
# Chemistry of acids and basis



Svante Arrhenius (1859–1927)



Johannes N. Brønsted (1879–1947)

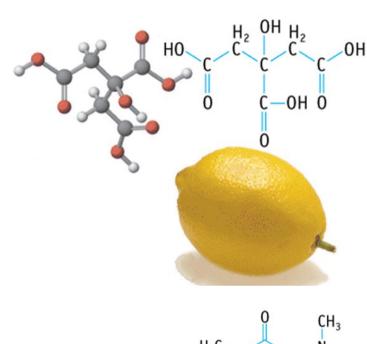


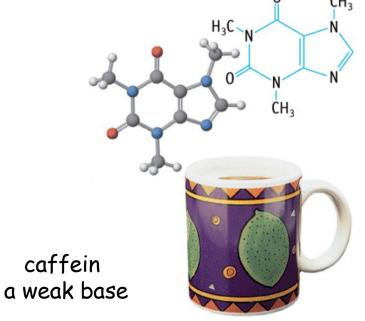
Thomas Martin Lowry (1874–1936)



Gilbert Newton Lewis (1875-1946)

Acids and bases can be roughly divided into: strong electrolytes (HCl,  $HNO_3$  e NaOH) and weak electrolytes ( $CH_3COOH$  e  $NH_3$ )


#### Acids


- produce hydrogen ions in H2O
- taste sour
- tornasole dye turns red
- are electrolytes in aqueous solution
- neutralize solutions containing hydroxide ions
- react with many metals generating H<sub>2</sub> (g)
- react with carbonates generating  $CO_2$  (g)
- damage tissues
- HCI, HNO₃, CH₃COOH

#### Bases

- produce hydroxil ions H<sub>2</sub>O
- bitter taste
- tornasole dye turns blue
- are electrolytes in aqueous solution
- neutralize solutions containing hydrogen ions
- have a soapy texture
- damage tissues (hydrolize lipids)
- NaOH, Mg(OH)2, Al(OH)3, NH3

#### citric acid A weak acid





Acids react easily with coral (mainly  $CaCO_3$ ) and develop gaseous  $CO_2$  yiealding a salt: ( $CaCO_3$ ) and in general with metal carbonates developing gaseous  $CO_2$  and yielding a salt:





Acids react with many metals developing gaseous  $H_2$  and a salt:

$$Zn(s) + 2 HCl(aq) = ZnCl_2(aq) + H_2(g)$$

$$CaCO_3(s) + 2 HCl(aq) = CaCl_2(aq) + CO_2(q) + H_2O(l)$$

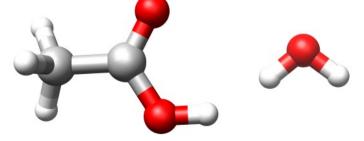
# Strong acids (K >>> 1): are fully dissociated

(K <u>~</u>∞)

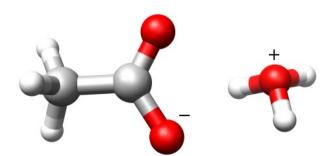
$$HCl (aq) + H_2O (l) \rightarrow Cl^- (aq) + H_3O^+ (aq)$$











## Weak acids (K<1): do not fully dissociate

$$CH_3COOH (aq) + H_2O (1) = CH_3COO^- (aq) + H_3O^+ (aq)$$

$$H - C - C + H_{2}O = H - C - C + H_{3}O^{+}$$



$$K = \frac{[CH_3COO^-] \cdot [H_3O^+]}{[CH_3COOH]} = 1.8 \cdot 10^{-5} M$$



K allows evaluating the strength of an acid4

# Acids & bases, definition

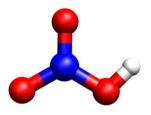
### Arrhenius Theory (1883)

ACID: Produces H+ in Water BASE: Produces OH- in Water

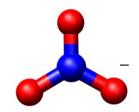
### Bronsted/Lowry Theory (1923)

ACID: proton, H+ DONOR
BASE: proton, H+ ACCEPTOR

### Lewis Theory (1938)


a more general acid base theory.

