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1 Introduction

Statistical mechanics was developed at the end of the XIX century to pro-
vide a theoretical framework to thermodynamics. However, the complexity of
the formulation made ab initio calculations essentially impossible: only ideal
(noninteracting) systems could be treated exactly, the two-dimensional Ising
model being a notable exception. To understand the behavior of more com-
plex systems, crude approximations and phenomenological models, in most of
the cases only motivated by physical intuition, were used. The understanding
of statistical systems changed completely in the late 50’s, when computers
were first used [1–4]. The first machine calculations showed that the behav-
ior of macroscopic systems containing a large number of molecules (of the
order of the Avogadro’s number, NA ≈ 6.022 · 1023) could be reasonably
reproduced by relatively small systems with a number of molecules of the
order of 102-103, which could be simulated with the computer facilities of
the time. These results, which, for many years, were met with skepticism
by the more theoretically-oriented part of the statistical-mechanics commu-
nity, opened a new era: theoreticians had their own laboratory, in which they
could analyze the behavior of different systems under well-controlled theo-

retical conditions. Since then, numerical methods have been extensively used
and have provided quantitatively accurate predictions for the behavior of
many condensed-matter systems. Similar methods have also been employed
in many other fields of science, from high-energy physics (in the 70’s the first
lattice QCD simulations were performed) to astrophysics, chemistry, biology,
statistics, etc.

The Monte Carlo (MC) method is one of the most powerful techniques
for the simulation of statistical systems. Since the Boltzmann-Gibbs distribu-
tion is strongly concentrated in configuration space, MC methods implement
what is called importance sampling: points in configuration space are not
generated randomly, but according to the desired probability distribution. In
practice, in a MC simulation one only generates typical configurations, i.e.
those that most contribute to thermodynamic averages. From a mathemat-
ical point of view, a MC algorithm is a Markov chain that (a) is stationary
with respect to the Boltzmann-Gibbs distribution and (b) satisfies ergodicity
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(mathematicians call the latter property irreducibility). If these two condi-
tions are satisfied, time averages converge to configuration averages: hence,
by using the MC results one can compute ensemble averages for the system
at hand. While condition (a) is usually easy to satisfy—the Metropolis al-
gorithm is a general purpose method to define a Markov chain that satisfies
(a)—condition (b) is more subtle. Indeed, in the presence of phase transitions
or of quenched disorder, a statistical system may show an infinite number
of inequivalent thermodynamic states in the infinite-volume limit, which in
turn implies ergodicity breaking for any (physical or MC) local dynamics.
For instance, consider the Ising model in a finite volume with some boundary
conditions that do not break the up-down symmetry (for instance, the usual
periodic boundary conditions). Since the symmetry is exactly preserved, the
magnetization per site m is exactly zero. However, if the temperature T is
low enough, in any MC simulation of a sufficiently large system one observes
that the system magnetizes, i.e. m is equal either to m0 or to −m0. This
result can be easily understood. The correct distribution P (m) of the mag-
netization has maxima Pmax at ±m0 and a minimum Pmin at m = 0. The
important point is that the ratio Pmin/Pmax is extremely small, of the order
of e−aNp

, a, p > 0, where N is the number of system variables. To obtain the
correct average one should sample all relevant configurations, i.e., both those
that have m ≈ m0 and those that have m ≈ −m0. But these two regions of
configuration space are separated by a barrier of rare configurations, i.e. that
occur with an exponentially small probability and which, therefore, are never
sampled—importance sampling MC samples only the typical configuration
space. Hence, any simulation gets stuck in one of the two minima, ergodicity
is lost, and therefore MC does not provide the correct answer.

In this contribution we wish to discuss MC methods that are used to over-
come the problem of ergodicity breaking and, more generally, to determine
thermodynamic/statistical properties that are controlled by rare configura-
tions, which are indeed the subject of the theory of large deviations [5]. In
this contribution we will first discuss the problem of data reweighting, then
we will introduce a family of methods that rely on non-Boltzmann-Gibbs
probability distributions, umbrella sampling, simulated tempering, and mul-
ticanonical methods. Finally, we will discuss parallel tempering which is a
general multipurpose method for the study of multimodal distributions, both
for homogeneous and disordered systems.

2 Data reweighting

In this contribution we shall work in the canonical ensemble, considering
configurations x distributed according to the Boltzmann-Gibbs probability
density

πβ(x) =
e−βH(x)

Zβ
,
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where H(x) is the energy function and the normalizing constant Zβ is the
partition function at inverse temperature β. Note that the energy function
H is extensive, i.e., proportional to the number N of system variables; in
the thermodynamic limit N → ∞, the distribution πβ(x) becomes peaked
around its maximum. We indicate by 〈·〉β the average with respect to πβ(x).

The dynamic MC method which uses importance sampling can efficiently
sample from a distribution which is strongly concentrated in the space of
configurations as πβ(x) is for large values ofN . Thus, a MC run at β0 allows us
to compute any interesting thermodynamic quantity at β0. However, suppose
that we are also interested in the behavior at a different temperature β1: do
we need to run a new MC simulation or can we re-use the data collected at
β0? The answer mainly depends on the energy function H(x), on how close
β1 and β0 are, and, though this is usually much less relevant, on the amount
of data collected at β0.

In this context one useful technique is called data reweighting [6–8]. If
A(x) is any observable, its average at β1 can be expressed as

〈A〉β1
=

∑

x A(x)e
−β1H(x)

∑

x e
−β1H(x)

=

∑

x A(x)e
−∆βH(x)e−β0H(x)

∑

x e
−∆βH(x)e−β0H(x)

=
〈Ae−∆βH〉β0

〈e−∆βH〉β0

,

(1)

where ∆β = β1 − β0.
Though in principle this formula solves the problem, in practice it is only

useful if the two averages at β0 can be computed with reasonable accuracy.
But this is not obvious. Since H is extensive, the calculation of averages
involving e−∆βH is a large-deviation problem forN → ∞. Therefore, accurate
results are only obtained if rare configurations, i.e. configurations that have
an exponentially small probability for N → ∞, are correctly sampled. From
a physical point of view the origin of the difficulties can be understood quite
easily. Problems arise because configurations sampled by the MC at β0 are
not those giving the largest contribution to 〈A〉β1

, since πβ1
(x) and πβ0

(x)
are strongly concentrated on different configurations. If we call Dβ the set
of typical configurations of πβ(x),

1 then the estimate of 〈A〉β1
obtained by

data reweighting is reliable only if the configurations obtained at β0 sample
well enough Dβ1

. Usually this requirement is stated by saying that the energy
histograms at inverse temperatures β0 and β1 should overlap. This statement
is qualitatively correct, although of little practical use, given that we do not
know the energy histogram at β1 (this is something we would like to compute
from the data measured at β0).

Data reweighting provides also the answer to a second problem that arises
in many different contexts, that of computing free energy differences. In the
canonical ensemble one would consider the Helmholtz free energy F (β) =

1 A precise definition of Dβ is not necessary for our purposes. For example, we can
consider for Dβ the smallest set of configurations such that

∑
x∈Dβ

πβ(x) > 1−ε.
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−β−1 lnZβ. Given F (β0), one can compute F (β1) by using

β1F (β1)− β0F (β0) = − ln〈e−∆βH〉β0
= ln〈e∆βH〉β1

. (2)

The same type of averages appear here as in Eq. (1) and indeed, this type of
computations suffers from the same problems discussed above.

We wish now to make this qualitative discussion quantitative. For this
purpose, let us compute the statistical error on 〈A〉β1

. Since this quantity is
expressed as a ratio of two mean values, the variance of the estimator can be
obtained by using the general expression

σ2
est ≡ var

( 1
n

∑

iAi

1
n

∑

iBi

)

=
1

n

〈A〉2
〈B〉2

〈

O2
〉

(1 + 2τO) +O(n−2) , (3)

where n is the number of measurements performed,

O =
A

〈A〉 −
B

〈B〉 , (4)

and τO is the integrated autocorrelation time associated with O. Eq. (3) is
valid as n → ∞, neglecting corrections of order n−2. In our case the relevant
quantity is

〈

O2
〉

. If we specialize Eq. (4) to our case, we obtain

〈O2〉0 =

〈

(

Ae−∆βH

〈Ae−∆βH〉0
− e−∆βH

〈e−∆βH〉0

)2
〉

0

=

〈

(

A

A1
− 1

)2
e−2∆βH

〈e−∆βH〉20

〉

0

=
Z2
0

Z2
1

〈

(

A

A1
− 1

)2
〉

2

〈

e−2∆βH
〉

0
=

Z0Z2

Z2
1

〈

(

A

A1
− 1

)2
〉

2

.

