Homework 3 (CSM3)

Due: May 29, 2015.

The purpose of this exercise is that of performing a simple Molecular Dynamics (MD) simulation.

Model. Consider a system of monoatomic molecules interacting via a potential

$$U(r) = \frac{A\sigma^2 e^{-r/\sigma}}{r^2} \quad \text{for } r < r_c$$

U(r) = 0 for $r > r_c$. Fix $r_c = L/2$ in all cases. Consider N = 75 molecules in a cubic box of linear size L/σ and fix L/σ so that the density is $\rho\sigma^3 = 0.5$. Use reduced units. Length, $r^* = r/\sigma$; energy, $E^* = E/A$; time, $t^* = t/\sigma\sqrt{A/m}$; velocities, $v^* = r^*/t^*$; pressure, $p^* = p\sigma^3/A$; temperature $T^* = k_B T/A$.

Starting configuration. Generate a starting configuration such that: a) the molecules are randomly distributed in the box; b) the velocities are random, such that $\sum \mathbf{v}^* = 0$ and the kinetic energy per particle is equal to $K^*/N =$ K/(AN) = 1.0. Save the generated configuration on disk.

Time-step dependence. Perform four MD runs using the velocity Verlet updating scheme. Start all runs from the same starting configuration (the one computed in the previous step). Use $\Delta t^* = 0.003$ (run 1), 0.009 (run 2), 0.027 (run 3), 0.081 (run 4), stopping the simulation at $t^* = 30$ in all cases. After each updating step measure the potential energy U(t), the instantaneous pressure P(t), the total energy E(t) = U + K, and the instantaneous temperature T(t) = 2K(t)/(3N). Indicate with $U^{(1)}(t)$ the potential energy computed in run 1 at time t, with $U^{(2)}(t)$ that computed in run 2, and so on. Use the same notation for all observables.

a) [Trajectory divergence.] Plot $E^{(2)}(t) - E^{(1)}(t)$, $E^{(3)}(t) - E^{(1)}(t)$, and $E^{(4)}(t) - E^{(1)}(t)$ as a function of time (be careful to select the same time for the different runs). Do the same plots for the pressure and the instantaneous temperature.

b) [Energy conservation.] From the plots of $E^{(k)}(t)$, k = 1, 2, 3, 4 verify that the energy is approximately constant. Compute its standard deviation for the four runs.

c) [Thermalization.] Plot $P^{(k)}(t)$ and $T^{(k)}$ versus time and estimate the time t_{eq}^* at which equilibrium is reached. d) [Errors and correlations.] Estimate average potential energy, pressure, and temperature in the three cases, averaging the data for $t > t_{eq}^*$. Estimate carefully the errors on the results.

Dependence on the starting configuration. Generate a new starting configuration and perform a new run with $\Delta t^* = 0.009$. Compute t^*_{eq} , average potential energy, pressure, and temperature.