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ESERCIZIO 1. Determinare, se esistono, massimo e minimo di f(xq,x;) = X1 + X3 in

D= {x=(x,xp) € R2:9x? +x3 <1}

ESERCIZIO 2. Date due sferey;,y, C IR3 disgiunte si classifichino tutti i punti critici della funzione f(p,q) = ||p — q||2
conpeyeqey,.

ESeRCIzIO 3. Determinare, se esistono, i punti dell'insieme

K = {x = (x,%2,x3) € R3 :x12 — X1X2 +x% —x3 =1, x12 +x% =1}

che hanno massima e minima distanza dellorigine (0,0,0) R3.

ESERCIZIO 4. i. Si calcoli il massimo e il minimo assoluti della funzione f(x4,x;) = ax; + bx,, con (a,b) = (0O, 0), per
(x1,%2) €D = {x12+x% <1} C R2.
ii. Si generalizzi il punto precedente considerando la funzione f(x) = w-x, conw = O,ex € D" = {x € R" : [|x||, < 1}.

ESERCIZIO 5. Dati, in R3, i vincoli
S={12+x%+x§=1} e T={x§+x%=x12—4,x1>0}

si calcoli il minimo assoluto della funzione f(p,q) = |p—qll, conp € SeqeT.

ESERCIZIO 6. Sianor = {xq = X3,x3 = 0} es = {X;+ Xy = 1,x3 = 1} due rette di R3 prive di punti comuni:
i.sideterminip creq e staliche ||p—qll; < | x—yl| perognixereyes,
ii. si verifichi che la retta per p e q é ortogonale alle due rette r ed s.

ESERCIZIO 7. Data la funzione f : R —; R di legge f(xq,x;) = xfx%, si spieghi perché tale funzione e differenziabile
in tutto il piano e si scriva lequazione del piano tangente al grafico della funzione nel punto (1,1,f(1,1))

Esercizio 8. Data M € Mu(R)sia F: R" — R definita come F(x) := Mx - x. Si spieghi perché F é differenziabile,
poi si calcoli VF(x), HF(x) e il polinomio di Taylor, di grado 1e 2, con xqg = O.

ESERCIZIO 9. Sia E = {x12 + 4x% + 9x§ =1} C R3, si provi che

i. E é chiuso e limitato,

ii. che esistono su E un punto di massima distanza e un punto di minima distanza da O.
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ESercizIO 10. Siano f;: R — R, peri =1,...,n, delle funzioni assegnate.
i. Provare che se f; € CO(R), peri =1,...n, allora la funzione

F(x) := f1(xq) + ... + fa (xn) X = (X{,..Xn) € R"

é continua in tutto lo spazio,

ii. provare che se f; € c(R), peri=1,..,n, allora la funzione F (definita nel punto i) é derivabile in ogni direzione e in
tutto lo spazio,

iii. si scriva lespressione di d,,f(x) con x,w € R".

ESERCIZIO 1. Sia F:R2 — R? definita come F(x1,%7) = (x12 + x%,x12 — x%).

i. F e iniettiva? Si calcoli lo jacobiano dellapplicazione.

ii. Sia Cr = {x € RZ: x12 + x% =r2 }, determinare, per r > O, F(C;), cioé limmagine di C, tramite F.
jii. Determinare F(IR2), cioé limmagine della funzione F.

ESERCIZIO 12. Determinare (se esiste) il massimo assoluto della funzione f(x3,%7,X3) = x1x2x§ nella regione dello
spazio D = {x12 + 4x% + 2x§ <6}

