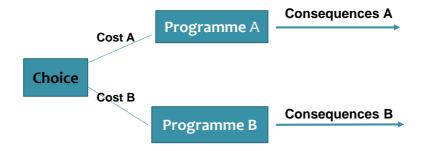
CHAPTER 14 HEALTH TECHNOLOGY ASSESSMENT

HTA

- Systematic evaluation of properties, effects and/or impacts of health technologies (medicines, medical devices, vaccines) and interventions.
- Approach used to inform policy and decision-making in health care, especially on how best to allocate limited funds to health interventions and technologies.

HTA

- Which objectives
 - Max general population health
 - Reduce health inequalities
 - Universal health coverage
- Criteria for priority setting
 - Cost-effectiveness
 - Poverty reduction
 - Target severe diseases
 - Target the young


Bhattacharya, Hyde and Tu - Health Economics

Which intervention are worthwhile

Measure the impact of the health problem

- Number of cases; number of deaths; amount of disability, pain or suffering; number of people at risk; amount of lost income due to a health problem
- Resouces needed for intervention (costs)
 - Personel, buildings, equipment, pharmaceuticals, training, information,
- Outcomes or consequences (benefits)
 - Measure impact <u>before and after the intervention</u> or
 - Measure impact with and without intervention

An example

Bhattacharya, Hyde and Tu - Health Economics

HTA

- Cost effectiveness analysis (compares the costs and benefits of different medical treatments)
- Cost-benefit analysis (the process of choosing an optimal treatment by creating a tradeoff between money and health)
- These approaches only address one objective: maximizing health (e.g. do not consider equity)

Cost effectiveness analysis

 Definition: the process of measuring the costs and health benefits of various medical treatments, procedures, and therapies.

Bhattacharya, Hyde and Tu - Health Economics

Cost effectiveness analysis

- If one treatment is both cheaper and more effective than a second treatment, then the second treatment is said to be dominated by the first.
 - It is never optimal to use a dominated treatment, because there is always a more effective and cheaper alternative available.

Cost effectiveness analysis

- If neither treatment is dominant, one treatment must be both more expensive and more effective.
 - In such cases, cost-effectiveness analysis is used to help decide whether the extra expenditure is worth it.

Bhattacharya, Hyde and Tu - Health Economics

Incremental cost-effectiveness ratio (ICER)

- Consider two treatments for the same disease: A and B. A is both more expensive and more effective than B, so neither treatment dominates the other.
- The ICER of using A over B is:

$$ICER_{A,B} = \frac{C_A - C_B}{E_A - E_B} > 0$$

Measuring costs

- In order to calculate the ICER, we need to measure the costs of each treatment.
 - not the money costs of resources, but the opportunity costs
- Whose perspective?
 - Society's: all costs count.
 - Health care sector: disregards costs imposed on patients or their families
 - The patient: only costs directly borne by patients count.

Bhattacharya, Hyde and Tu - Health Economics

Which costs count?

- Direct costs
 - Health-care
 - Non health-care (eg transportation costs)
- Indirect costs
 - Patient and family (work and leisure) time
 - at what value? wage?
- Intangible costs
 - Side effects
 - difficult to measure
- Discounting

How is "effectiveness" measured?

- One common measure of effectiveness is increased life expectancy.
- But how do we account for other health benefits that affect quality of life (e.g. increased mobility and freedom from pain)?
 - The Quality-Adjusted Life Years (QALY) approach combines quality of life and life expectancy into a single index.

Bhattacharya, Hyde and Tu - Health Economics

Estimating the value of life

- You may think life cannot be valued economically or has an infinite value. Consider the following example:
 - There is a suitcase across a busy street with a million dollars in it.
 - If you cross the busy street to get the suitcase, there is a 1% chance you will be struck by a bus and killed.
 - □ Do you risk it?
 - If you answer yes, your life cannot be worth more than \$100 million to you (\$1 million divided by 0.01).

Conclusion

- Health systems/Insurers can neither cover every single new technology, nor refuse to cover all new procedures
- □ selective about which procedures to cover
 - HTA is a tool that many insurers and national health systems use to make these coverage decisions