Here we have introduced β2 = 2β1 − β0, 〈·〉βi has been written as 〈·〉i, and
A1 = 〈A〉1. In terms of the Helmholtz free energy F (β) we have

〈O2〉0 =

〈

(

A

A1
− 1

)2
〉

2

eNf(β0,β1) ,

where

Nf(β0, β1) = 2β1F (β1)− β0F (β0)− β2F (β2) .

The extensivity of the free energy F (β) implies that f is finite for N → ∞. It
is easy to show that f is a positive function and increases as |β0−β1| increases.
Indeed, using E = ∂(βF )/∂β and CV = ∂E/∂T at constant volume (in our
language at constant N), we can rewrite

Nf(β0, β1) =

∫ β1

β0

[E(β′)− E(β′ + β1 − β0)]dβ
′ =

=

∫ β1

β0

[

β′ − β0

β′2
CV (β

′) +
β1 − β′

(β′ + β1 − β0)2
CV (β

′ + β1 − β0)

]

dβ′ .
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The positivity of the specific heat immediately implies that f(β0, β1) > 0.
For |β1 − β0| ≪ 1 we can expand f(β0, β1) in powers of β1 − β0, obtaining

f(β0, β1) =
cV
β2
0

(β1 − β0)
2 , (5)

where cV = CV /N is the specific heat per system variable at β = β0. Col-
lecting all terms we obtain for the variance of the estimate

σ2
est

〈A〉21
=

1

n

〈(A−A1)
2〉2

A2
1

eNf(β0,β1)(1 + 2τO) +O(n−2) .

Since Eq. (1) is a ratio, the estimate is also biased. The bias can be easily
computed in the case of independent sampling (if correlations are present
formulae are more involved, but the conclusions reported below remain un-
changed). Using

bias

( 1
n

∑

i Ai

1
n

∑

iBi

)

=

〈 1
n

∑

iAi

1
n

∑

i Bi

〉

− 〈A〉
〈B〉 =

=
1

2n

〈A〉
〈B〉

[

varO − varA

〈A〉2 +
varB

〈B〉2
]

+O(n−2) , (6)

we easily check that also the bias is proportional to exp[Nf(β0, β1)].
We can also compute the error σ∆F on the free-energy difference as com-

puted by using Eq. (2). We have

σ2
∆F =

[ 〈e−2∆βH〉0
〈e−∆βH〉20

− 1

]

(1 + 2τ) ≈ Z2Z0

Z2
1

(1 + 2τ) = eNf(β0,β1)(1 + 2τ) ,

where τ is the integrated autocorrelation time associated with e−∆βH . Note
that the same exponential factor occurs also here.

The presence of the exponential term sets a bound on the width of the
interval in which data reweighting can be performed. Requiring σest/〈A〉1 ≪ 1
we obtain

1

n
exp[Nf(β0, β1)] ≪ 1 ,

which implies for small values of ∆β = β0 − β1 the condition

|∆β| ≪ ∆βmax ≡ β0

√

lnn/(NcV ) . (7)

Notice that this bound depends on the model under study (through the spe-
cific heat cV at β0) and on the system size, as N−1/2, while the depen-
dence on the number of measurements is only logarithmic. The dependence
of ∆βmax on (NcV )

−1/2 can be physically explained: energy fluctuations at
β0 are of order (NcV )

1/2 and are thus comparable to the energy difference
E0 − E1 ∝ NcV ∆βmax, only if ∆βmax scales like (NcV )

−1/2.
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The origin of the function f can be better understood by a physical argu-
ment which relies on the intuitive idea of the histogram overlaps. Indeed, the
probability that a configuration x generated according to πβ0

(x) is in Dβ1
is

given by

∑

x∈Dβ1

πβ0
(x) = eβ0F (β0)

∑

x∈Dβ1

e−β0H(x) ≃

≃ eβ0F (β0)eS(β1)−β0E(β1) ≡ e∆S−β0∆E , (8)

where S = β(E − F ) is the entropy. To obtain the second equality we have
assumed that all configurations in Dβ1

have the same energy E(β1) and that
their number is eS(β1), which is fully justified in the thermodynamic limit.
Given that both ∆S and ∆E are extensive, the probability in Eq. (8) is
exponentially small in N . The corresponding large deviation (or Cramer)
function is given by Ω(β0, β1) = ∆s − β0∆e, with s = S/N and e = E/N .
For small |β1 − β0| we have

NΩ(∆β) =

∫ T1

T0

dT

(

CV

T
− CV

T0

)

= −CV ∆β2

2β2
0

≈ −1

2
Nf(β0, β1) ,

where CV is the specific heat at β0. The number of “good” measurements
for the estimate of 〈A〉β1

(i.e., those in Dβ1
) is then n exp(−Nf/2). The

reweighting is reliable if this number is much larger than 1, which again
implies condition (7).

To give an example on how the method works, let us consider the Ising
model on a square lattice of size N = 1002 and let us perform a simulation at
the critical inverse temperature βc = log(

√
2+1)/2. We wish to compute 〈E〉β

in an interval around the critical point. In Figure 1 we report the statistical
error on this quantity obtained by reweighting 104 independent measure-
ments. The error computed by using Eq. (3) first increases significantly and
then decreases exponentially as |β − βc| becomes large. This behavior is due
to the fact the reweighted dataset becomes dominated by a single data point
and fluctuations within the reweighted dataset disappear. However, this de-
crease is inconsistent with the exact expression we have derived above—and
also with physical intuition—which shows that the error should always in-
crease as |β − βc| increases. The origin of this discrepancy is related to the
fact that, as we move out of the critical point, not only does the error on the
energy increase, but also the error on the error increases, hence also the error
becomes unreliable. It is important to stress that in any case σest cannot be
computed by using Eq. (3) as soon as the error becomes large. Indeed, that
relation is an asymptotic formula valid as long as the neglected corrections
(of order n−2) are small. But it is clear that, when the leading term is large,
also the corrections become relevant, making the formula unsuitable for the
computation of the error. In this case, a more robust method should be used,
like the jackknife method [9,10]. The jackknife error behaves better, but also
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Fig. 1. Error on the energy E(β) for two different sets of data (we use squares and
circles to distinguish them). We report: (empty symbols) the error computed using
Eq. (3), (solid symbols) the error computed using the jackknife method, (continuous
line) c eNf/2 obtained by using Onsager’s expression for the free energy, (dashed
line) c eNf/2 using approximation (5) and the value of the specific heat at the critical
point; c is the error at the critical point. The vertical dotted lines give the interval
in which we have 100 “good” measures, as defined in the text.

this method becomes unreliable when the reweighted dataset concentrates on
very few data points (those with the largest or smallest energy, depending on
the sign of ∆β). In practice, the jackknife error converges for large |β − βc|
to the absolute value of the difference between the two largest (or smallest)
energy data points. It is interesting to compare the error determined from
the numerical data with the exact result. Hence, in the figure we also report
c exp(Nf/2), where c is the error at the critical point and f has been com-
puted by using Onsager’s expression [11,12] for the free energy. It is clear
that the error computed from the MC data becomes immediately unreliable
as soon as |β − βc| & 0.01. Indeed, the true error increases quite fast and
becomes enormous outside this small interval. For instance, for the extreme
case β = 0 we have f(βc, 0) = 0.473 so that exp(Nf/2) ∼ 101027. In Fig. 1
we also report the interval in which we have at least m = 100 good measures,
where m is defined by n exp(−Nf/2), as discussed above. In this range the
jackknife and the asymptotic error estimates agree, as expected. Morever, in
this interval also the quadratic approximation (5) is quite accurate.
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3 Multiple histogram method

Given that the reweighting method can cover only a limited temperature
range of width ∆βmax around the temperature β0 where the original data
were collected, one could improve it by running new simulations at β1, with
|β1 − β0| > ∆βmax, but such that, combining all measured data, the entire
range (β0, β1) is covered. More generally, suppose one has performed MC
simulations at R different inverse temperatures {βi}i=1,...,R. What is the best
way to combine these R datasets to estimate average values 〈A〉β at any β?