ACID: accepts pair of electrons for sharing BASE: donates pair of electrons for sharing

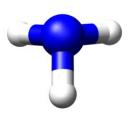

$$X + :Y \rightarrow X:Y$$
 acid base

#### Brønsted acids

$$HNO_3 (aq) + H_2O (I) \rightarrow NO_3^- (aq) + H_3O^+ (aq)$$



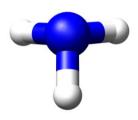




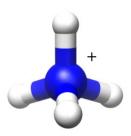



$$NH_4^+$$
 (aq) +  $H_2O$  (I)  $\rightleftharpoons NH_3$  (aq)+  $H_3O^+$  (aq)



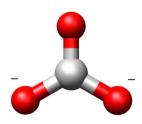




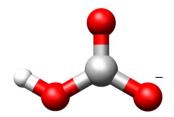




#### Brønsted bases

 $NH_3 (aq) + H_2O (I) \rightleftharpoons NH_4^+ (aq) + OH^- (aq)$ 





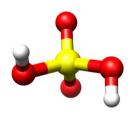



$$CO_3^{2-}(aq) + H_2O(1) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$$

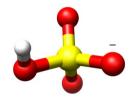






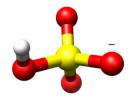



## Polyprotic acids

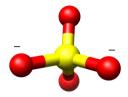

Acids such as HCI,  $HNO_3$  e  $CH_3COOH$  dissociate only one proton and are called "monoprotic". Polyprotic acids can dissocate two or more protons.

#### Sulphuric Acid

$$H_2SO_4(aq) + H_2O(1) \rightarrow HSO_4^-(aq) + H_3O^+(aq)$$



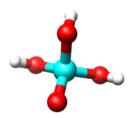





$$HSO_4^-(aq) + H_2O(1) \rightleftharpoons SO_4^{2-}(aq) + H_3O^+(aq)$$



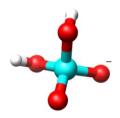




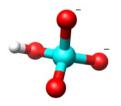



# Phosphoric acid

$$H_3PO_4(aq) + H_2O(1) \rightleftharpoons H_2PO_4^-(aq) + H_3O^+(aq)$$





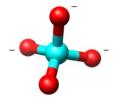






$$H_2PO_4^-(aq) + H_2O(1) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq)$$



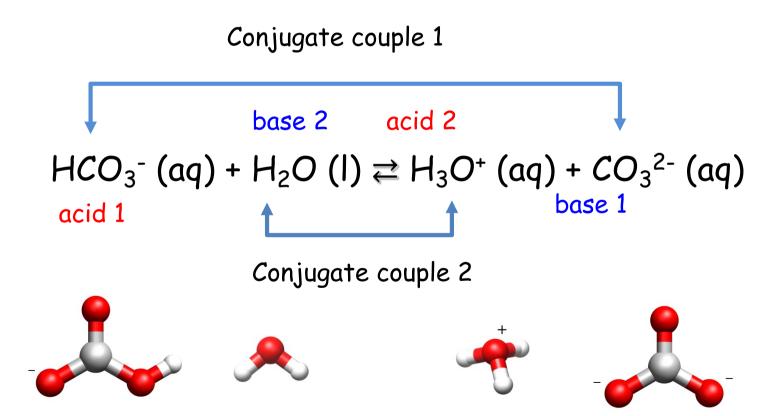







$$HPO_4^{2-}(aq) + H_2O(1) \rightleftharpoons PO_4^{3-}(aq) + H_3O^+(aq)$$





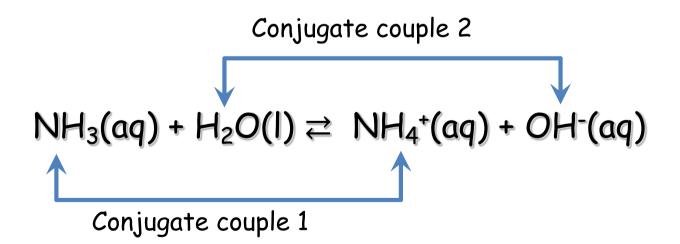





### Conjugate acid-base couples

Two compounds that differ for the presence/absence of a proton. All reactions between Brønsted acid and bases implies the tranfer of a H<sup>+</sup> ion and it involves two conjugate acid-base couples.




### Conjugate acid-base couples

#### Conjugate couple 2

HNO<sub>2</sub> (aq) + H<sub>2</sub>O(I) 
$$\rightleftharpoons$$
 NO<sub>2</sub>-(aq) + H<sub>3</sub>O<sup>+</sup>(aq)

Conjugate couple 1

The nitrite anion  $NO_2^-$  is the conjugate base of nitrous acid and the hydronium ion is the conjugate acid of water



The  $NH_4^+$  ion is the conjugate acid of ammonia and the hydroxyl ion is the conjugate base of water

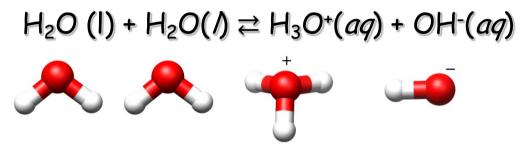
All reactions between Brønsted acid and bases implies the tranfer of a H<sup>+</sup> ion and it involves two conjugate acid-base couples.

