance surrounding the niche, HSCs are
extraordinarily mobile. During homeostasis, HSCs often travel from one bone
marrow compartment to another.



Bone marrow transplant

The aim is to replace bone marrow that either is not working properly or has been destroyed by
chemotherapy or radiation.

Used to treat:

- Some types of cancer (e.g. leukemia, lymphoma, multiple myeloma)

- A disease that affects the production of bone marrow cells (e.g. anemia, immunodeficiency
syndromes)
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rug
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. Healthy bone
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http://gru.edu/cancer/patientcare/services-treatment
/bmt/process.php



Muscle Stem Cells
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Satellite Cells
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Adult Stem Cells

Adult Stem Cells are multipotent or unipotent.
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Early embryonic development

Blastocyst formation
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Totipotency and Pluripotency

Totipotency: the ability of a single cell to divide and produce all the differentiated
cells in an organism, including extraembryonic tissues. In mammals: zygote to 4-cell
stage embryos.

blastomere 3

One eggis

.
;2/»0

Fertilised egg divides into two.
The two parts are separate and
develop independently

The two babies have identical
chromosomes and genes

Vande Velde et al., 20086



Totipotency and Pluripotency

Totipotency: the ability of a single cell to divide and produce all the differentiated
cells in an organism, including extraembryonic tissues. In mammals: zygote to 4-cell
stage embryos.

Pluripotency: the ability of a cell to differentiate into any of the three germ layers:
endoderm, mesoderm or ectoderm. Pluripotent stem cells can give rise to any fetal
or adult cell type. However, a single cell or a conglomerate of pluripotent cells
cannot develop into a fetal or adult animal because they lack the potential to
organize into an embryo. In mammals: ICM of the blastocyst.
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Decrease of developmental potential
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gametes zygole 2-cell 4-cell blastocyst embryo fetus infant adult elderly
I l \ l J
totipotent pluripotent multipotent and unitipotent

Developmental Potential

Mitalipov and Wolf, 2009




Embryonic Stem Cells
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Embryonic Stem Cells are Pluripotent

_ Pluripotent Stem Cells
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Differentiation of ESCs for therapy

. Pluripotent Stem Cells
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Embryonic and Adult Stem Cells

Embryonic

In vivo, they exist as a
very transient
population of cells inside
the blastocyst. Their
self-renew is limited to a
short period of time

In vitro, we can keep
them undifferentiated
indefinitely (self-renew)

Their developmental
potential is:
pluripotency

Adult

In vivo, they reside in
hiches inside adult
organs. Their self-renew
capacity is virtually
unlimited

In vitro, not all adult
stem cell types can be
maintained

Their developmental
potential is:
multipotency or
unipotency



Embryonic Stem Cells
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Regulatory circuitries in
Embryonic Stem Cells
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(Jaenisch and Young, Cell 2008)



(Zernicka-Goetz et al., Nat Rev Genet 2009)

Transcriptional circuits in the first
cell fate decision

Both outside cells
inherit Cdx2 mRNA
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division
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Outside cell inherits
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Figure 2 | Transcriptional circuits in the first cell fate decision. a | Cell polarization

helps create a symmetry-breaking event. mRNA for the Cdx2 transcription factor (small

grey dots) becomes asymmetrically localized at the cortex of polarized blastomeres™.
Thus, when these cells divide symmetrically this mRNA is equally partitioned between
the daughter cells, but when they divide asymmetrically outer daughters inherit more
Cdx2 mRNA than inner daughters. When, after asymmetric divisions, cells reach their
inside (yellow) or outside (green) position, molecular mechanisms that sense cell
position can further influence transcription from the Cdx2 locus. b | Cell polarity and
trophectoderm fate are mutually reinforcing in symmetrically dividing cells. Increased
Cdx2 expression increases cell polarity and cell polarity leads to asymmetric
localization of Cdx2 mRNA. Decreased Cdx2 transcripts in inner cells, as a result of the
mechanisms outlined in a, relieves CDX2-mediated repression of the mutually
reinforcing Nanog and Oct4 genes that establish or retain pluripotency.
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Core TFs are necessary to
maintain ESCs pluripotency
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Feedforward core loop and
regulation of pluripotency

v’ Consistent activity that is relatively insensitive to transient changes (stability of
gene expression in undifferentiated cells)

v' Reduced response time to environmental stimuli (plasticity; fast activation of
differentiation programs)

This autoregulatory and feedforward circuitry provide regulatory mechanisms by which
stem cell identity can be robustly maintained yet permit cells to respond appropriately
to developmental cues.