The most naive method would consist in performing a weighted average
of the reweighted data. To explain the shortcomings of this approach, let us
assume R = 2 and, for instance, let us consider a value of β between β1 and
β2 which is closer to β1 than to β2. A formally correct strategy to compute
an average 〈A〉β could be the following. We first use the data at β1 to obtain
an estimate A1 with error σ1 and then the data at β2 to obtain an estimate
A2 with error σ2. Since β is not close to β2, A2 has a somewhat large error;
but, what is worse, also the error estimate σ2 has a somewhat large error.
Hence, σ2 as estimated from the data could be largely underestimated, as we
have seen in Sec. 2. Finally, one could combine the two estimates as

A12 =
A1σ

−2
1 +A2σ

−2
2

σ−2
1 + σ−2

2

.

But, if σ2 is largely underestimated, we would give too much weight to A2,
adding essentially noise and not signal to A1. In these cases A12 would be a
worst estimate than A1.

A much better method has been proposed Ferrenberg and Swendsen [13].2

Before presenting the method let us define a few fundamental quantities. For
simplicity, let us assume that the system is discrete so that the energy takes
discrete values. Then, we introduce the density of states ρ(E) which is defined
such that

Zβ =
∑

E

ρ(E)e−βE ,

and the energy histogram variable h(E0, β) defined by

h(E0, β) = 〈δE,E0
〉β =

1

Zβ

∑

E

ρ(E)δE,E0
e−βE =

1

Zβ
ρ(E0)e

−βE0 . (9)

The latter quantity has the important property

var [h(E0, β)] = 〈δ2E,E0
〉β − 〈δE,E0

〉2β = h(E0, β)[1− h(E0, β)] ≈ h(E0, β) ,

2 It is interesting to observe that, for R = 2, the multiple histogram method is
equivalent to Bennett’s acceptance ratio method [14] which was developed for
liquid systems.
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where we have used the obvious property δ2E,E0
= δE,E0

and, in the last step,
that h(E0, β) ≪ 1.

We can now define the method. Suppose we have taken ni independent
measurements3 at βi and let us denote with Ni(E) the number of measures
with energy E. The ratio Ni(E)/ni is an estimator of the histogram variable
h(E, βi). Using Eq. (9) we can estimate ρ(E) using the data at βi as

ρi(E) ≈ n−1
i Ni(E)eβiEZi ,

where Zi, the partition function at βi, has still to be determined. The variance
of the estimator of ρi(E) can be easily computed if one assumes that Zi is
known exactly. Indeed, with this assumption

σ2
i (E) = n−1

i var [ρ(E)] = n−1
i e2βiEZ2

i var [h(E, βi)] =

= n−1
i e2βiEZ2

i h(E, βi) = n−1
i eβiEZiρ(E) .

In the usual error analysis one would replace ρ(E) in the r.h.s. with its estima-
tor ρi. Since we know that this estimator may be very imprecise—it provides
an accurate estimate of ρ(E) only if E is a typical energy at inverse temper-
ature βi—we do not do it here. This is a crucial point in the method and it is
the one that guarantees the robustness of the results. It is also important to
stress that σi is not the “true” error, since Zi is also a random variable which
has to be determined. However, we will only use σi to write down a weighted
average of the estimators ρi(E). For this purpose, it is not necessary that the
weights are correct variances or estimates thereof.4 A robust estimate of the
density of states using all R datasets is given by a weighted average, where
each estimate ρi(E) enters with a weight proportional to 1/σ2

i (E):

ρ(E) =
R
∑

i=1

ρi(E)
1/σ2

i (E)
∑R

j=1 1/σ
2
j (E)

=

∑R
i=1 Ni(E)

∑R
j=1 nj e−βjE Z−1

j

. (10)

At this point it is important to stress two important differences between this
method and the naive method presented at the beginning. First, observe that
for any given E, the only runs that contribute to the determination of ρ(E)
are those for which Ni(E) 6= 0. This means that we are using the data at βi

only where they are relevant. Moreover, the estimate of the error σi is robust,
since it follows from an exact identity for the histogram variable.

3 In case the measures are correlated with an autocorrelation time τi, then an
effective ñi = ni/(2τi + 1) should be used in all following formulae.

4 We remind the reader of a few basic facts. If Ai are different estimates of the
same quantity, i.e. they all satisfy 〈Ai〉 = a, any weighted average Awt =

∑
wiAi,∑

i wi = 1, is correct in the sense that 〈Awt〉 = a. Usually, one takes wi = kσ−2

i

(k is the normalization factor) because this gives the optimal estimator, that is
the one with the least error. Here, however, robustness and not optimality is the
main issue.
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Eq. (10) still depends on the unknown partition functions Zi. They can
be determined in a self-consistent way by noticing that

Zk =
∑

E

ρ(E)e−βkE =
∑

E

∑R
i=1 Ni(E)

∑R
j=1 nj e(βk−βj)E Z−1

j

. (11)

which can be rewritten as

∑

E

∑R
i=1 Ni(E)

∑R
j=1 nj e(βk−βj)E (Zk/Zj)

= 1 .

The consistency condition gives us R equations for the partition function
ratios Zi/Zj . Since the number of independent ratios is R − 1, one would
expect only R − 1 independent equations and, indeed, the R equations are
linearly dependent:

R
∑

k=1

nk

∑

E

∑R
i=1 Ni(E)

∑R
j=1 nj e(βk−βj)E (Zk/Zj)

=
∑

E

R
∑

i=1

Ni(E) =

R
∑

i=1

ni .

To solve the problem one proceeds iteratively. We define Ẑk = Zk/Z1 and
rewrite Eq. (11) as

Ẑk =
∑

E

∑R
i=1 Ni(E)

∑R
j=1 nj e(βk−βj)E Ẑ−1

j

.

A first estimate of Ẑk can be obtained by using the data reweighting method
presented before.5 The first estimate the Ẑi’s is plugged on the r.h.s. and
the l.h.s. provides a new estimate, which is used again in the r.h.s. to get a
third estimate and so on. Since we are only able to compute the ratios of the
partition functions, we do not obtain at the end ρ(E) but rather ρ(E)/Zi for
all values of i. However, this is enough to compute averages of functions of
the energy since

〈g(E)〉βi =
∑

E

g(E)e−βiE [ρ(E)/Zi] .

or ratios of partition functions

Zβ

Zi
=

∑

E

e−βE[ρ(E)/Zi] .

The procedure we have presented can be generalized to allow us to compute
averages of generic observables A(x). In this case, the basic quantity is the
joint histogram with respect to E and A

h(E0, A0, β) = 〈δE,E0
δA,A0

〉β ,

5 If the inverse temperatures βi are ordered, one could determine Zi/Zi−1 by using
the reweighting method and then Ẑi = (Zi/Zi−1)(Zi−1/Zi−2) . . . Z2/Z1.
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its estimator Ni(E0, A0)/ni, and the density of states ρ(E0, A0) which counts
the number of states such that E = E0 and A = A0. Repeating the same
steps as before, we end up with

ρ(E,A) =

∑R
i=1 Ni(E,A)

∑R
j=1 nj e−βjE Z−1

j

.

Once ρ(E,A)/Zi is known, any average involving E and A can be directly
computed.

It is worth noticing that the use of histograms in the multiple histogram
method (which is in general information degrading) is not strictly necessary
if one is able to save the full configurations or, at least, the measurements
Ai,t and Ei,t at each MC time t. Indeed, the consistency equations can be
rewritten as

Ẑk =
∑

i,t

1
∑R

j=1 nj e(βk−βj)Ei,t Ẑ−1
j

,

where Ei,t is the t-th energy measurement at βi, while the average of any
quantity at any inverse temperature β can be computed as

〈A〉β = Ẑ−1
β

∑

i,t

Ai,t
∑

j nj e(β−βj)Ei,t Ẑ−1
j

,

with

Ẑβ =
∑

i,t

1
∑

j nj e(β−βj)Ei,t Ẑ−1
j

.

Remember that each term entering the sums in the denominators is expo-
nential in N . Much care needs to be taken in doing these sums, since the
summations involve terms of very different sizes, and even a single term can
exceed the range of floating-point numbers. The suggestion is to work with
the logarithms of these terms.