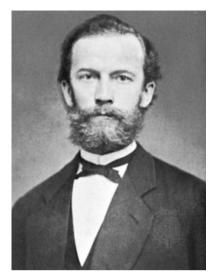
| Conjugate acid-base couples |                               |   |                               |               |                                  |     |                               |
|-----------------------------|-------------------------------|---|-------------------------------|---------------|----------------------------------|-----|-------------------------------|
| name                        | acid 1                        |   | base 2                        |               | base 1                           | 8   | acid 2                        |
| Hydrochloric acid           | HC1                           | + | $H_2O$                        | $\rightarrow$ | C1 <sup>-</sup>                  | + I | $H_3O^+$                      |
| Nitric acid                 | HNO <sub>3</sub>              | + | $H_2O$                        | $\rightarrow$ | NO <sub>3</sub> <sup>-</sup>     | + I | $H_3O^+$                      |
| Hydrogen carbonate          | HCO <sub>3</sub> <sup>-</sup> | + | $H_2O$                        | ⇄             | CO <sub>3</sub> <sup>2-</sup>    | + I | $H_3O^+$                      |
| Acetic acid                 | CH <sub>3</sub> COOH          | + | $H_2O$                        | ⇄             | CH <sub>3</sub> COO <sup>-</sup> | + I | $H_3O^+$                      |
| Cianidric acid              | HCN                           | + | $H_2O$                        | ⇄             | CN-                              | + J | $H_3O^+$                      |
| Sulphidric acid             | $H_2S$                        | + | $H_2O$                        | ⇄             | HS <sup>-</sup>                  | + I | $H_3O^+$                      |
| ammonia                     | $H_2O$                        | + | $NH_3$                        | <b></b>       | OH-                              | + 1 | $NH_4^+$                      |
| Carbonate ion               | $H_2O$                        | + | CO <sub>3</sub> <sup>2-</sup> | ₹             | OH-                              | + I | HCO <sub>3</sub> <sup>-</sup> |
| water                       | $H_2O$                        | + | $H_2O$                        | ⇄             | OH-                              | + I | $H_3O^+$                      |

Water is amphiprotic (or amphoteric) since it cas accept a proton to yield the hydronium ion:

$$H_2O(I) + HCI(aq) \rightleftharpoons H_3O^+(aq) + CI^-(aq)$$
base acid  $+$ 

or it can donate a proton to yield the hydroxyl ion:


$$H_2O(1) + NH_3(aq) \rightleftharpoons OH^-(aq) + NH_4^+(aq)$$
acid base






#### Water autoprotolysis and its constant K<sub>W</sub>

There is no need for an acid in water to form the hydronium ion  $H_3O^+$ . Two water molecule react to produce one hydronium and one hydroxil.





Friedrich W. G. Kohlrausch (1840-1910)

This self-ionization reaction (water ionic product was discovered by Kohlrausch measuring the electrical conductivity of ultra pure water. When water ionizes at 25  $^{\circ}$  C only 2 in 10 $^{9}$  molecules are ionized.

$$K = \frac{[H_3O^+] \cdot [OH^-]}{[H_2O]^2}$$

Since water concentration variation is neglible (55.5 M)

$$K \cdot [H_2O]^2 = [H_3O^+] \cdot [OH^-] = K_W$$

K<sub>W</sub> is known as water ionization constant.

$$2 \text{ H}_2\text{O} (1) \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$$

$$K_W = [H_3O^+] \cdot [OH^-]$$

In pure water  $[H_3O^+] = [OH^-]$ .

