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ISTRUZIONI:
È necessario argomentare lo svolgimento dell’esercizio aperto e le risposte
dei quiz. La valutazione è legata alla solidità dei ragionamenti svolti e alla
chiarezza dell’esposizione, come anche alla correttezza dei passaggi
matematici e del risultato finale.

ex.1
ex.2
ex.3
tot.

ESERCIZIO 1 (3+3+3 punti). Dato l’insieme

D =
{
H(x) = (x2

1 + x2
2 + x2

3− 2ax3)(x2
1 + x2

2 + x2
3− 2bx3) = 0

}
⊆�

3 con 0< a< b

i. si trovino tutti i punti critici della funzione distanza di x ∈ D da O,
ii. si classifichi la natura dei punti trovati in i.,
iii. si spieghi perché D è compatto.

ESERCIZIO 2 (3+3 punti). Dati R> 0 e BR =
{
x2

1 + x2
2 + x2

3 ≤ R2}⊆�
3 si risponda alle seguenti richieste:

i. calcolare l’integrale della funzione f(x) = x2
1 su BR,

ii. calcolare il volume di K = BR ∩{x2
1 + x2

2 ≤ 1}, per R> 1.

ESERCIZIO 3 (3+3 punti). Sia P ⊆ �
2 il paralleleogrammo di vertici O = (0,0), a = (a1, a2) b = (b1,b2)

c = a + b = (a1 + b1, a2 + b2) allora:
i. si scriva un diffeomorfismo tra P e il quadrato [0, 1]2,
ii. si usi il prcedente diffeomorfismo per calcolare l’integrale

∫
P

[
x2

1 + x2
2
]

dx.



ESERCIZIO 1 (3+3+3 punti). Dato l’insieme

D =
{
H(x) = (x2

1 + x2
2 + x2

3− 2ax3)(x2
1 + x2

2 + x2
3− 2bx3) = 0

}
⊆�

3 con 0< a< b

i. si trovino tutti i punti critici della funzione distanza di x ∈ D da O,
ii. si classifichi la natura dei punti trovati in i.,
iii. si spieghi perché D è compatto.

SVOLGIMENTO. i. Proponiamo più svolgimenti possibili per questo quesito, in tutti gli svolgimenti
considereremo la funzione obiettivo F(x) = x2

1 + x2
2 + x2

3, poiché la funzioen distanza e il suo quadrato
possiedono gli stessi punti critici.
i.a A motivo della legge di annullamento del prodotto possiamo osservare subito che

D =
{
x2

1 + x2
2 + x2

3− 2ax3 = 0
}
∪
{
x2

1 + x2
2 + x2

3− 2bx3 = 0
}

= ∂B(ae3, a)∪ ∂B(be3,b)

cioè D è l’unione di due sfere, di raggio a e b rispettivamente, tangenti nel punto O, come suggerisce
la figura che segue.

Il teorema dei moltiplicatori di Lagrange prova che nei

D

(x1, x2)

x3

punti critici vincolati il gradiente della funzione obiet-
tivo è parallelo al vettore normale al vincolo (cioè al
vettore gradiente della funzione che definisce il vin-
colo), quindi dobbiamo cercare i punti x ∈ D tali che la
normale ad una delle due superfici sferiche sa parallela
al vettore x, stesso, visto che∇F(x) = 2x. Però è anche
noto che i vettori normali ad una sfera sono i vettori
identificati dal segmento Cx = (x−C), dove C è il cen-
tro della sfera, nel nostro caso ci stamo chiedendo per

quali x ∈ ∂B(ae3, a) vale la relazione x = λ(x− ae3) o x ∈ ∂B(be3,b) vale la relazione x = λ(x− be3).
Entrambe le relazioni implicano che x deve giacere sull’asse x3, quindi abbiamo i seguenti 3 punti
critici