4 Umbrella sampling and simulated tempering

4.1 Umbrella sampling

In the previous sections we have shown how to use several runs at β1 <
. . . < βR to compute averages for any β in the interval [β1, βR] and to com-
pute free energy differences. The umbrella sampling (US) method was in-
troduced by Torrie and Valleau [15] to perform the same tasks by means of
a single simulation. The idea consists in performing MC simulations with a
non-Boltzmann-Gibbs distribution function of the form

π(x) =
1

Zπ

R
∑

i=1

αie
−βiH(x) , (12)
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where i runs over the R different temperatures, Zπ is the normalizing factor,
and αi are positive constants that should be carefully chosen as described
below. By sampling the distribution (12) one aims at sampling in a single
run the configurations that are typical for all βi’s and, as a consequence,
all configuration space which is relevant for the computation of 〈A〉β with
β1 ≤ β ≤ βR. In order for the method to work two requirements should
be satisfied. First of all, the temperatures should be finely spaced, so that
typical configurations at inverse temperature βi overlap with those at βi±1.
If this does not occur, the system is unable to move in configuration space
and does not visit the typical configuration domain of all βi’s. This condition
is the same that occurs in the application of the data reweighting method.
Using the results presented in Sec. 2 and, in particular, Eq. (7), we can
conclude that |βi − βi+1| should scale as (cV N)−1/2: if the system size is
increased, temperatures should be closer. A second important condition fixes
the coefficients αi or, more precisely, their ratios. We require that the typical
configuration domains at each βi have approximately the same probability
under π. Using the notations of Sec. 2, the probability of the typical domain
Dβk

is given by

∑

x∈Dβk

π(x) =
1

Zπ

∑

i

αi

∑

x∈Dβk

e−βiH(x) ≈ 1

Zπ
αkZk .

Therefore, we require

1

Zπ
αiZi =

1

Zπ
αjZj ⇒ αi

αj
=

Zj

Zi
= eβiF (βi)−βjF (βj) . (13)

Hence the ratios αi/αj must be related to the free-energy differences. This
is a shortcoming of the method, since these differences are exactly one of the
quantities one wishes to compute from the simulation. However, the algo-
rithm is correct, though not optimal, for any choice of the αi’s, so that it is
enough to have a very rough estimate of the free-energy differences to run
a US simulation. Note that we only fix the ratios of the αi’s: this is not a
limitation since one can always set, say, α1 = 1, by redefining Zπ. Once the
US simulation has been performed, one can compute averages with respect
to the Boltzmann-Gibbs distribution by using

〈A〉β =
〈Ae−βH(

∑

i αie
−βiH)−1〉π

〈e−βH(
∑

i αie−βiH)−1〉π
. (14)

4.2 Simulated tempering

As the US method, also the simulated tempering (ST) method [16,17] aims at
sampling the configurations that are typical at a set of inverse temperatures
β1 < . . . < βR and, indeed, it represents a stochastic version of the US
method. In the ST case, one enlarges the configuration space by adding an
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index i which runs from 1 to R. Hence, a configuration in the ST simulation
is a pair (x, i). Configurations are sampled with probability (αi > 0)

Π(x, i) =
αie

−βiH

Zi
. (15)

As in the US method, the temperatures and the coefficients αi should be
carefully chosen, using the same criteria we discussed in the US case. In
particular, also the ST method requires an a priori determination of the free
energy differences. As we discuss in Sec. 4.3, the ST and the US method are
essentially equivalent, although the ST has a practical advantage: it is trivial
to modify a standard MC code into a ST code (we discuss in Sec. 4.3 how to
implement ST), while significant more work is needed to implement the US
method.

4.3 Equivalence of simulated tempering and umbrella sampling

Madras and Piccioni [18] have analyzed the US and ST methods and shown
their equivalence under very general conditions, that are usually satisfied in
practical applications. We will present here their results trying to avoid all
mathematical details. Let us first extend the US method to a general family
of probabilities. Consider a state space S and a family of probability functions
πi(x), i = 1, . . . R, defined on S. We assume the state space S to be discrete,
to avoid mathematical subtleties, but the arguments can be easily extended
to the continuous case. In physical terms S is the space of the configurations,
while πi are the Boltzmann-Gibbs distributions e−βiH/Zi. A general umbrella

probability is given by

π(x) =
∑

i

aiπi(x)
∑

i

ai = 1, ai > 0 .

The coefficients ai are related to the coefficients αi defined before by ai =
αiZi/Zπ, while the optimality condition (13), which is not assumed to be
satisfied in the following, becomes ai/aj = 1.

By means of a single MC simulation (i.e., by considering a Markov chain
that has π as stationary distribution) one generates a set of points x1, . . . , xn

in S. If A(x) is a function defined on S, the sample average converges to the
average with respect to π as n → ∞:

1

n

n
∑

k=1

A(xk) →
∑

x

π(x)A(x) = 〈A〉π .

One can also obtain averages with respect to any of the probabilities πi, by
simply reweighting the data. Eq. (14) can be rewritten as

〈A〉i =
∑

x

πi(x)A(x) =
〈πiA/π〉π
〈πi/π〉π

. (16)
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Let us now formulate the ST method in the same framework. The idea is to
enlarge the state space S to

S′ = S × {1 . . . , R}

(we shall often call the additional index a label) and consider the probability
Π(x, i) = aiπi(x) on S′.

We first show that the ST and the US methods generate equally dis-
tributed points in S. Suppose that we use a general MC algorithm on S′

(mathematically, a Markov chain that has Π as stationary distribution) to
generate data (x1, i1), . . ., (xn, in). If A(x) is a function defined on S, the
sample mean converges to Π-averages as n → ∞:

1

n

n
∑

k=1

A(xk) →
∑

x,i

A(x)Π(x, i) =
∑

x,i

A(x)aiπi(x) =
∑

x

A(x)π(x) .

Roughly speaking, this means that, if we start the MC in equilibrium, x1,
. . . xn are distributed according to the umbrella sampling distribution, as if
they had been obtained by a MC US simulation.

The fact that the US and the ST methods generate data with the same
distribution probability does not imply that dynamics are equivalent in the
two methods and one may wonder whether, by enlarging the state space,
one can define algorithms that can speed up significantly simulations. After
all, there is a well-known example in which this strategy works very nicely:
the Swendsen-Wang (or cluster) algorithm [19] for the Ising model is indeed
obtained [20] by enlarging the configuration space of the Ising spins {si} to
{si} × {b〈ij〉}, where b〈ij〉 are the bond occupation variables. For the case of
the US and ST methods, this issue has been investigated in Ref. [18], for the
case in which each system is updated by means of the Metropolis algorithm.

Let us first define the specific update considered in Ref. [18] for ST. This
is not the most general one, but it corresponds to the update used in practical
implementations. If (x, i) is the present configuration, an iteration consists
first in updating the label i, followed by an update of the configuration x.
Labels are updated using the conditional probability of the labels at fixed x: a
new label j is chosen with probability ajπj(x)/

∑

k[akπk(x)] = ajπj(x)/π(x).
Then, a new configuration y ∈ S is chosen by using a MC method appropriate
for the system with probability πj , i.e. the system is updated with a Markov
chain Tj(x, y) which is stationary with respect to πj (we remind the reader
that this corresponds to the condition

∑

x πj(x)Tj(x, y) = πj(y), a formula
which will be often used in the following). The transition matrix is therefore

P (x, i; y, j) =
ajπj(x)

π(x)
Tj(x, y) . (17)

Note that one often uses the Metropolis algorithm to update the labels, by
proposing, for instance, i → i ± 1. This choice is certainly (slightly) more
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efficient, but should not change the general conclusions: the label dynam-
ics should not be the relevant part of the algorithm. The Markov process
(17) induces a Markov process on S whose transition matrix is obtained by
summing P (x, i; y, j) over j:

Ps(x, y) =
∑

j

P (x, i; y, j) =
1

π(x)

∑

j

ajπj(x)Tj(x, y) . (18)

Such a process has π(x) as equilibrium distribution, since
∑

x

π(x)Ps(x, y) =
∑

j

aj
∑

x

πj(x)Tj(x, y) =
∑

j

ajπj(y) = π(y) .