Electrical conductivity data show that at 25 °C in pure water  $[H_3O^+] = [OH^-] = 1.0 \cdot 10^{-7} \text{ M}$ . Therefore  $K_W$  at 25 °C is:

$$K_W = [H_3O^+] \cdot [OH^-] = 1.0 \cdot 10^{-14} M^2$$

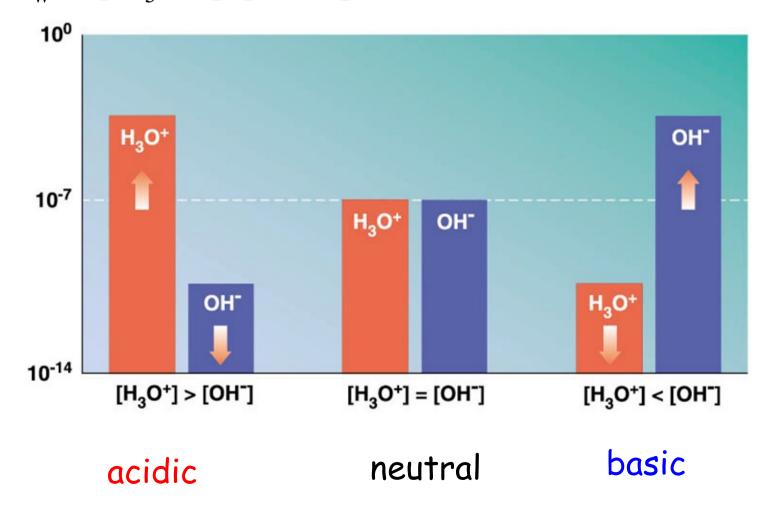
| compound                                         | Electrical conductivity(S/m) |
|--------------------------------------------------|------------------------------|
| Ag                                               | $6.30 \cdot 10^7$            |
| Cu                                               | 5.96·107                     |
| Au                                               | 4.52·107                     |
| Al                                               | $3.78 \cdot 10^7$            |
| Sea<br>water(35<br>g/kg<br>Na Cl)                | 5                            |
| tap water                                        | 0.0005-0.05                  |
| deionized<br>and<br>degassed<br>H <sub>2</sub> O | 5.50·10 <sup>-6</sup>        |

$$K_W = [H_3O^+] \cdot [OH^-] = 1.0 \cdot 10^{-14} M^2$$
 a 25 °C

When  $[H_3O^+] = [OH^-]$  a solution is called a Neutral Solution

If an acid or a base are added the equilibrium is perturbed

$$2 \text{ H}_2\text{O} (1) \rightleftharpoons \text{ H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$$


By adding an acid, the  $[H_3O^+]$  increases and the solution becomes acidic. Le Châtelier's principle predicts that a small amount of  $[H_3O^+]$  will react with  $OH^-$  (from water self-protolysis). This lowers  $[OH^-]$  until:  $[H_3O^+] \times [OH^-] = 1.0 \times 10^{-14}$  at 25 °C

- neutral solution:  $[H_3O^+] = [OH^-] = 1.0 \cdot 10^{-7} \text{ M}$
- acidic solution:  $[H_3O^+] > [OH^-]$  e  $[H_3O^+] > 1.0 \times 10^{-7}$  M and  $[OH^-] < 1.0 \times 10^{-7}$  M
- basic solution:  $[H_3O^+] < [OH^-] e [H_3O^+] < 1.0x10^{-7} M and <math>[OH^-] > 1.0x10^{-7} M$

# In conclusion:

$$2 H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

$$K_{w} = [H_{3}O^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14} \text{ M}^{2} \text{ a } 25 \text{ }^{\circ}\text{C}$$



Exercise 1. What are the concentrations of  $[H_3O^+]_{and}[OH^-]$  of 0.01 M di HCl at 25 °C.

Exercise 1. What are the concentrations of  $[H_3O^+]_{and}[OH^-]$  of 0.01 M di HCl at 25 °C.

HCl (aq) + H<sub>2</sub>O (l) 
$$\rightarrow$$
 H<sub>3</sub>O<sup>+</sup> (aq) + Cl<sup>-</sup> (aq)

0.01 mol/L of H<sub>3</sub>O<sup>+</sup> and 0.01 mol/L of Cl<sup>-</sup> are formed

[H<sub>3</sub>O<sup>+</sup>]<sub>total</sub> = [H<sub>3</sub>O<sup>+</sup>]<sub>HCl</sub> + [H<sub>3</sub>O<sup>+</sup>]<sub>H2O</sub> = 0.01 + 10<sup>-7</sup>  $\approx$  0.01 M

Q = [H<sub>3</sub>O<sup>+</sup>]<sub>total</sub>  $\times$  [OH<sup>-</sup>] = 0.01  $\times$  10<sup>-7</sup> = 10<sup>-9</sup>  $\rightarrow$  K<sub>W</sub> = 10<sup>-14</sup> M<sup>2</sup>

Exercise 1. What are the concentrations of  $[H_3O^+]_{and}[OH^-]$  of 0.01 M di HCl at 25 °C.