O(0,0,0) A(0,0,2a) B(0,0,2b) e vale F(O) = 0 F(A) = 2a2 F(B) = 4b2

i.b Notiamo immediatamente che
D =

{
x2

1 + x2
2 + x2

3− 2ax3 = 0
}
∪
{
x2

1 + x2
2 + x2

3− 2bx3 = 0
}

= Da ∪Db

cioè D è l’unione di due vincoli (non necessariamente disgiunti). Quindi possiamo trasformare il no-
stro problema in due problemi di ottimizzazione vincolata, visto che gli evenutali punti critici devono
trovarsi su una delle due componenti di D, cioè il nostro problema è equivalente ai seguenti due

trovare i punti critici della funzione F(x) per x ∈ Da
trovare i punti critici della funzione F(x) per x ∈ Db

I due problemi producono i seguenti sistemi
2x1 + 2cx1 = 0
2x2 + 2cx2 = 0
2x3 + 2c(x3− a) = 0
x2

1 + x2
2 + x2

3− 2ax3 = 0


2x1 + 2cx1 = 0
2x2 + 2cx2 = 0
2x3 + 2c(x3− b) = 0
x2

1 + x2
2 + x2

3− 2bx3 = 0
Per entrambi i sistemi possiamo dire che se c =−1 otteniamo che a = 0 o b = 0, quindi c ,−1, allora le
prime due equazioni implicano che x1 = x2 = 0 e l’equazione del vincolo fornisce il risultato x3 = 0,2a
per il primo sistema, x3 = 0,2b per il secondo, e cos̀ı troviamo

O(0,0,0) A(0,0,2a) B(0,0,2b) con F(O) = 0 F(A) = 2a2 F(B) = 4b2



3

iii.c Applichiamo meccanicamente la strategia dei moltiplicatori di Lagrange, quindi introduciamo la
funzione L(x,c) = F(x) + cH(x) e cerchiamo i suoi punti critici. Innanzitutto osserviamo che

∂1L(x,c) = 2x1
{
1 + 2c

[
x2

1 + x2
2 + x2

3− (a + b)x3
]}

= 0
∂2L(x,c) = 2x2

{
1 + 2c

[
x2

1 + x2
2 + x2

3− (a + b)x3
]}

= 0
∂3L(x,c) = 2x3 + 2c(x3− a)

[
x2

1 + x2
2 + x2

3− 2bx3
]

+ 2c(x3− b)
[
x2

1 + x2
2 + x2

3− 2ax3
]

= 0(
x2

1 + x2
2 + x2

3− 2ax3
)(

x2
1 + x2

2 + x2
3− 2bx3

)
= 0

le prime due equazioni sono ”simmetriche”, quindi o x1 = x2 = 0 oppure è nulla la parentesi graffa. Nel
primo caso l’equazione del vincolo si riduce all’equazione x2

3(x3−2a)(x3−2b) = 0 che ci permette di
ricavare i punti critici O(0,0,0), A(0,0,2a) e B(0,0,2b) in cui la funzione obbiettivo assume i seguenti
valori: F(O) = 0, F(A) = 2a2 e F(B) = 4b2. Se supponiamo sia nulla la parentesi graffa l’equazione del
vincolo diventa(

1
2c + (b− a)x3

)(
1

2c − (b− a)x3

)
= 1

4c2 − (b− a)2x2
3 = 0 che ha soluzioni x3 =± 1

2c(b− a)
e sostituendo nella terza equazione del sistema si ottiene una coppia di identità false, cioè

±
1

c(b− a) + c
(
±

1
c(b− a) − a

)[
±

1
c −

1
c

]
+ c

(
±

1
c(b− a) − b

)[
∓

1
c −

1
c

]
= 0

per cui possiamo dire che non ci sono altri punti critici vincolati.
ii. Dalla precedente discussione abbiamo che O è punto di minimo assoluto, mentre B è il punto di
massimo assoluto (si noti che D è compatto, come proveremo nel quesito successivo), quindi l’unico
dubbio è la natura del punto critico A. Se ragioniamo come nel punto i.a la geometria del vincolo ci
permette di concludere immediatamente che A è un massimo locale. Volendo discutere il problema
analiticamente possiamo tentare di descrivere D come grafico di una funzione nell’intorno del punto
A. Scriviamo alcune derivate parziali che ci serviranno nel seguito

∂1H(x) = 4x1
(
x2

1 + x2
2 + x2

3− (a + b)x3
)