SVOLGIMENTI

ESERCIZIO 1. Determinare, se esistono, massimo e minimo di f(xq,x;) = X1 + X3 in
D = {x = (x,%;) € RZ: 9x12 +x% <1}
DISCUSSIONE. Lesistenza del massimo e del minimo é conseguenza del teorema di Weierstrass. Infatti f,
essendo un polinomio, € in CO(D), inoltre D & un insieme chiuso dato che D = {g(x1,%3) <0} = g_1((—oo,0]) e
glxy) = 9x2 + y2 — 1 & una funzione continua, infine € limitato in quanto D C [—1/3,1/3] x [—1,1] come si vede
facilmente dal fatto che
9x12§9x12+x%§1 X%§9X12+X%§1
D é unellisse di centro lorigine e semiassi 1/3 e 1. Notiamo che non esistono punti di non derivabilita, dato che
Vi(x) = (1,1) = (0,0)

quindi la funzione f non ha punti critici liberi. Per cui i punti di massimo e minimo cadono sulla frontiera di D:
oD = {9x12 + x% = 1}, cerchiamo di identificarli usando il metodo dei moltiplicatori di Lagrange. Gli estremi di f
sul vincolo g(xy,X;) = O sono tra le soluzioni del sistema

61f(X1,X2) 62f(X1,X2) _ 1 1 _ _
det( aglxxy)  Drglex) =det 18 2% =0 e g(x1,%x2) =0

Cio equivale a risolvere il sistema
X3 = 9% 9x12+x% =1
da cui ricaviamo le soluzioni (1/3v/10,3/+/10) e (—1/3+/10, —3/+/10), in conclusione vale
1 3)=m _1_3)=_m
3vi0'vio/ 3 EIVATORERVATo) 3

Essendo il dominio pari e la funzione obiettivo dispari non é sorprendente che il massimo e il minimo siano
uguali in valore assoluto...

Concludiamo lesercizio osservando che la funzione f & una funzione affine, quindi gli insiemi di livello f(xq,x;) =
X1+X3 = c sono delle rette nel piano e il vettore Vf & ortogonale a tali linee, quindi il problema di ottimizzazione
e risolto dal coefficiente angolare delle rette tangenti allellisse parallele alla bisettrice del secondo e quarto
quadrante. n

max(f) = f( min(f) = f(
D D
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ESERCIZIO 2. Date due sfere y;,y, C IR3 disgiunte si classifichino tutti i punti critici della funzione f(p,q) = ||p — ql|2
conpeEyeqe;.

DiscussiONE.  Studiamo il problema in R, visto che non presenta particolari difficolta rispetto al caso tri-
dimensionale. Senza perdita di generalita possiamo supporre che y; = S"™' = {x € R" : ||x||; = 1}, questo &
sempre possibile operando una traslazione che porti il centro della sfera in O e successivamente unomotetia
che scali il raggio ad uno.

Come risultato delle due precedenti operazioni e operando unopportuna rotazione, abbiamo che 7y, = {x €
R": ||x — ceq|l; =r} con c > O, inoltre deve valere che

o c>r+1 oppure c+r<1

a secondo che 1y, sia esterna o interna a <y;. Consideriamo il caso in cui -y, € esterna e scriviamo la funzione di
Lagrange relativo al nostro problema di ottimizzazione

L(p,q. M) = [Ip = qll3 = A (lIplI3 = 1) = A (lla — ceq[l — )

dove abbiamo usato la distanza al quadrato, visto che i punti estremali saranno gli stessi (la funzione s — s
¢ iniettiva e crescente sulla semiretta [0, +00)). Scriviamo il gradiente di L, poiché la funzione L per esteso &

2

L(p.q N = (P — ap)? +# (P = 4n)® = M(pf + -+ PA —1) = A2 (a1 — 9? + @5+ v g7 — 1)
e le sue derivate parziali hanno la seguente espressione

AL(p.a, A) = O, Lp.a, A) = 2(p; — q) — 2Np;

i=12,..
Onil(p.G.N) = Bg Lip. G, N) = 2(q; — p) — 2Xglg — <o) P A
dove §j;=1sei=1ed;;=0sei=2,..,n. Allora abbiamo che
(p—q)—Xp=0
(q—p) —>\2(q—CG1) =0
VL(p,g,\) =0 se e solo se
(P.g: ) 1-p2—..—p2=0

rZ—(q1—c)2—q%—...—q%=O

Dalle prime due equazioni possiamo dedurre che

1 MAy — A — XAy
SV L
questo implica che i vettori p e q sono entrambi multipli di ;, quindi p = (p;,0,...0) e q = (9;,0,...,0). Poiché
P € 71 € q € 7y, gli unici punti possibili sono i seguenti

p. =(£1,0,..,0) e gy =(c+r0,..,0)