Transcriptional Regulation of Stemness

Model of core ES cell regulatory circuitry
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2.

3.

4

5.

6.

Embryonic stem cells
- key properties -

. ESCs are pluripotent stem cells: they can self-renew indefinitely and
differentiate into derivatives of the 3 germ layers
Two states of pluripotency exist: naive (or ground state) and primed
A core transcriptional regulatory circuitry plays a central role in ESCs
. Genes involved in early development present bivalent chromatin domains in ESCs
ESCs have a peculiar cell cycle regulated by miRNAs

miRNAs also regulate differentiation of ESCs



Directing Differentiation of ESCs

(Cohen and Melton, Nat. Rev. Genet. 2011)
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Patterning in the neural tube
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Regional specification of neurons

Depending on the presence of morphogens (e.g., fibroblast growth factors [FGFs],
Wnts, and retinoic acid [RA]), the generated neuroepithelial cells are fated to cells of
various regional identities including telencephalic, mid-/hindbrain, and spinal cord.

—> Forebrain

Pluripotent Neural Neural = =2 Midbrain
cells Induction i + Morphogens

Progenitors - S Hindbrain

Patterning = Spinal Cord



Differentiation of ESC to obtain motor neurons
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The sensory neurons that process and relay sensory input are found, predominantly, in
the dorsal half of the spinal cord.
The motor neurons participate in motor output and are located ventrally.

This positioning reflects, to a large extent, the developmental origin of each individual
neuronal subtype.



Differentiation of ESC to obtain
motor neurons

Signaling factors involved in normal development of motor neurons in vivo were
used to obtain this specific cell type from ESC in vitro.
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Amyotrophic Lateral Sclerosis (ALS)

* Neurodegenerative disorder caused by loss of — NerveCens

motor neurons in the brain and spinal cord, leading
to progressive paralysis

* Frequency: about 6/100.000; typical onset:
40-60 years

* Most ALS patients die from respiratory failure, -

3-5 years from the onset of symptoms; T p—"
and muscle
no treatment or cure available

nerve cell and muscle

* About 10% of ALS cases are Familial (FALS); the rest are Sporadic (SALS)



Diff. of ESC to obtain insulin-producing cells
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Diff. of ESC to obtain insulin-producing cells

Stage 1 Stage 2 Stage 3 Stage 4
Definitive Primitive Posterior Pancreatic endoderm
endoderm gut tube foregut and endocrine precursors
ActA + Wnt [ ActA E&d  |RA + Cyc +D0 No factors
RPMI + RPMI + RPMI + DMEM + DMEM +
0% FBS |0.2% FBS| 2% FBS 1% B27 1% B27
I 1 day | 2 days = 3 days = 3 days = 3 days I
® w = ® @ v
OCT4 BRA SOX17 HNF1B PDX1 NKX6-1
NANOG FGF4 CER HNF4A HNF6 PTF1A
SOX2 WNT3 FOXA2 PROX1 NGN3
ECAD NCAD CXCR4 SOX9 NKX2-2

(Kroon et al., Nat. Biotech. 2008)

ES: Embryonic Stem Cell
ME: Mesendoderm

DE: Definitive Endoderm
PG: Primitive Gut

PF: Posterior Foregut

PE: Pancreatic Endoderm



Diff. of ESC to obtain insulin-producing cells

Differentiation
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2012 Nobel Prize in Medicine

John Gurdon Shinya Yamanaka



Nuclear transfer

Gurdon 19586-1966 - Nuclear transplantation in Xenopus laevis.

Anucleolate heterozygous mutant
(only 1 nucleolus/cell)

g — I‘I‘

“Fertile intestine nuclei™:

Fertile adult male and female frogs, genetically marked as of solely donor origin, were
obtained from the serial transplantation of nuclei from intestinal epithelial cells of
feeding larvae (success rate =1%).



Reprogramming by cell fusion

Cc

0.@ - -G -G E
Cell fusion switched to that
o — of dominant cell

Cell A CellB Heterokaryon Heterokaryon
1 hour 48 hours

In the heterokaryon, the dominant cell, usually the larger and more actively dividing
partner, imposes its own pattern of gene expression on the other partner.