HCl (aq) + H<sub>2</sub>O (l) 
$$\rightarrow$$
 H<sub>3</sub>O<sup>+</sup> (aq) + Cl<sup>-</sup> (aq)

0.01 mol/L of H<sub>3</sub>O<sup>+</sup> and 0.01 mol/L of Cl<sup>-</sup> are formed

[H<sub>3</sub>O<sup>+</sup>]<sub>total</sub> = [H<sub>3</sub>O<sup>+</sup>]<sub>HCl</sub> + [H<sub>3</sub>O<sup>+</sup>]<sub>H2O</sub> = 0.01 + 10<sup>-7</sup>  $\approx$  0.01 M

Q = [H<sub>3</sub>O<sup>+</sup>]<sub>total</sub>  $\times$  [OH<sup>-</sup>] = 0.01  $\times$  10<sup>-7</sup> = 10<sup>-9</sup>  $\rightarrow$  K<sub>W</sub> = 10<sup>-14</sup> M<sup>2</sup>

$$2 H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

$$[OH^-] = K_W / [H_3O^+]_{total} = 10^{-14} / 0.01 = 10^{-12} M$$

### Logarithm

The logarithm function in base = b is the inverse function with respect to the eponential function in base b. The logarithm in base b of a number x is th number to which be must be raised to obtain x.

therefore:

$$x = b^y$$

$$y = log_b x$$

Example,  $log_3 81 = 4$ , since  $3^4 = 81$ . Logarithm transforms products into sums, divisions into subtractions and exponentiations into products.

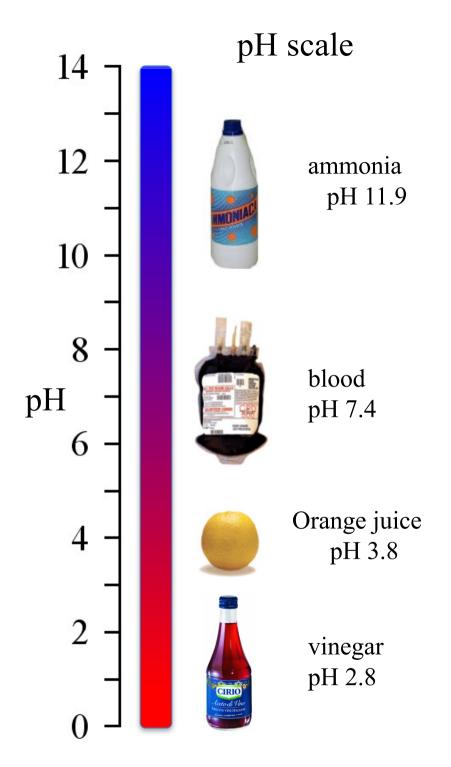
$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x^y = y \cdot \log_b x$$

## pH scale

pH is defined as the decimal logarithm of the reciprocal of the hydronium concentration:  $pH = -\log_{10}[H_3O^+]$ 


pOH isdefined as the decimal logarithm of the reciprocal of the oxydril concentration:

 $pOH = - log_{10}[OH^{-}]$ 

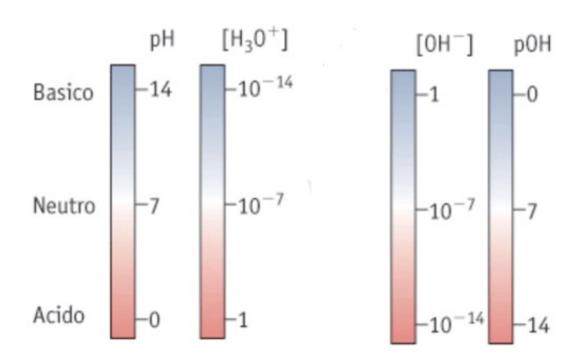
In water $[H_3O^+]$  =  $[OH^-]$  =  $10^{-7}$  M and pH = pOH = 7 pH =  $-\log_{10}[H_3O^+]$  =  $-\log_{10}10^{-7}$  = 7