(1—=XMp=q da cui (1=X)g—p=01—X7)q— q=—X\Cey

confrontando i valori della funzione distanza sulle sole quattro coppie di punti critici possibili
max(f) =f(p_,q,) =c+r+1>f(p,,q,) =c+r—1,f(p_,q_)=c—r+1>f(p_,q_) =c—r—1=min(f)

otteniamo la risposta che cercavamo. Per completare la discussione inseriamo il seguente disegno

{x1=0}
Y2

q+ X1

N

v
N\

lasse verticale raccoglie tutte le direzioni ortogonali a e;, mentre le circonferenze sono le sezioni delle due
ipersfere descritte nel testo. ]
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Esercizio 3. Determinare, se esistono, i punti dell’insieme
K={x=(x1,X2,x3) € R3 :x12 — X1Xp +x% —x3=1, x12 +x% =1}
che hanno massima e minima distanza dellorigine (0,0, 0) € R3,

DiscUSSIONE.  Osserviamo chei punti che massimizzano o minimizzano la distanza del punto x = (xq,X5,X3) €

2 v2 4 y2
17273

al quadrato cioé la funzione f(x4,x;,x3) = Hx||% = x12 +x% +x§. Consideriamo quindi i problemi dei seguenti estremi
vincolati

K dallorigine cio€, la quantita ||x||; = 4/XT + X5 + x5 sono gli stessi che massimizzano o minimizzano la distanza

max(f) min(f)
K K

Riscriviamo il vincolo in forma equivalente

I(={x eR3 IX1X2 +X3 =O,x12+x% =1}
e siano g;(Xy,X2,X3) = X1X + X3 € g,(X1,X2,X3) = x12 + x% — 1. K & un insieme chiuso perché g; e g, sono funzioni
continue e K € definito da vincoli di uguaglianza, inoltre & limitato dato che

KC 11 x [-1,1 x [-1,17=[-1,1° C R3

e poicheé f & continua in un insieme chiuso e limitato: il teorema di Weierstrass assicura lesistenza del massimo
e del minimo assoluto in K. Dato che f,g;,g, € C'(R3) (anzi C*®(R3)) applichiamo il metodo dei moltiplicatori
di Lagrange.
Cerchiamo gli eventuali punti di non regolarita di K cercando i punti in cui la matrice jacobiana
Jg(x) = ( Ong(x)  Oagy(x)  O3g1(x) ) . ( X x 1 )
81g2(x) ngz (X) 83g2 (X) 2X1 2X2 0

ha rango minore di due. Si ha che rg(Jg(x)) = 1se e solo se

X2 = x2
x2=O da cui X1=X2=X3=O
X1 = 0]

e dato che il punto O(0, 0, 0) non apparteiene a K segue che tutti i punti di K sono regolari.
Cerchiamo i punti di massimo e minimo vincolato tra le soluzioni del sistema

of(x)  8,f(x)  B5f(x) 21 2%  2x3

det[ og(x)  Og(x) B3gi(x) [=0 det [[ X3 x 1 ] = 4x3 (x% — x12) =0
018,(x)  028,(x)  03g,(x) ovvero 2 2x O

g1(x1,x2,x3) =0 XXy +X3=0

g2(x1,x2,x3) = 0 x2+x2-1=0

Partiamo dalla prima equazione: se x3 = O allora, dalla seconda e terza equazione, si trovano i punti
Q4 =(0,£1,0) Rt =(£1,0,0)