∂2H(x) = 4x2
(
x2

1 + x2
2 + x2

3− (a + b)x3
)

∂3H(x) = 2(x3− a)
[
x2

1 + x2
2 + x2

3− 2bx3
]

+ 2(x3− b)
[
x2

1 + x2
2 + x2

3− 2ax3
]

∂11H(x) = 12x2
1 + 4x2

2 + 4x2
3−4(a + b)x3 ∂12H(x) = 8x1x2

∂22H(x) = 4x2
1 + 12x2

2 + 4x2
3−4(a + b)x3

e calcoliamole nel punto A(0,0,2a)

∂1H(A) = 0 ∂2H(A) = 0 ∂3H(A) = 8a2(a− b)< 0
∂11H(A) = ∂22H(x) = 8a(a− b) ∂12H(x) = 0

cos̀ı abbiamo ottenuto che è possibile utilizzare il teorema di Dini per lo studio della natura del punto
critico A, infatti il luogo degli zeri (almeno localmente, intorno al punto A) è il grafico di una funzione
h, inoltre sappiamo che

h(0,0) = 2a ∂1h(0,0) =− ∂1H(A)
∂3H(A) = 0 ∂2h(0,0) =−∂2H(A)

∂3H(A) = 0

∂11h(0,0) =−∂11H(A)
∂3H(A) =− 8a(a− b)

8a2(a− b)
=− 1

a ∂12h(0,0) =−∂12H(A)
∂3H(A) = 0

∂22h(0,0) =−∂22H(A)
∂3H(A) =− 1

a
il che ci permette di scrivere che

x3 = h(x1, x2) = 2a− 1
2ax2

1 −
1

2ax2
2 + o(x2

1 + x2
2)



da cui possiamo dedurre che A è un massimo locale per la funzione F visto che

F(x) = x2
1 + x2

2 + x2
3 = x2

1 + x2
2 +

(
2a− 1

2ax2
1 −

1
2ax2

2 + o(x2
1 + x2

2)
)2

= 4a2− x2
1 − x2

2 + o(x2
1 + x2

2)

iii. Osserviamo subito che la funzione H è una funzione continua, visto che H ∈ C∞(�3) essendo
un polinomio, e siccome D = H−1({0}) segue subito che l’insieme è chiuso rispetto alla topologia
euclidea di �3, perché la controimmagine attraverso una funzione continua di un chiuso (aperto) è
sempre un chiuso (aperto).
Inoltre è possibile anche osservare che l’insieme è l’unione di due sfere tangenti (una interna all’altra)
nel loro punto comune O, come nel disegno a lato. Infatti possiamo riscrivere il vincolo come segue
per mettere maggiormente in luce il significato geometrico delle espressioni scritte

D = {H(x) = 0} =
{
x2

1 + x2
2 + x2

3− 2ax3 = 0
}
∪
{
x2

1 + x2
2 + x2

3− bx3 = 0
}

=
{
x2

1 + x2
2 + x2

3− 2ax3 + a2 = a2}∪ {
x2

1 + x2
2 + x2

3− bx3 + b2 = b2}
=
{
x2

1 + x2
2 + (x3− a)2 = a2}∪ {

x2
1 + x2

2 + (x3−)2 = b2} = ∂B(ae3, a)∪ ∂B(be3,b)

da cui si evince che possiamo circoscrivere l’insieme, con un parallelepipedo, ad esempio nel seguente
modo: D⊆ [−b,b]3× [0,2b]⊆�

3. □

ESERCIZIO 2 (3+3 punti). Dati R> 0 e BR =
{
x2

1 + x2
2 + x2

3 ≤ R2}⊆�
3 si risponda alle seguenti richieste:

i. calcolare l’integrale della funzione f(x) = x2
1 su BR,

ii. calcolare il volume di K = BR ∩{x2
1 + x2

2 ≤ 1}, per R> 1.

