Neutrons

Interactions with matter and production

- Neutron Production
- Neutron Classification
- Neutron Interactions
- Neutron Detection
- Applications

Neutron Sources

Nuclear Reactors

- Most prolific (~10¹⁵ n/s)
- energy spectrum from the fission of ²³⁵U extends from several keV to more than 10 MeV
- most probable energy ~ 0.7 MeV
- average energy ~ 2 MeV

Spontaneous Fission sources

Spontaneous Fission Sources

- some heavy nuclei fission spontaneously emitting neutrons
- some sources include: ²⁵⁴Cf, ²⁵²Cf, ²⁴⁴Cm, ²⁴²Cm, ²³⁸Pu and ²³²U
- in most cases the half-life for spontaneous fission is greater than alpha decay
- ²⁵⁴Cf decays almost completely by spontaneous fission with a 60 day half-life

Alpha emitters

1. one can manufacture a <u>radioactive neutron source</u> by combining an alpha emitting radionuclide such as ²¹⁰Po, ²²⁶Ra or ²³⁹Pu with a light metal such as Be or B

• the reactions that follow are: ⁹Be(α , n)¹²C ¹⁰B(α , n)¹³N ¹¹B(α , n)¹⁴N

• there is a continuous energy spectrum

Typical Ra-Be (α, n) neutron source in a sealed container.

(α,n) sources

Source	Avg Neutron Energy (MeV)	Half-Life	$\frac{\mathbf{n}}{\mathbf{sec}}/\mathbf{Ci}$
²¹⁰ PoBe	4.2	138 d	9 × 10 ⁵
²¹⁰ PoB	2.5	138 d	4 × 10 ⁵
²²⁶ RaBe	3.9	1602 yr	1.7 × 10 ⁷
²²⁶ RaB	3.0	1602 yr	6.8 × 10 ⁶
²³⁹ PuBe	4.5	24,400 yr	1 × 10 ⁶

- 3. Photoneutron sources using (γ, n) reaction
- by choosing radioisotopes with a single γ-ray then monoenergetic neutrons can be produce
- the sources are produced in a reactor using conventional (n,γ) reactions except for ²²⁶Ra
- γ 's then interact as follows:
 ⁹Be(γ,n)⁸Be
 ²He(γ,n)¹H

(y,n) sources

Source	Avg Neutron Energy (MeV)	Half-Life	$\frac{\mathbf{n}}{\mathbf{sec}}$ / Ci
²⁴ NaBe	0.83	15 hr	1.35 × 10 ⁵
²⁴ NaD ₂ O	0.22	15 hr	2.7 × 10 ⁵
¹¹⁴ InBe	0.30	54 min	8.2 × 10 ³
¹²⁴ SbBe	0.024	60 d	1.9 × 10 ⁵
¹⁴⁰ LaBe	0.62	40 hr	3 × 10 ³
²²⁶ RaBe	0.7 (max)	1622 yr	1 × 10 ³

Spontaneous fission sources

- ²⁵²Cf undergoes spontaneous nuclear fission at an average rate of 10 fissions for every 313 alpha transformations
- half-life of ²⁵²Cf due to alpha emission is 2.73 years

with spontaneous nuclear fission its effective half-life is 2.65 years

- neutron emission rate is 2.31×10^6 neutrons per second per microgram of ^{252}Cf
- emitted neutrons have a wide range of energies with the most probable at ~ 1 MeV and the average value ~ 2.3 MeV

Accelerator neutrons (d/t)

Accelerator Neutrons

• particle accelerators are used to generate neutrons by means of nuclear reactions such as: D-T, D-N, P-N

 $^{3}H(d,n)^{4}He - Q$ -value = 17.6 MeV \rightarrow 14.1 MeV neutrons

 ${}^{2}H(d,n){}^{3}He - Q-value = 3.27 MeV$ ${}^{7}Li(p,n){}^{7}Be - Q-value = 1.65 MeV$

• positive Q-values means the nuclear reaction can be induced with only several hundred keV ions

Spallation source

• Spallation:

p + heavy nucleus = 20 n + fragments

1GeV e.g. W, Pb, U, Hg

Neutron Source

This source may be suitable for multiple applications, ranging from material analysis for industrial and cultural heritages purposes to chip irradiation and metrology. These applications envisage the development of properly designed beam lines with neutron moderation and possibly cold/thermal neutron transport systems The proposed new facility will represent a great opportunity for research and development of neutron instrumentation (e.g. detectors) as well as training of young scientist in the use and development of neutron techniques.