For constants:  $NH_4^+$  (aq) +  $H_2O$  (I)  $\rightleftarrows NH_3$  (aq)+  $H_3O^+$  (aq)

$$K = \frac{[NH_3] \cdot [H_3O^+]}{[NH_4^+]} = 5.6 \cdot 10^{-10} M \qquad pK = -log_{10}(5.6 \times 10^{-10}) = 9.25$$



| solution             | pН   |
|----------------------|------|
| 1 M HCl              | 0.0  |
| gastric juice        | 1.0  |
| Lemon juice          | 2.3  |
| vinegar              | 2.8  |
| wine                 | 3.5  |
| Tomato juice         | 4.1  |
| coffee               | 5.0  |
| Acidic rain          | 5.6  |
| urine                | 6.0  |
| rain                 | 6.5  |
| milk                 | 6.6  |
| pure water           | 7.0  |
| blood                | 7.4  |
| Bicarbonate solution | 8.4  |
| Tooth paste          | 9.9  |
| NH <sub>3</sub>      | 11.9 |

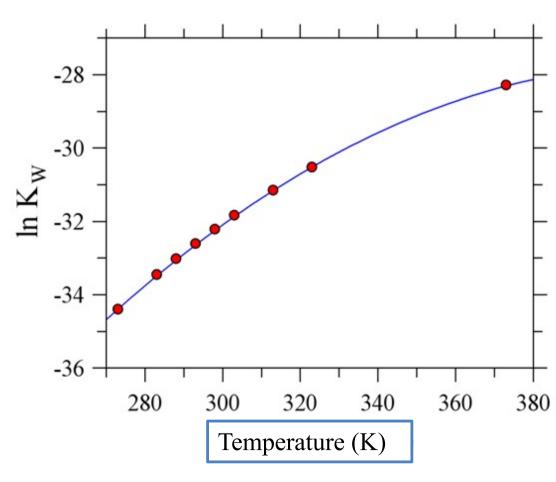

### The sum of pH and pOH at 25 ° C is 14:

$$K_{W} = [H_{3}O^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14} \text{ M}^{2} \text{ a } 25 \text{ °C}$$

$$-\log_{10}K_{W} = -\log_{10}(H_{3}O^{+}] \cdot [OH^{-}]) = -\log_{10}1.0 \cdot 10^{-14}$$

$$pK_{W} = -\log_{10}[H_{3}O^{+}] - \log_{10}[OH^{-}] = 14$$

$$pK_{W} = pH + pOH = 14$$




### Water self-ionization is endothermic

$$2 H_2O(1) + heat \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

| ° C | $K_{W}(M^{2})$         | рН=рОН |
|-----|------------------------|--------|
| 0   | $0.114 \cdot 10^{-14}$ | 7.47   |
| 10  | $0.293 \cdot 10^{-14}$ | 7.27   |
| 15  | $0.450 \cdot 10^{-14}$ | 7.17   |
| 20  | $0.681 \cdot 10^{-14}$ | 7.08   |
| 25  | $1.008 \cdot 10^{-14}$ | 7.00   |
| 30  | $1.471 \cdot 10^{-14}$ | 6.92   |
| 40  | $2.916 \cdot 10^{-14}$ | 6.77   |
| 50  | $5.476 \cdot 10^{-14}$ | 6.63   |
| 100 | 51.3·10 <sup>-14</sup> | 6.14   |





At all temperatures  $[H_3O^+] = [OH^-]$ 

Calculate the pH at 25 ° C of: a) 0.01 M di HCl; b) 0.1 M NaOH e c) 0.2 M HClO<sub>4</sub>. Calculate the pH at 25 ° C of: a) 0.01 M di HCl; b) 0.1 M NaOH e c) 0.2 M HClO<sub>4</sub>.

a) HCl (aq) + H<sub>2</sub>O (l) 
$$\rightarrow$$
 Cl<sup>-</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)  
[H<sub>3</sub>O<sup>+</sup>] = [HCl] = 0.01 M  $\rightarrow$  pH =  $-\log_{10} (0.01) = -\log_{10} (10^{-2}) = 2$ 

b) NaOH (aq) + H<sub>2</sub>O (l) 
$$\rightarrow$$
 OH<sup>-</sup> (aq) + Na<sup>+</sup> (aq)  
[OH<sup>-</sup>] = [NaOH] = 0.1 M  $\rightarrow$  pOH =  $-\log_{10} (0.1) = -\log_{10} (10^{-1}) = 1$   
pH = 14 - pOH = 13

c) 
$$HClO_4$$
 (aq) +  $H_2O$  (l)  $\rightarrow ClO_4^-$  (aq) +  $H_3O^+$  (aq)  
 $[H_3O^+] = [HClO_4] = 0.2 \text{ M} \rightarrow pH = -log_{10} (0.2) = -log_{10} (2x10^{-1}) = 0.698$ 

If pH = 8.5 what is  $[H_3O^+]$ ?