SVOLGIMENTO. i. Sottolineiamo che BR ha simmetrica sferica, essendo una palla di �3, per cui ri-
correremo alle coordinate sferiche per il calcolo dell’integrale, avendo visto a lezione che tali variabili
sono un diffeomorfismo che ci permettono di semplificare notevolmente i calcoli in questione, quindi
(ricordando che il valore assoluto del determinante dello jacobiano è r2 sin(φ)) abbiamo che:∫

BR
x2

1 dx =
∫ 2π

0

∫ π
0

∫ R

0
r2 sin2(φ)cos2(θ) · r2 sin(φ)drdφdθ

=
∫ 2π

0
cos2(θ)dθ

[∫ π
0

sin3(φ)dφ
]∫ R

0
r4dr

 = π
[
−cos(φ) + 1

3 cos3(φ)
]π

0

1
5R5 = 4

15πR5

Ricordiamo che le (usuali) coordinate sferiche sono
x1 = rsin(φ)cos(θ)
x2 = rsin(φ) sin(θ)
x3 = rcos(φ)

con (r,θ,φ) ∈ [0,+∞)× [0,2π]× [0,π]

ii. L’intersezione della sfera con il cilindro rende il dominio un solido a simmetria cilindrica, per cui
utilizzeremo le coordinate sferiche:∫

K
dx =

∫ 2π

0

∫ 1

0

∫ √R2−r2

−
√

R2−r2
rdtdrdθ = 2π

∫ 1

0
2r[R2− r2]1/2dr

=
[
−2π · 2

3[R2− r2]3/2
]1

0
= 4

3π
[
R3− [R2− 1]3/2]

Ricordiamo che le coordinate cilindriche sono il seguente cambio di variabili,
x1 = rcos(θ)
x2 = rsin(θ)
x3 = t

con (r,θ, t) ∈ [0,+∞)× [0,2π]×�



tali relazioni, come discusso a lezione, individuano un diffeomorfismo buono per il teorema del cam-
bio di variabili negli integrali, inltre il valore assoluto del determinate della matrice jacobiana vale r.
□

ESERCIZIO 3 (3+3 punti). Sia P ⊆ �
2 il paralleleogrammo di vertici O = (0,0), a = (a1, a2) b = (b1,b2)

c = a + b = (a1 + b1, a2 + b2) allora:
i. si scriva un diffeomorfismo tra P e il quadrato [0, 1]2,
ii. si usi il prcedente diffeomorfismo per calcolare l’integrale

∫
P

[
x2

1 + x2
2
]

dx.

SVOLGIMENTO. i. È sempre possibile scrivere un diffeomorfismo tra un parallelogrammo e il qua-
drato [0, 1]2, sfruttando le relazioni dei cambi di basi negli spazi vettoriali, precisamente abbiamo
che

x(u) =
(

x1
x2

)
=
(

a1 b1
a2 b2

)(
u1
u2

)
=
(

a1u1 + b1u2
a2u1 + b2u2

)
e Jx(u) =

(
a1 b1
a2 b2

)
e questo cambio di variabili è un diffeomorfismo, a patto che i vettori a e b non siano paralleli: in
particolare si ottiene che |det(Jx)| = |a1b2− a2b1|.
ii. Grazie al precedente diffeomorfismo possiamo svolgere i seguenti calcoli∫

P

[
x2

1 + x2
2
]

dx =
∫

[0,1]2

[
x2

1 (u) + x2
2(u)

]
|a1b2− a2b1|du

=
∫

[0,1]2

[
(a1u1 + b1u2)2 + (a2u1 + b2u2)2] |a1b2− a2b1|du

=
∫

[0,1]2

[
(a2

1 u2
1 + 2a1b1u1u2 + b2

1 u2
2) + (a2

2u2
1 + 2a2b2u1u2 + b2

2u2
2)2] |a1b2− a2b1|du

= |a1b2− a2b1|
[

1
3(a2

1 + a2
2 + b2

1 + b2
2) + 1

2(a1b1 + a2b2)
]

= ∥a∧ b∥2

[
1
3(∥a∥2

2 + ∥b∥2
2) + 1

2(a · b)
]

Con la scrittura ∥a∧b∥2 intendiamo il modulo del vettore (a1, a2,0)∧ (b1,b2,0), dove abbiamo iden-
tificato �

2 con il piano {x3 = 0} ⊆�
3 al fine di poter svolgere il prodotto vettoriale. □