We will finally show that under very general conditions, if the Tj are Metropo-
lis updates, also Ps is a Metropolis update:

a) Assume that the probabilities πi(x) satisfy the following condition: for
any pair x, y ∈ S we have either πi(x)/πi(y) < 1 for all i’s or πi(x)/πi(y) ≥
1 for all i’s. This is obviously satisfied for Boltzmann-Gibbs distributions.
Given x and y one computes the energies E(x) and E(y). If E(x) > E(y)
then e−βiE(x)/e−βiE(y) < 1 for all βi > 0. If the energies satisfy the op-
posite inequality, also the ratio of the Boltzmann-Gibbs factors satisfies
the opposite inequality for all βi > 0.

b) The Metropolis update consists in two steps: a proposal in which a new
configuration y is proposed, and an acceptance step. We assume that
the proposal does not depend on the label i. For the Boltzmann-Gibbs
distribution, this means that, given configuration x, we propose a new
configuration y with a method which does not depend on temperature.
Moreover— most practical algorithms satisfy this condition—we require
the proposal matrix to be symmetric: the probability of proposing y given
x is the same as that of proposing x given y.

For the Metropolis update, if K(x, y) is the proposal matrix, we have [21]

Ti(x, y) = K(x, y)min

(

1,
πi(y)

πi(x)

)

x 6= y ,

Ti(x, x) = 1−
∑

y 6=x

Ti(x, y) .

Inserting this expression in Eq. (18), we obtain for x 6= y

Ps(x, y) =
1

π(x)

∑

j

ajπj(x)K(x, y)min

(

1,
πj(y)

πj(x)

)

.

Now, assume that πi(y)/πi(x) > 1 for all i [we use here assumption (a)]. In
this case we have also π(y)/π(x) > 1 and

Ps(x, y) =
1

π(x)

∑

j

ajπj(x)K(x, y) = K(x, y) .



16 Andrea Pelissetto and Federico Ricci-Tersenghi

In the opposite case we have instead

Ps(x, y) =
1

π(x)

∑

j

ajπj(x)K(x, y)
πj(y)

πj(x)
= K(x, y)

π(y)

π(x)
.

Hence

Ps(x, y) = K(x, y)min

(

1,
π(y)

π(x)

)

.

But this is the transition matrix of a Metropolis update with respect to the
probability π(x). Hence, for the Metropolis case there is a complete equiv-
alence between the US and the ST methods. Madras and Piccioni [18] have
also considered the case in which condition (a) is not satisfied, proving that
in this case ST is no better than the US method (they prove that the prob-
ability of null transitions in the US method is equal or smaller than that in
the ST).

Finally, let us compare how averages are computed in the US and in ST
methods. To compute averages with respect to πi in the US method one uses
formula (16). This formula also holds for the ST:

〈A〉i =
〈πiA/π〉
〈πi/π〉

, (19)

where averages 〈 · 〉 without any subscript refer to the ST measure Π(x, i).
However, in ST simulations, one usually considers

〈A〉i =
〈AIi〉
〈Ii〉

, (20)

where Ii(x, j) = δij for every point (x, j) ∈ S′. That is, in Eq. (20) only data
at βi are used for estimating 〈A〉i. The two expressions (19) and (20) are
clearly different, but not that unrelated. Indeed, one could also determine
〈A〉i by reweighting the data measured at βk:

〈A〉i =
〈AπiIk/πk〉
〈πiIk/πk〉

= Ai,k .

The average (20) corresponds to Ai,i. Let us now show that the estimator
(19) is roughly a weighted average of the Ai,k. Let us define

1

bi
=

〈πi

π

〉

.

Then, note that in systems of physical interest the supports of the distribu-
tions πi are mostly disjoint: if x is such that πi(x) is significantly larger than
zero, then πk(x) is very small for all k 6= i. In physical terms it means that,
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if we have a configuration that is typical at temperature βi, such a configu-
ration will be not be typical at all other temperatures. If this holds, then we
can approximate

1

π(x)
≈

∑

k

Ik
akπk(x)

, (21)

so that (19) can be rewritten as

〈A〉i ≈
∑

k

bi
ak

〈

A
Ikπi

πk

〉

.

Hence, the estimator (19) is essentially equivalent to the following weighted
average of the Ai,k:

〈A〉i ≈
∑

k

bi
ak

〈

πiIk
πk

〉

Ai,k . (22)

Using Eq. (19) to estimate 〈A〉i, not only is one taking into account the data
with label i, but all data by means of a proper reweighting. Of course, Eq. (22)
is not quantitatively correct, since in practical implementations there must be
(otherwise, the algorithm would not work) configurations that are typical for
two distributions: for them approximation (21) fails. However, the argument
gives a direct physical interpretation of Eq. (19) as some kind of, though not
exact, reweighting of the data. Note that, when reweighting is used, there is
always the technical problem of determining the weights of the average (see
Sec. 3). No such problem arises here: everything is fixed in Eq. (19).

5 Generalizing the umbrella method: multicanonical

sampling

Umbrella sampling, like simulated or parallel tempering, provides a way to
sample in the same run different probability distributions along a connected

configuration path P , i.e., a connected subset of the configuration space S such
that, if x ∈ P , x is a typical configuration of at least one of the probabilities
πi(x): in our previous notations P should be connected and contained in
∪R
i=1Dβi . In the presence of first-order phase transitions this path may not

exist, hence the above methods cannot be applied. As an example let us
consider the q-state Potts model on a square lattice. The model is defined in
terms of spins (sometimes called colors) si defined at the sites of the lattice.
Each si can assume q integer values between 1 and q. The Hamiltonian is
given by

Hq({σ}) = −
∑

〈ij〉

δsi,sj ,
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Fig. 2. A sketch of the energy distributions in the Potts model for q > 4 (first-order
transition): the high-temperature (HT) and low-temperature (LT) distributions are
unimodal, while at the critical temperature (CR) the distribution is bimodal.

where the sum is over all nearest-neighbor lattice pairs 〈ij〉, δs,s = 1 and
δs,t = 0 if s 6= t. As probability distribution we consider the usual Boltzmann-
Gibbs distribution

π ∝ e−βHq .

This model shows two different phases depending on β. For β = βc a phase
transition occurs. For q > 4 such a transition is of first order and the energy
has a bimodal distribution at β = βc. A sketch of the energy distributions
close to the transition point is reported in Fig. 2. Typical high-temperature
(HT) distributions are unimodal and overlap with only one of the peaks
appearing at the critical point, that with the highest energy. Analogously, low-
temperature (LT) distributions are also unimodal; they only overlap with the
low-energy peak of the critical-point distribution. This particular behavior of
the energy distributions implies that any US or ST (these considerations
also apply to the parallel tempering method which will be discussed in the
next section) algorithm with local updates of the spins cannot move rapidly
between LT and HT typical configurations. For the mean-field case (Potts
model on a complete graph) and the Metropolis algorithm, this is indeed a
rigorous theorem [22]: the exponential autocorrelation time of Metropolis ST
algorithms increases exponentially with the size of the system. The origin of
the phenomenon is easily understood qualitatively. Suppose we use any of
the previously mentioned methods and consider a set of temperatures such
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that β1 is in the HT phase and βR is in the LT phase. Start the simulation in
the HT phase. Provided that the temperatures are finely spaced, one would
eventually reach the critical point. Since the configuration has been obtained
by cooling a HT configuration, it has an energy that belongs to the HT peak.
Because of the bimodal nature of the energy distribution at βc, local updates
at βc would only generate new configurations with energy belonging to the
HT peak. Hence, any attempt to further reduce the temperature would fail,
since the configuration would never be a typical LT configuration. Hence, LT
configurations would never be visited. This argument is quite general and
shows that US and ST, when used in combination with local algoritms, only
work when the configuration path does not go through first-order transitions.
A second-order transition should not be a limitation, since at the transition
distributions are broader but usually still unimodal.6

To solve the problem one might consider an enlarged parameter space that
allows one to go from the LT phase to the HT phase without intersecting the
first-order transition point. In the Potts model this could be obtained by
adding, for instance, a magnetic field, but this should in any case be done
carefully, to be sure that all low-temperature degenerate states are equally
visited. In practice, these extensions are usually not efficient.

We now discuss a family of methods that generalize the umbrella sampling
method and are appropriate for the study of first-order transitions. They also
work with a nonphysical distribution function π(x) which is constructed in
such a way to allow good sampling of both phases. Sometimes that are called
multicanonical algorithms following Berg and Neuhaus [25,26] that applied
these methods to the study of first-order transitions.