Examples include the fusion of an erythrocyte with a growing cultured cell or of a
human liver cell with a multinucleate muscle cell. If enucleated cytoplasms of one kind
of somatic cell (cytoplasts) are fused to another cell, they also impose gene
expression of their original cell type on the incoming nucleus.
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10n

(Gurdon & Melton, Science 2008)



2006

Induction of Pluripotent Stem Cells
from Mouse Embryonic and Adult
Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi' and Shinya Yamanaka'%*




Chasing the Reprogramming Factors:
Yamanaka’s strategy
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Screening the candidates
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Yamanaka's Reprogramming Factors:
The Fantastic Four

SOX2

KLF4



Properties of
induced Pluripotent Stem Cells (iPSCs)
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Potential applications of iPSCs

. motor neurons dying

Treatment of patient(s)
with drug

Transplantation of
genetically matched
healthy motor neurons
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Stadtfeld and Hochedlinger, 2010



iPS cells in research

Biopsy Reprogramming Induction of
laclors pluripotency
" EE—— &

Adult cells
(e.g. skin fibroblasts) K

Patient iPS cells
(resemble embryonic
stem celis)

"" f Transplantation
of cell replacement for therapy
N
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Disease models for drug discovery Disease affected
and compound screening cell type

M. Rossbach

Creation of in vitro model systems :

Compare disease affected cells with their normal counterparts
to understand the molecular basis of the disease.



Organoid

Three-dimensional cell mass resembling an organ in some aspects

/ N\

Model for studying embryogenesis Regenerative Medicine
and disease

SOX2 TUJ1 Hoechst

Neural cells

Blood cells

Ilustration by Cell Imaging Core of the Center for
Reproductive Sciences.



Cerebral organoids model human brain
development and microcephaly

Madeline A. Lancaster', Magdalena Renner’, Carol-Anne Martin®, Daniel Wenzel', Louise S. Bicknell?, Matthew E. Hurles’,
Tessa Homfray", Josef M. Penninger', Andrew P. Jackson” & Juergen A. Knoblich'

19 SEPTEMBER 2013 | VOL. 501 | NATURE | 373
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Cerebral organoids model human brain
development and microcephaly

Madeline A. Lancaster', Magdalena Renner’, Carol-Anne Martin®, Daniel Wenzel', Louise S. Bicknell’, Matthew E. Hurles’,

Tessa Homfray”, Josef M. Penninger', Andrew P. Jackson? & Juergen A. Knoblich'
19 SEPTEMBER 2013 | VOL. 501 | NATURE | 373
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Cerebral organoids model human brain
development and microcephaly

Madeline A. Lancaster’, Magdalena Renner', Carol :\nne‘l\lm'lin", Daniel Wenzel', Louise S. Bicknell*, Matthew E. Hurles”,
Tessa Homfray", Josef M. Penninger', Andrew P. Jackson” & Juergen A. Knoblich'

19 SEPTEMBER 2013 | VOL. 501 | NATURE | 373
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iPSC pilot safety study for
Age-related Macular Degeneration (AMD)

Vitreous body

| |
Macula \J Sensory retina
» _[ T1 (photoreceptors)

epithelium (RPE)

l [ ]

j[ Retinal pigment

Removal of neovascular tissue

T

R

Transplantation of
iPSC-derived RPE cell sheet

iPS cells

Differentiation into RPE cell sheet used in
retinal pigment epithelium transplantation
(RPE)

v""’.l’f.':%

http://www.riken-ibri.jp/AMD/english/research/index.html



Corrected iPSCs cure anemia in mice

Treatment of Sickle Cell Anemia
Mouse Model with iPS Cells

Generated from Autologous Skin Mouse with

. . - A sickle cell anemia
Jacob Hanna,* Marius Wernig,* Styliani Markoulaki,* Chiao-Wang Sun,? e
B 1 1,3 : 1 : 0 1 /
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Correction of mutations with genome
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Zinc-finger and TALE nucleases can be
directed to specific DNA sequences
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Each zinc-finger recognizes a triplet Each TALE module recognizes a base



CRISPR

Clustered Regularly Interspersed Short Palindromic Repeats Array:
CRISPR
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Correcting mutations in human iPSCs

Targeted gene correction of a;-antitrypsin deficiency
in induced pluripotent stem cells
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Challenges for the Future

Cell of origin: skin biopsies are not always available
-> reprogramming from blood or hair

iPS cells generated with integrating viruses cannot be used
in therapy
-> non viral methods (Proteins or RNA transfection)

Efficient genetic manipulation to correct the mutation
-> new tools are now available (ZFN, TALEN, CRISPR)

Differentiation to functional disease tissues
-> improving differentiation protocols is a major challenge



