Homework 3 (CSM3)

Due: May 29, 2015.
The purpose of this exercise is that of performing a simple Molecular Dynamics (MD) simulation.
Model. Consider a system of monoatomic molecules interacting via a potential

$$
U(r)=\frac{A \sigma^{2} e^{-r / \sigma}}{r^{2}} \quad \text { for } r<r_{c}
$$

$U(r)=0$ for $r>r_{c}$. Fix $r_{c}=L / 2$ in all cases. Consider $N=75$ molecules in a cubic box of linear size L / σ and fix L / σ so that the density is $\rho \sigma^{3}=0.5$. Use reduced units. Length, $r^{*}=r / \sigma$; energy, $E^{*}=E / A ;$ time, $t^{*}=t / \sigma \sqrt{A / m}$; velocities, $v^{*}=r^{*} / t^{*}$; pressure, $p^{*}=p \sigma^{3} / A$; temperature $T^{*}=k_{B} T / A$.

Starting configuration. Generate a starting configuration such that: a) the molecules are randomly distributed in the box; b) the velocities are random, such that $\sum \mathbf{v}^{*}=0$ and the kinetic energy per particle is equal to $K^{*} / N=$ $K /(A N)=1.0$. Save the generated configuration on disk.

Time-step dependence. Perform four MD runs using the velocity Verlet updating scheme. Start all runs from the same starting configuration (the one computed in the previous step). Use $\Delta t^{*}=0.003$ (run 1), 0.009 (run 2), 0.027 (run 3), 0.081 (run 4), stopping the simulation at $t^{*}=30$ in all cases. After each updating step measure the potential energy $U(t)$, the instantaneous pressure $P(t)$, the total energy $E(t)=U+K$, and the instantaneous temperature $T(t)=2 K(t) /(3 N)$. Indicate with $U^{(1)}(t)$ the potential energy computed in run 1 at time t, with $U^{(2)}(t)$ that computed in run 2 , and so on. Use the same notation for all observables.
a) [Trajectory divergence.] Plot $E^{(2)}(t)-E^{(1)}(t), E^{(3)}(t)-E^{(1)}(t)$, and $E^{(4)}(t)-E^{(1)}(t)$ as a function of time (be careful to select the same time for the different runs). Do the same plots for the pressure and the instantaneous temperature.
b) [Energy conservation.] From the plots of $E^{(k)}(t), k=1,2,3,4$ verify that the energy is approximately constant. Compute its standard deviation for the four runs.
c) [Thermalization.] Plot $P^{(k)}(t)$ and $T^{(k)}$ versus time and estimate the time t_{eq}^{*} at which equilibrium is reached.
d) [Errors and correlations.] Estimate average potential energy, pressure, and temperature in the three cases, averaging the data for $t>t_{\mathrm{eq}}^{*}$. Estimate carefully the errors on the results.

Dependence on the starting configuration. Generate a new starting configuration and perform a new run with $\Delta t^{*}=0.009$. Compute $t_{\text {eq }}^{*}$, average potential energy, pressure, and temperature.