If pOH = 8.5, what is  $[H_3O^+]$ ?

### If pH = 8.5 what is $[H_3O^+]$ ?

$$pH = -\log_{10} [H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

$$[H_3O^+] = 10^{-8.5} = 3.16 \cdot 10^{-9} M$$

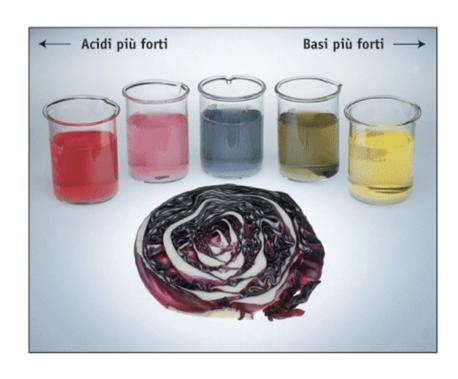
If pOH = 8.5, what is 
$$[H_3O^+]$$
?

pH = 
$$14 - pOH = 5.5$$
  
pH =  $-\log_{10} [H_3O^+]$   
 $[H_3O^+] = 10^{-pH}$   
 $[H_3O^+] = 10^{-5.5} = 3.16 \cdot 10^{-6} M$ 

# Measuring pH: indirect and direct methods



Tornasole is a dye extracted from lichens of the *Rocella* genus.




A pHmeter measures pH directly using a potentiometric method

Red cabbage contains natural dyes. These can be easily extracted by boiling red cabbage in water: the concentrated extract is red-purple. There are many different types of colored substances in plants, such as chlorophylls, carotenoids and anthocyanins.



The colour dpends on the protonation state



### Equilibrium constants for acids and bases

They allow to evaluate the tendency of a compound to react with water. The relative strength of acids can be inferred from the pH of their solution at the same concentration: the lower the pH the stronger the acid.

The relative strength of an acid or base can be expressed quantitatively using the equilibrium constant.

For a generic weak acid

$$HA (aq) + H2O (I) \rightleftharpoons A- (aq) + H3O+ (aq)$$

$$K_{A} = \frac{[H_{3}O^{+}] \cdot [A^{-}]}{[HA]}$$

For a generic weak base

$$B(aq) + H_2O(I) \rightleftarrows BH^+(aq) + OH^-(aq)$$

$$K_{B} = \frac{[OH^{-}] \cdot [BH^{+}]}{[B]}$$

The stregth increases as  $K_A$  or  $K_B$  increase.

Which of these acids is the strongest?

$$HNO_2 (aq) + H_2O (1) \rightleftharpoons NO_2^-(aq) + H_3O^+(aq)$$

$$K_A = \frac{[H_3O^+] \cdot [NO_2^-]}{[HNO_2]} = 4.5 \cdot 10^{-4} M \text{ a } 25 \text{ °C}$$

$$HF (aq) + H_2O (l) \rightleftharpoons F^-(aq) + H_3O^+(aq)$$

$$K_A = \frac{[H_3O^+]\cdot[F^-]}{[HF]} = 7.2\cdot10^{-4}M \text{ a } 25\text{ °C}$$

$$H_2CO_3(aq) + H_2O(1) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$$

$$K_A = \frac{[H_3O^+] \cdot [HCO_3^-]}{[H_2CO_3]} = 4.2 \cdot 10^{-7} M \text{ a } 25 \text{ °C}$$

Whic of these bases is the strongest?

$$NH_3 (aq) + H_2O (1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

$$K_B = \frac{[OH^-] \cdot [NH_4^+]}{[NH_3]} = 1.8 \cdot 10^{-5} M \text{ a } 25 \text{ °C}$$

$$CH_3NH_2(aq) + H_2O(1) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$$
 metilammina

$$K_B = \frac{[OH^-] \cdot [CH_3NH_3^+]}{[CH_3NH_2]} = 5.0 \cdot 10^{-4} M \text{ a } 25 \text{ °C}$$

$$CO_3^{2-}(aq) + H_2O(1) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$$

$$K_B = \frac{[OH^-] \cdot [HCO_3^-]}{[CO_3^{2-}]} = 2.1 \cdot 10^{-4} M \text{ a } 25 \text{ °C}$$