Invece se x% = x12 si ottengono i punti
1 1 1 1 11
pi:(i—,i—,—) S:|:=(:l:_y:|:_,—)
V2 V22 V2 V22

Calcoliamo i valori che f assume in questi punti

Q) =fRe) =1 F(P2)=f(Ss)=
Concludiamo che
min(f) = f(0) =(Re) =1 max(f) = f(P+) =F(S.:) = :

per cui possiamo affermare che Q4+, R+ sono i punti cercati che realizzano la distanza minima, mentre P4,S+
sono i punti di distanza massima. ]
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ESERCIZIO 4. i. Si calcoli il massimo e il minimo assoluti della funzione
f(X1,X2) =axy+ bX2 (a,b) = (0,0)

con (xq,%x3) € D = {x12 +x% <1} CRL

ii. Si generalizzi il punto i considerando la funzione f(x) =w-x, conw=0ex € D" = {x € R": ||x||, < 1}.
DISCUSSIONE. i. Il nostro dominio D € un insieme chiuso e limitato del piano, quindi & compatto, siccome la
funzione f & continua (precisamente f € di classe C*°(RR2)) il teorema di Weierstrass ci assicura che esistono
massimo e minimo assoluti.

Poiché Vf(x,y) = (a,b) = (O, 0) non ci sono punti stazionari interni a D, quindi i valori di massimo e minimo sono
assunti sul bordo del nostro dominio. Tali valori estremali possono essere calcolati tramite parametrizzazione
del vincolo o ricorrendo al teorema dei moltiplicatori di Lagrange: percorreremo la seconda strada perché si
presta ad essere utilizzata anche in ii, cioé ad essere generalizzata in dimensione piu alta.

Ponendo D = {g(x1,x2) = x12 +x% —1= O} abbiamo che

Vg(x1,%3) = 2(xq,%2) = 2x = (0, 0) per ogni (x,y) € D

quindi D € un vincolo regolare e possiamo dire che i punti critici vincolati di f su D sonoi puntixg = (xg 1,X02) € D
in cui si ha

Vg(xo) = AVf(xo)
con X € R, e siccome Vf(xg) = (a,b) per ogni x € R? abbiamo che
Valxp) = 2xg = Aa,b) con xé’1 +x(2)’2 =1

Allora otteniamo che

Xo=:|:(

a b ]
VaZ+b? vaZ+b?
ricordando che (a,b) = (0, 0). Ovviamente i due punti trovati sono uno lunico punto di massimo assoluto, e
l'altro lunico minimo assoluto, infatti € facile verificare che

a b
f[:l: ,E
Va2+b?  Valsb?
ii. Generalizzare la discussione precedente risulta, tutto sommato, abbastanza lineare, prima di tutto osservia-
mo che

]=j: a2 + b2

Vi(x)=V(w-x)=w=0  perognix e R"

quindi la funzione, come prima, non ha punti critici liberi. Perd D" & compatto (in quanto chiuso e limita-
to) dunque dobbiamo cercare massimo e minimo assoluti sulla frontiera 8D" = S"~! usando il metodo dei
moltiplicatori di Lagrange. Come prima abbiamo che

gh—1_ {g(x) = \|x||% —1= O} quindi Veg(x)=2x =0

e il teorema di Lagrange ci suggerisce di cercare i punti della sfera S"~ in cui il gradiente delle funzioni g e
risultano paralleli, cioé
w

E Snf1
w2

Xp = +
da cui

w w

f(i—) =dw- —— =%|lw||;
l[wll2 [Iwll

Si noti che il risultato esprime analiticamente il fatto (gia osservato a lezione) che il gradiente della funzione

indica la direzione di crescita/decrescita piu rapida, quindi la direzione pit "diretta” per raggiungere il massimo

o il minimo della funzione. N
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ESERCIZIO 5. Dati, in R3, i vincoli