Let us consider again the Potts model and suppose that one is at the
transition point βc, or at least very close to it. For q > 4 (the case we are
considering now) the distribution of the energy h(E) is bimodal, with two
maxima at E1 < E2. If hi = h(Ei) is the value of the distribution at the
maximum i, one defines the multicanonical distribution π(x) as follows

π(x) =
e−βH

Zh1
E(x) ≤ E1 ,

=
e−βH

Zh(E)
E1 < E(x) < E2 ,

=
e−βH

Zh2
E2 ≤ E(x) ,

6 There are instances of second-order transitions which show bimodal distributions
in finite volume [23,24]: however, in these cases the two peaks get closer and
the gap decreases as the volume increases. ST should work efficiently in these
instances.
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where Z is the partition function for π. If we now compute the distribution
of the energy in the new ensemble, we find

hπ(E) = αh(E)/h1 E(x) ≤ E1 ,

= α E1 < E(x) < E2 ,

= αh(E)/h2 E2 ≤ E(x) ,

where α is a normalization constant. The probability is now flat for E1 <
E(x) < E2 and thus local algorithms should have no problem in going from
one phase to the other.

The main problem of the method stays in the fact the βc as well as h(E)
are not known beforehand. In practical implementations one may work as
follows. First, one roughly determines the position of the transition point.
This can be obtained by running a hysteresis cycle. One thermalizes a con-
figuration at a value of β which is deep in the HT phase and measures its
energy. Then, one sligthly increases β, thermalizes the configuration at this
new temperature and recomputes the energy. One keeps repeating these steps
until the configuration “jumps” in the LT phase: this is signalled by a big
decrease of the energy. Let us call βmax this value of β. Then, one begins a
series of runs in which β is decreased until the configuration (for β = βmin)
jumps back in the HT phase. The cycle allows one to infer that βc lies in
the interval [βmin, βmax]. In the absence of any other information we can just
take the midpoint as the value of β at which the multicanonical simulation is
performed. Note that it is not needed that such value be an accurate estimate
of βc. It is only crucial that at this value of β the distribution is bimodal, i.e.
that there is a significant overlap with both phases.

Once the value of β at which the simulation should be performed has
been chosen, one must determine π(x). This can be done recursively. We will
illustrate the procedure with an example, considering the liquid-gas transition
in a fluid. Here the number N of molecules present in the system plays the
role of order parameter in the transition (it is the analogue of E in the Potts
model), while the grand canonical distribution π0 = e−βH+βµN/(N !Z) plays
the role of the Boltzmann-Gibbs distribution. The gas and liquid phases are
the analog of the HT and LT Potts phases. The iterative procedure starts
by performing two runs: one run starts from a gas configuration, while the
other run starts from a liquid (dense) configuration. For each of the two runs
(discarding the equilibration transient) we measure the histograms h0G(N)
and h0L(N) of N , see Fig. 3 (top, left). We observe two clearly separated
peaks centered around N ≈ 30 and N ≈ 200. Then, we choose an interval
I = [Nmin, Nmax] that contains the two peaks. In the present case, we choose
Nmin = 0 and Nmax = 220. Then, we modify the updating step so that N
always belongs to the interval I. This is a crucial modification to have a
stable recursion; of course, this restriction should be eliminated at the end,
once π(x) has been determined.
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Fig. 3. Top, left: we report the distributions h0G(N) and h0L(N) of N at the begin-
ning of the iterative procedure. Top, right: function Kn(N) after several iterations
(n = 5, 10, 20) during the first part of the procedure. Bottom, left: function Kn(N)
at the end of the first part of the procedure (n = 20) and after m iterations (23).
Bottom, right: histogram of N obtained in a MC simulation using the final umbrella
distribution π(x).

The recursion method determines at each step a function Kn(N) and uses
πn+1 ∝ π0/Kn(N) as the distribution function for the next MC simulation.
The function Kn(N) should be such that the new distribution πn+1 is as flat
as possible in the range [Nmin, Nmax]. Let us first determine the zeroth-order
approximation K0(N). If M0G = maxh0G(N) and M0L = maxh0L(N), we
define H0G(N) = h0G(N)/M0G and H0L(N) = h0L(N)/M0L. Then, we set

K0(N) = ε if H0G(N) ≤ ε and H0L(N) ≤ ε ,

K0(N) = H0G(N) if H0G(N) > ε and H0L(N) ≤ ε ,

K0(N) = H0L(N) if H0G(N) ≤ ε and H0L(N) > ε .

We have introduced a lower cutoff ε on the histograms to discard noisy data
(the longer the runs, the smaller ε can be). In the example we use ε = 1/200,
hence we use all data except those for which h0G(N) ≤ εMOG ≃ 1 and
h0L(N) ≤ εMOL ≃ 2. Once K0(N) is defined, we perform two runs using
π1 ∝ π0/K0(N) and again determine the distributions h1G(N) and h1L(N).
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The successive approximations Kn(N) are obtained as

Kn(N) = Kn−1(N) ε if HnG(N) ≤ ε and HnL(N) ≤ ε ,

Kn(N) = Kn−1(N)HnG(N) if HnG(N) > ε and HnL(N) ≤ ε ,

Kn(N) = Kn−1(N)HnL(N) if HnG(N) ≤ ε and HnL(N) > ε ,

where Hn(N) = hn(N)/Mn and Mn is the maximum of hn(N). The proce-
dure is repeated several times until the distributions hnG(N) and hnL(N)
overlap, i.e., there is an N̄ such that HnG(N̄) > ε and HnL(N̄) > ε. In the
example 20 iterations are needed. In Fig. 3 (top, right) we show Kn(N) for
n = 5, 10, and 20. To allow a better comparison, we have multiplied the func-
tions by a constant (irrelevant in the definition of πn) so that the maximum
of Kn(N) is always 1. Note how the double-peak structure emerges as the
number of iterations is increased, in spite of the fact that there are 26 orders
of magnitude between maximum and minimum. From a practical point of
view the procedure can be improved and speeded up in several ways. First,
one can smooth the histograms to eliminate noise. Second, after a few itera-
tions one can try to guess K(N): one can fit the peaks with Gaussians and
restart the iterations from the fitted function. Third, one can perform a dif-
ferent number of iterations in the two phases if the efficiency of the algorithm
is phase dependent. Finally, note that thermalization is needed only in the
first run. Then, one can restart the simulation from the last configurations
generated in the previous iteration.

Once the gas and liquid distributions overlap, there is no longer need of
two different simulations. One performs a single run m times, determines the
distribution hm(N), its maximum Mm, defines Hm(N) = hm(N)/Mm, and
updates Km as follows:

Km(N) = Km−1(N) ε if Hm(N) ≤ ε ,

Km(N) = Km−1(N)Hm(N) if Hm(N) > ε .
(23)

In this second part of the procedure it is usually a good idea to increase
both ε and the number of iterations, to increase the precision on hm(N). The
obtainedKm(N) for the specific example are reported in Fig. 3 (bottom, left).
After m = 6 iteration (23), the function Km(N) reaches its asymptotic form.
Note that this iterative procedure is quite stable: if we increase the number
of iterations, Km(N) does not change (see the curve for m = 15 in the
figure). Once K(N) has been determined, we can eliminate the restrictions
on N , setting K(N) = K(Nmax) for N > Nmax and K(N) = K(Nmin) for
N < Nmin. In Fig. 3 we report the histogram of N obtained by using the
final π ∝ π0/Km(N). All values of N are visited and in particular we are
sampling in both phases. We can thus use the final π(x) to analyze in detail
the behavior at coexistence.

It is important to stress that this procedure correctly works for first-order
transitions with two single minima and for which the relevant order parameter
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is known, but cannot be applied to study the LT phase of disordered systems,
like spin glasses.