### Polyprotic acids

#### Phosphoric acid

$$H_3PO_4(aq) + H_2O(1) \rightleftharpoons H_2PO_4^-(aq) + H_3O^+(aq)$$
  $K_1 = 7.1 \cdot 10^{-3}$ 

$$H_2PO_4^-(aq) + H_2O(1) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq)$$
  $K_2 = 6.2 \cdot 10^{-8}$ 

$$HPO_4^{2-}$$
 (aq) +  $H_2O$  (l)  $\rightleftharpoons PO_4^{3-}$  (aq) +  $H_3O^+$  (aq)  $K_3 = 4.4 \cdot 10^{-13}$ 

#### Carbonic acid

$$H_2CO_3(aq) + H_2O(1) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$$
  $K_1 = 4.7 \cdot 10^{-7}$ 

$$HCO_3^-$$
 (aq) +  $H_2O$  (l)  $\rightleftharpoons CO_3^{2-}$  (aq) +  $H_3O^+$  (aq)  $K_2 = 4.7 \cdot 10^{-11}$ 

#### Sulphuric acid

$$H_2SO_4(aq) + H_2O(1) \rightleftharpoons HSO_4^-(aq) + H_3O^+(aq)$$
  $K_1 = \sim 10^2$ 

$$HSO_4^-$$
 (aq) +  $H_2O$  (l)  $\rightleftharpoons SO_4^{2-}$  (aq) +  $H_3O^+$  (aq)  $K_2 = 1.2 \cdot 10^{-2}$ 

### Ionization constants of some acids and their conjugate bases at 25 ° C

| acid                  | acido                          | $K_{A}$               | base                                        | $K_{\mathrm{B}}$      | base                  |
|-----------------------|--------------------------------|-----------------------|---------------------------------------------|-----------------------|-----------------------|
| hydrochloric          | HC1                            | >>1                   | Cl-                                         | <<1                   | chloride              |
| nitric                | HNO <sub>3</sub>               | >>1                   | NO <sub>3</sub> <sup>-</sup>                | <<1                   | nitrate               |
| hydronium             | $H_3O^+$                       | 1                     | H <sub>2</sub> O                            | 1.0·10 <sup>-14</sup> | water                 |
| phosphoric            | H <sub>3</sub> PO <sub>4</sub> | 7.5·10 <sup>-3</sup>  | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | 1.3·10 <sup>-12</sup> | Di-hydrogen phosphate |
| fluoridric            | HF                             | 7.2·10 <sup>-4</sup>  | F-                                          | 1.4·10-11             | flluorure             |
| acetic                | CH₃COOH                        | 1.8·10 <sup>-5</sup>  | CH <sub>3</sub> COO <sup>-</sup>            | 5.6·10 <sup>-10</sup> | acetate               |
| carbonic              | H <sub>2</sub> CO <sub>3</sub> | 4.2·10 <sup>-7</sup>  | HCO <sub>3</sub> <sup>-</sup>               | 2.4·10 <sup>-8</sup>  | Hydrogen carbonate    |
| sulphidric            | $H_2S$                         | 1.0·10 <sup>-7</sup>  | HS-                                         | 1.0·10 <sup>-7</sup>  | Hydrogen sulphite     |
| Di-hydrogen phosphate | $\mathrm{H_2PO_4}^-$           | 6.2·10 <sup>-8</sup>  | $H_2PO_4^{2-}$                              | 1.6·10 <sup>-7</sup>  | Hydrogen phosphate    |
| ammonium              | NH <sub>4</sub> <sup>+</sup>   | 5.6·10 <sup>-10</sup> | NH <sub>3</sub>                             | 1.8·10-5              | ammonia               |
| cianidric             | HCN                            | 4.0·10 <sup>-10</sup> | CN-                                         | 2.5·10-5              | cianate               |
| Hydrogen carbonate    | HCO <sub>3</sub> <sup>-</sup>  | 4.8·10 <sup>-11</sup> | CO <sub>3</sub> <sup>2-</sup>               | 2.1·10 <sup>-4</sup>  | carbonate             |
| Hydrogen phosphate    | HPO <sub>4</sub> <sup>2-</sup> | 3.6·10 <sup>-13</sup> | PO <sub>4</sub> <sup>3-</sup>               | 2.8·10 <sup>-2</sup>  | phosphate             |
| wa                    | $H_2O$                         | $1.0 \cdot 10^{-14}$  | OH-                                         | 1                     | hydroxil              |

Increasing sthregth of the acid