- The electron stops in the target - Brehmsstrahlung radiation
 - (γ,n) reaction and nucleus evaporation

The neutronic yield depends mostly on material and geometry:

- Y < 0.1 n/e for E_e < 200 MeV (W,Ta) Y ~ 0.2 n/e for E_e = 500 MeV (W,Ta)
- $Y \sim 0.7$ for $E_e = 500$ MeV (U)
- $Y \sim 0.7$ for $E_e^{\sim} > 1$ GeV (W, Ta)
- For $E_e > 150$ MeV pion-related hadronic processes: intra- e inter-nuclear interactions (and photofission in case of Uranium)

Estimates based on other existing facilities and on n@BTF results → cooling might impose constraints not yet accounted for

Comparison with some accelerator driven sources

Summary

NEUTRON SOURCES	Example	Physical principle		
Reactor	TRICA	fission		
Sealed sources	Cf252	Spontaneous fission	F	Direct production in sources
Alpha emitters	AmBe	X(a,n)Y	1	Indirect production
Gamma emitters	РоВе	X(γ,n)Y		in sources
p/d accelerators	FNG	X(d/p,n)Y		
spallation	ISS	X(p,n)Y	┝	Accelerators
photoproduction	Gelina	X(γ,n)Y		

Neutron Classification

Classification of Neutrons

Classification of Neutrons

• at thermal energies neutrons are indistinguishable from gas molecules at the same temperature and follow the Maxwell-Boltzman distribution:

$$f(E) = \frac{2\pi}{(\pi kT)^{3/2}} e^{-E/kT} E^{1/2}$$

• where:

f (E) = fraction of neutrons of energy
 e/unit energy interval

k = Boltzman constant × 10⁻²³ J/^oK

T = absolute temperature °K

Neutron interactions

Interaction of Neutrons

- neutrons are uncharged and can travel appreciable distances in matter without interacting
- neutrons interact mostly by
 - elastic scattering $X(n,n)X \rightarrow$ moderation
 - inelastic scattering X(n,n)X*
 - Activation X(n,*)Y

Elastic cross section

 Resonance region due to formation of nuclear excitations

Fig 14.1 sezione d'urto di interazione neutroni -12C

- most likely interaction between fast neutrons and low atomic number z
- most important process for slowing down ~MeV neutrons (moderation/energy transfer in reactors)
- **Basic for neutron radiography/tomography**

Elastic scattering

total kinetic energy and momentum are conserved and

$$\frac{1}{2} \mathbf{MV}^2 = \frac{1}{2} \mathbf{MV}_1^2 + \frac{1}{2} \mathbf{mv}_1^2$$

and $\mathbf{MV} = \mathbf{MV}_1 + \mathbf{mv}_1$

• solving for v₁ and substituting into:

we have:

$$V_1 = \frac{(M - m)}{(M + m)} V$$

Interaction of Neutrons

$$E_{max} = \frac{1}{2} MV^2 - \frac{1}{2} MV_1^2 = \frac{4mME}{(M+m)^2}$$

- when: M = m; $E = E_{max}$
- for neutrons in a head on collision with hydrogen all the kinetic energy can be transferred in one collision since the mass of neutrons and protons are almost equal

Maximum Fraction of Energy Lost, Q_{max}/E by Neutron in Single Elastic Collision with Various Nuclei

Nucleus	Q _{max} /E
۱H	1.000
² H	0.889
⁴He	0.640
⁹ Be	0.360
¹² C	0.284
16 <mark>0</mark>	0.221
⁵⁶ Fe	0.069
¹¹⁸ Sn	0.033
²³⁸ U	0.017

Find

1. the neutron elastic X section for neutrons on the materials on the left at 1 meV and 1 MeV

Exercize:

2. the B(n, α or $\alpha\gamma$) Li cross section at 1meV and 1MeV

Elastic Cross-Section

Moderation

- All sources produce fast neutrons
- Moderators are applied downstream to thermalize the spectra

From source to beam

Neutron radiography

Neutron vs X-ray radiography

Neutron radiography provides a very efficient tool in the field of nondestructive testing as well as for many applications in fundamental research since are able to distinguish between different isotopes

X-ray radiography

photography neutron radiography

X- ray radiography

neutron radiography

MOKA: https://www.youtube.com/ watch?v=KAiH9yAoLZ8

neutron radiography

X-ray radiography

Neutron tomography (NT)

Imaging can lead to understanding of the evolution of life through 3D investigations of paleontological samples that are impenetrable by other non-destructive methods

neutron tomography of a titanosaur showing a fairly articulated and complete embryo

NUNDAUN

dimensions of egg with embryo

IRIDE

view of inside of the egg with calcite crystals

part of the embryo skeleton surface where the eggshell was naturally eroded

Titanosaur embryo in ovo, which is the first of its kind discovered and is hence valuable for destructive testing.

NT permits full 3D imaging that provides a proof that lithostrotian titanosaurs were reproducing at the Aptian-Albian Algui Ulaan Tsav in Mongolia

The contrast between fossilised material and the surrounding minerals, and thus the inner structure of fossils, at present can only be resolved by using the phase change of neutron waves

Inelastic scattering

- a part of the kinetic energy that is transferred to the target nucleus upon collision
- the nucleus becomes excited and a gamma photon/ photons are emitted:
- ${}^{12}C(n,n){}^{12}C^*$
- Xsection:
 - Zero below threshold (6MeV for O, 1 MeV for U)
 - small, usually less than 1 barn for low energy fast neutrons but increases with increasing energy