6 Parallel tempering

6.1 General considerations

In the previous section we have discussed multicanonical sampling, which is
appropriate for the study of first-order transitions. In that case, sampling
correctly all free-energy minima requires the system to visit also the barrier
region, where the probability distribution is extremely small, of the order
of e−aNp

, where N is the system size. In the presence of second-order phase
transitions, the behavior is quite different, since the different free-energy min-
ima characterizing the ordered phase merge at the critical point, giving rise
to a single thermodynamic state. Hence, if one wishes to visit all ordered
states, there is no need to go over the barriers. For instance, consider a ther-
mal second-order transition, as it occurs in the Ising model. To sample the
LT magnetized phases, one can adopt an algorithm in which temperature
is varied. Starting from a LT configuration, one can rise the temperature
till that of the critical point, where all minima merge, then move into the
HT phase, where a single thermodynamic state esists. If the system spends
enough time in the HT phase, it loses memory of the thermodynamic LT
phase it was coming from. Hence, when temperature is decreased again, it
may well fall into a different LT thermodynamic state. This simple argument
should convince the reader that algorithms that allow temperature changes
are powerful tools for the study of the ordered phases in the presence of
second-order phase transitions. ST was indeed devised with this motivation
in mind [17]. However, as we discussed in Sec. 4.2, ST has a serious shortcom-
ing: a ST simulation requires some free-energy differences to be determined
before starting the simulation; moreover, the efficiency of the simulation de-
pends on the accuracy with which these quantities are determined. These
problems can be avoided by using a variant of ST, the parallel tempering
(PT) method, which is, at present, the most efficient general-purpose algo-
rithm for studying models undergoing second-order phase transitions. The
PT method works well even in very complex models, like spin glasses, that
have a very large number of LT local minima. It is also very useful in systems
which, even in the absence of phase transitions, cannot be simulated effi-
ciently due to the presence of geometric constraints, like complex molecules
in dense systems, or in the presence of boundaries, or in porous systems, just
to name a few examples. In computer science and statistics, PT is often used
in connection with multimodal distributions.

PT has a quite interesting history. It was first introduced in the computer-
science/statistics community by Geyer in 1991 [27], as an efficient method to
sample multimodal probability distributions and it was named Metropolis-
coupled Markov chain Monte Carlo. The work of Geyer stirred a lot of interest
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in the statistical physics community working on polymer physics and PT was
carefully analyzed and compared with US by Tesi et al. [28]. Independently, in
1996 the PT algorithm was introduced by Hukushima and Nemoto [29] with
the name of replica-exchange algorithm, and found widespread application in
spin-glass simulations. At the same time, thanks to the works of Hansmann
[30] the algorithm found its way in the chemical physics and biophysics com-
munity, as a more efficient and simpler alternative to US and multicanonical
algorithms (for a list of applications in this field, see the review by Earl and
Deem [31]). At present the name “parallel tempering” is apparently the most
widely used name in the physics community, while mathematicians prefer to
indicate it as “swapping algorithm”.

The PT algorithm is a simple generalization of ST. The state space S′ is
formed by R replicas of the original state space S: S′ = S × . . . × S. On S′

one takes as probability

Π(x1, . . . , xR) = π1(x1)π2(x2) . . . πR(xR) .

In the standard case, π1(x), . . ., πR(xR) are the Boltzmann-Gibbs distribu-
tions at R different values of the inverse temperatures β1 < . . . < βR. The
algorithm usually works as follows:

a) if (x1, . . . , xR) is the present configuration, one updates each xi using any
MC algorithm that leaves πi(x) invariant.

b) one proposes a swapping move:7

(x1, . . . , xi, xi+1, . . . xR) → (x1, . . . , xi+1, xi, . . . xR) ,

which is accepted with probability

pswap = min

(

1,
πi+1(xi)πi(xi+1)

πi+1(xi+1)πi(xi)

)

= min
(

1, e(βi+1−βi)(Ei+1−Ei)
)

.

It is immediate to verify that the algorithm satisfies the stationarity con-
dition with respect to Π , though it may not necessarily satisfy detailed
balance (this depends on how i and i+ 1 are chosen).

As in the US or ST case, in order to perform a PT simulation, one must decide
the number R of inverse temperatures and their values. We note that one of
the two conditions we discussed in the case of US and ST should hold also
here: temperatures should be close enough, so that the typical configuration
domains at nearby temperatures overlap. If this does not occur, no swap
is accepted. For an efficient simulation it is important to discuss how close
temperatures should be. This will be discussed in Sec. 6.3.

Whenever a PT run is performed, it is important to make checks to verify
that the algorithm is working correctly. The simplest quantity to measure is

7 In principle the swapping can be attempted among any pair of replicas, but only
for nearby replicas the swap has a reasonable probability of being accepted.
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the swapping rate ai,i+1 between adjacent temperatures, that is the fraction
of accepted swaps. The algorithm works efficiently only if, for all i, ai,i+1 is
not too small. As we discuss in Sec. 6.3, the optimal value for ai,i+1 lies be-
tween 0.2 and 0.3, but larger, or slightly smaller values, although not optimal,
are still acceptable. A reasonable swapping rate is, however, not enough to
guarantee that the algorithm is working correctly. Indeed, there are situations
in which the swapping rates take the desired values, but the PT simulation
is inefficient. This typically occurs when there is a “bottleneck” at a cer-
tain temperature βK (usually it is the closest to the critical temperature).
In this case aK−1,K and aK,K+1 are both reasonable, but the algorithm is
unable to move a LT configuration to the other, HT side. In this case, HT
replicas mix very slowly with the LT replicas, so that the dynamics, which
is based on the idea that LT replicas rapidly move into the HT phase, be-
comes very slow. To identify bottlenecks, it is not enough to compute the
swapping acceptances. One should measure quantities that take into account
how temperature changes for each individual replica. Often one considers the
average round-trip time, i.e., the time for a replica to start from the lowest
temperature, reach the highest one, and finally go back to the lowest one.
If the swapping procedure is working efficiently, the round-trip time should
be comparable to the return time of a random walker moving among tem-
peratures with the swapping rates actually measured in the simulation. On
the contrary, if the swapping procedure has a bottleneck, then the round-trip
time becomes large and is essentially controlled by the time it takes for a
replica to go through the bottleneck.8

As in all MC simulations, also in PT simulations one should thermalize the
system before measuring. Two checks should be performed: first, one should
check that equilibrium has been attained at all temperatures. Note that it
is not enough to check convergence at the lowest temperature. For instance,
in PT simulations of non-disordered systems that go through a second-order
phase transition, the slowest mode is controlled by the behavior at the critical
point, not at the lowest-temperature point (see the discussion in Sec. 6.2).
Second, the thermalization time should be larger than the time needed to
go through any bottleneck present in the model: typically a few round-trip
times suffice.

6.2 Some general rigorous results

The PT algorithm has been studied in detail by mathematicians which have
proved theorems [32–34] confirming the general arguments given at the be-
ginning of Sec. 6.1. These theorems give bounds on the spectral gap λ of the

8 If the PT method is applied to a system undergoing a first-order transition,
the swapping procedure would be highly inefficient, because HT replicas would
hardly swap with LT replicas. The two sets of replicas would remain practically
non-interacting.
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Markov chain associated with the PT algorithm. In physical terms λ is related
to the exponential autocorrelation time τexp = −1/ ln(1−λ), which gives the
number of iterations needed to generate an independent configuration. An
efficient algorithm requires λ to be significantly different from zero.

To establish the notation, let Pk(x, y) be a Markov chain defined on the
state space S which leaves invariant πk:

∑

x πk(x)Pk(x, y) = πk(y). The ba-
sic idea used in the theorems is the state-space decomposition of Madras and
Randall [35]. If (a) the state space is decomposable as S = ∪lAl such that all
πk are unimodal in each Al,

9 (b) swaps occur with sufficient frequency along
a configuration path that connects all sets Al, and (c) P1 is a fast update on
S, then the size of the spectral gap is essentially controlled by the spectral
gap of the restrictions Pkl of Pk on Al. In other words, PT is, at most, as
fast as the slowest of the Pkl [34]. To clarify this result, let us consider the
Ising model and a PT simulation with β1 in the HT phase and βR in the
LT phase. Suppose we use the Metropolis algorithm to update the configu-
rations at each temperature. In the LT phase the Metropolis algorithm is of
course inefficient (it cannot go through the barriers). However, if we partition
S = M+ ∪M−, where M+ and M− are the positive and negative magnetiza-
tion configurations, respectively, the restrictions Pk+ and Pk− of Pk to M+

and M− are efficient algorithms that sample correctly each free-energy min-
imum. With this decomposition, the slowest dynamics occurs at the critical
point, which represents the bottleneck of the simulation. Hence, the theorem
essentially states that the autocorrelation time of the PT simulation is of
the order of the autocorrelation time of the algorithm at the critical point,
which is also the typical time it takes for a HT configurations to become a
LT one and viceversa. Note that the improvement is enormous. We are able
to sample the LT phase with autocorrelations that increase polynomially as
Nz when the system size N goes to infinity (z ≈ 2 for the Ising model with
Metropolis update) and not exponentially in N1−1/d, where d is the space

dimension (for the two-dimensional Ising model one can prove τ ≈ eaN
1/2

for
a standard MC simulation [36]).