Neutron Radiative Capture

- capture cross-sections for low energy neutrons generally decreases as the reciprocal of the velocity as the neutron energy increases
- phenomenon called 1/v law
- valid up to 1000 eV
- if the capture cross-section σ₀ is known for a given neutron velocity v₀ or energy E₀, then the cross-section at some other velocity v or energy E can be estimated:

Prompt Gamma Activation

- Activated photons are "instantaneous"
- Lines depend on the elements present in the sample
 Database of lines:

https://www-nds.iaea.org/pgaa/pgaa7/index.html

Exercize:

Find prompt gamma neutron activation lines for Ni, C, H

NEUTRON ELEMENTAL ANALYSIS

Neutron Activation Analysis (NAA):

neutron is *captured* by the target, transmuting it into an unstable nucleus which then decays by fission or by the release of some particle or photon.

NAA, which uses low-energy thermal neutrons to transmute a wide range of nuclei into unstable isotopes, irradiation can take many hours while measurement of the decay energies and rates of the unstable transmuted isotopes can require days

NSECT MEDICAL APPLICATIONS

keV	Match	Benign	Malignant	Diff	p-val
219	⁷⁹ Br	6	19	13	0.01
397	⁵⁹ Co, ⁷⁹ Br	16	2	-14	0.01
1028	⁸¹ Br	13	29	16	0.05
1128	³⁹ K, ⁶⁸ Zn	0	13	13	0.001
1306	⁵⁶ Fe	10	0	-10	0.01
2299	²⁷ Al	0	13	13	0.001
	³⁷ Cl, ⁵⁶ Fe,				
2469	⁶⁶ Zn	5	15	10	0.05
3635	³⁵ Cl	3	14	11	0.01

Calibration Gamma Lines

 Use of paraffin and Ni to produce 2.2, 4.4 and 9.1 MeV lines

 $^{1}H(n_{th},\gamma)^{2}H$

- which releases a 2.22 MeV γ-ray that irradiates the surrounding tissue
- it is one of the two important interactions by which thermal neutrons deposit energy in tissue
- often seen as a background gamma-ray in power and research reactors

²³Na(n_{th} , γ)²⁴Na

- which activates human blood sodium
- the decay of ²⁴Na (half-life = 7 × 15 h; two γ's of 100% intensity: 1.37 and 2.75 MeV) can be used to quick-sort personnel after a suspected criticality

• production of a radioactive isotope by the absorption of a neutron, eg:

• $(n, \gamma) (n,p) (n,\alpha) (n,n')$

• Well known activity vs time $A = \phi \sigma N_T \left(1 - e^{-\lambda t} \right)$

Neutron Activation

- the previous equation is the activity just at the end of production
- if one is interested in the activity sometime later the following terms must be added:

$$\lambda N = \phi \sigma N_T \left(1 - e^{-\lambda t_i} \right) \left(e^{-\lambda t_d} \right) \left(1 - e^{-\lambda t_c} \right)$$

- where:
- t_i = irradiation time
- t_d = decay time
- t_e = counting time

Note that calibration is needed to

• Find lines and lifetimes for

 113 Cd(n_{th} , γ) 114 Cd

•which is used in neutron shielding and reactor control rods

¹¹⁵In(n_{th} , γ)^{116m}In

•which is the basis for the popular indium foils used in many criticality dosimeters

¹⁹⁷Au(n_{th} , γ)¹⁹⁸Au

•used for criticality monitoring (gold foils)

Activation detectors: Indium disks

5cm Indium disks (30g total)

Two steps:

- Neutrons activate Indium
 - More sensitive to thermal neutrons
- Gamma lines @1293, 1047 and 416 keV with $T_{1/2} = \log(2)/\lambda = 54 \min$
- The activity (α) from an irradiation lasted t_r is measured with a HPGe detector (after a time t_a)

CR-39 detectors

CR-39 detectors for thermal neutrons

Other Neutron Reactions Important to Health Physicists

3 He(n_{th},p) 3 H

• which is the basis for the use of ³He as a gas in several types of neutron proportional counters

⁶Li(n_{th} ,t)⁴He or ⁶Li(n_{th} , α)³H

• it is used in many neutron detection instruments, including thermoluminescent dosimeters (TLDs)

$^{10}B(n_{th}, \alpha)^{7}Li$

• which is used in neutron shielding and as the basis for neutron detectors utilizing BF₃ gas or boron-lined counter tubes and Boron Neutron capture Therapy

Boron Neutron Capture Therapy

- Exploits high Xsection of thermal neutrons on Boron
- $n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He$ (BR 6%)
- $n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He + \gamma(478 \ keV) \ (BR \ 94\%)$
 - Boron is delivered to glioblastoma and melanoma via
 - BSH (borocaptured sodium)
 - BPA (borofenilananine)
 - Requirements:
 - Thermal neutron flux $\Phi \sim 10^9/m^2/s$ to have treatment <30'

 $\frac{32}{5}(n_{f},p)^{32}p$

- which requires a neutron with a kinetic energy of at least 2.7 MeV in order to react (an energy threshold)
- this reaction is used in many threshold criticality dosimeters