6.3 Optimal choice of temperatures

Let us now discuss how to choose optimal temperatures in a PT simulation.
First of all, the set of temperatures must extend enough in the HT phase in
order to allow replicas at the highest temperatures to decorrelate fast. More
precisely, we would like the autocorrelation time τ at the highest temperature
to be smaller than the typical time a replica spends in the HT regime, so that,
when a replica goes back to the LT phase, it has completely forgotten the
previous free-energy minimum. This condition fixes the highest temperature,

9 The condition of unimodality is not required in the proofs of the theorems. How-
ever, the theorems have physically interesting consequences only if a unimodal
decomposition is possible.
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Fig. 4. Graph of NcV σ2 with σ2 = (ln r)2 pacc versus pacc for three different values
of NcV . The results corresponding to NcV = 100 and 1000 cannot be distinguished
as they are one on top of the other. The vertical dotted line corresponds to pacc =
0.23.

while the lowest temperature is usually determined by the problem we wish
to study (e.g., critical properties of the model or the nature of its LT phase).

Once βmin and βmax have been fixed, what is the best sequence for the
remaining temperatures? Under the hypothesis that there are no bottlenecks
and thus the round-trip time is mainly determined by the swapping rate, the
optimal solution is to keep swapping rates constant in the whole temperature
range, so that the diffusion of the replicas in temperature space is maxi-
mal. The optimal value of the swapping rate depends on the system under
study, but in general one has to avoid too small values (replicas almost do
not swap) and also too large ones (in this case a smaller number of tempera-
tures would be enough). With the random-walk picture in mind, in order to
obtain the largest diffusion rate in temperature space (more precisely in the
variable lnβ), one would like to maximize σ2 = ln2(βi/βi+1)pacc(βi, βi+1),
where pacc(βi, βi+1) is the average acceptance rate for the swap between βi

and βi+1. If the specific heat is constant, the average acceptance rate is well
represented for N → ∞ by the formula [37–39]

pacc(βi, βi+1) = erfc

[

1− r

1 + r
(NcV )

1/2

]

,

where r = βi/βi+1 < 1 (we assume βi+1 > βi). If we require a constant
acceptance rate, r should be constant, hence temperatures should increase
geometrically, i.e. βi+1 = r βi. The optimal value for r can be found by
maximizing σ2. It turns out, see Fig. 4, that the average acceptance rate
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for the optimal r is very close to 0.23, with essentially no dependence on
NcV [38–40]. This gives rise to the so-called 0.23 rule, according to which
temperatures should be spaced in such a way to guarantee a 0.23 average
acceptance rate. Note also that NcV σ

2 is essentially a universal function of
pacc, see Fig. 4, that converges very quickly to its large NcV limit

NcV σ
2 = 4 pacc

[

erfc−1(pacc)
]2

.

This function has a maximum of height 0.6629 at pacc = 0.2338. Hence

(ln ropt)
2 =

0.6629

0.2338

1

NcV
, ropt = 1− 1.684√

NcV
.

As already found in Sec. 2 when discussing data reweighting, also in this
case ∆β ∝ (1 − ropt) ∝ (NcV )

−1/2. If the specific heat is not constant,
∆β ∝ (NcV )

−1/2 should still hold, hence temperatures should be denser
where the specific heat is larger.

6.4 Improving parallel tempering

Sometimes, even with an optimal choice of the temperatures, the PT simu-
lation may show up a bottleneck in temperature, unexpectedly. The problem
is that the analytical computation of the swapping rate is made under the
hypothesis that each configuration at inverse temperature β is generated ac-
cording to πβ(x) with no memory of its past trajectory; this assumption is
valid if the time ∆t between two consecutive swapping attempts is larger
than the autocorrelation time τβ at β. On the contrary, if τβ > ∆t, then
a replica is likely to swap back to the temperature it came from, since its
energy is still correlated with its old temperature. This phenomenon of swap-
ping forward and then immediately backward is exactly what makes diffusion
in temperature space much slower.

Recently there have been some proposals to overcome this problem and
improve the PT method. In Ref. [41] a method called feedback-optimized
PT has been proposed, which iteratively readjusts the temperatures in order
to minimize the average round-trip time. The outcome of this procedure is
an increase of the density of temperatures (and thus of the swapping rate)
where the autocorrelation time τ is larger. In some sense this solution can
be viewed as a brute-force one, because forces replicas to spend more time
where τ is larger by adding temperatures there. A more elegant solution has
been proposed in Ref. [42] and it consists in adapting the time ∆t between
consecutive swapping attempts to the autocorrelation time τ . Indeed, results
for the 2D Ising model show that, by taking ∆t ∼ τ , the resulting time
series are nearly uncorrelated and replicas make an unbiased diffusion among
temperatures; unfortunately this choice makes the simulation too long, so
the final suggestion is to have the ratio ∆t/τ more or less fixed to a small
number.
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Let us finish this overview of the PT method with a comment on its use
for disordered systems. Certainly the numerical study of disordered models
(e.g., spin glasses) has benefited very much from the PT algorithm in the
last decades. Nonetheless, it is important to recall that models with strong
quenched disorder show impressive sample-to-sample fluctuations. As a con-
sequence, the optimizations illustrated above should be performed separately
on each different sample: indeed, we would expect a very different scheduling
of temperatures and swapping times for a strongly frustrated sample with
respect to a weakly frustrated one. Since this sample-by-sample optimiza-
tion is not easy to do, in practice one usually fixes a common scheduling of
temperatures and times for all samples, based on average properties (e.g.,
on the sample-averaged specific heat). However, thermalization checks and
autocorrelation-time analyses should be performed on each sample separately,
allowing the simulation to run longer for the slower samples [43].

7 Conclusions

In this contribution we present several numerical methods which are used
to compute large-deviation observables, that is quantities that require a
proper sampling of rare configurations. First, we discuss the problem of data
reweighting and the optimal multiple-hystogram method [6,13]. Then, we
introduce a family of algorithms that rely on non-Boltzmann-Gibbs distri-
butions and which are able to sample the typical configurations correspond-
ing to a large temperature interval. We present the umbrella sampling [15]
and the simulated tempering method [16,17] and show that these two algo-
rithms are equivalent [18] if configurational updates are performed by using
the Metropolis method. The main difficulty in the implementation of the US
and ST methods is the determination of the constants αi that parametrize
the probability distribution, see Eqs. (12) and (15). This problem can be
overcome by using the PT algorithm [27–29], which is at present the most ef-
ficient algorithm to sample the low-temperature phase of systems undergoing
a second-order phase transition, even in the presence of quenched disorder—
hence, it can be applied successfully to, e.g., spin glasses. None of these meth-
ods can be employed directly in the presence of first-order phase transitions.
Multicanonical methods, in which the non-Boltzmann-Gibbs distribution is
determined recursively, can be used instead [25,26].

References

1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: J.
Chem. Phys. 21, 1087 (1953)

2. M.N. Rosenbluth, A.W. Rosenbluth: J. Chem. Phys. 22, 881 (1954)
3. B.J. Alder, S.P. Frankel, V.A. Lewinson: J. Chem. Phys. 23, 417 (1955)
4. B.J. Alder, T.E. Wainwright: J. Chem. Phys. 27, 1208 (1957)



30 Andrea Pelissetto and Federico Ricci-Tersenghi

5. S.R.S. Varadhan: Ann. Prob. 36, 397 (2008)
6. A.M. Ferrenberg, R.H. Swendsen: Phys. Rev. Lett. 61, 2635 (1988); erratum

ibid. 63, 1658 (1989)
7. R.H. Swendsen, A.M. Ferrenberg: ‘Histogram methods for Monte Carlo data

analysis’. In: Computer Studies in Condensed Matter Physics II, ed. D.P. Lan-
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