S={x12+x%+x§=1} e T= {x§+x2-x1 4x1>0}

si calcoli il minimo assoluto della funzione

fp.g)=llp—qll, conpeSeqeT

DiscussIONE. Il problema consiste nel trovare due punti, uno su S e uno su T che realizzino il minimo della
distanza pensata come funzione di sei variabili (precisamente due terne reali appartenenti ai rispettivi vincoli).
Naturalmente non é affatto evidente che un tale minimo esista: la funzione distanza € inferiormente limitata,
ma non & garantita a priori lesistenza di un punto di minimo assoluto (esercizio: si provi a costruire un esempio
esplicito in cui viene verificata tale affermazione). Scriviamo la funzione lagrangiana e il suo gradiente

L(p,q,¢) = L(py, P2, P3. 91, 92,93, €1:€2)
= (p1—a1)? + (P — )? + (p3 — 93)* —c1(p] +p5 + P — 1) — Ca(—qf + a3 + a5 + 4)
OrL(p.q.¢) = 2(py — ) — 2¢1py = 2[(py — o) —c1p4] = O
9,L(p.q,c) = 2(p; — ;) — 2¢1p; = 2[(p3 — q3) —c1p,1=0
93L(p,q,€) = 2(p3 — q3) — 2¢1p3 = 2[(p3 — q3) —C1p3] = O
04L(p.q.¢) = 2(qy — py) + 229y = 2[(qy — py) + 2911 = O
05L(p,q,c) = 2(q; — pa) + 220, = 2[(q; — p2) —29,1=0
O6L(p.a.) = 2(q3 — p3) + 2¢2q3 = 2[(q3 — p3) — 2931 =0
&7L(p.q,0) =1—p} —p; —p3 =

O8L(p.q.c)=q] —a —a3 —4=0
le precedenti equazioni sono equivalenti al seguente sistema

P1— &1 =GP = —CQqy
P2 =92 =GPy =29
P3 Q3 C1P3 293
p£ * pz * P3 = 1
qF — a3 — 3 =
Secy =0 o0c, = Oil sistema ssi riduce alle relazioni p = g, ma TNS = (}, quindi nessuno dei due moltiplicatori pud
essere nullo. Inoltre notiamo che dalle prime tre relazioni segue
C1(1 — C2)
C P
G(l+ca)
@
G (1+ C2)
@

pr=(0—-clgy=— 1

py=(1+cy)a; = P2

p3 =(1+c)q; = P3

e il sistema si riduce al seguente

pf+p3+p3 =1
PP
(1 — C2)2 (1 + C2)
_ C1(1 — C2)
p1= —TFH
C1(1 +C2)
€2
C1(1 +C2)
%]

2.2y,
5 (x3+x3) = 4

P2

P3 = P3

Concentriamoci sulla terza equazione e osserviamo che

pg—%_zcz)m implica p1=0 o C1(C§—2—1)=1
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se p; = O segue, dalla prima equazione, che p% + pg =1, pero la seconda equazione si riduce a
1
(1 + C2)2

il che & impossibile! Quindi abbiamo che ¢; = ¢;/(c; — 1) e sostituendo questa relazione nelle ultime due
equazioni si ottiene che p, = p3 = O e, grazie alle equazioni dei vincoli, otteniamo la soluzione del nostro
problema

p=(£10,0) q=(2,0,0)
il punto (—1,0,0) puo essere scartato, perché non da’ luogo al minimo assoluto della f, e otteniamo che
((1,0,0),(2,0,0)

(p%+p§)=4

)= (p’c:)neigﬂ(f(p,q)) =1

Per concludere ritorniamo sulla questione iniziale e discutiamo lesistenza del minimo assoluto dif. Innanzitutto
ricordiamo che S é chiuso e limitato, quindi compatto; invece T, pur essendo chiuso, non é limitato: infatti vale

che, perognik=2,3,4...
‘(k, N 4,0)

qk=(k.x/k2—4,0)eT e o=
sup (f(p.g))= sup (llp—qll2) > lm [ —e3ll=+c0
k—s+0c0

la successione di punti precedente mostra che
(p.q)eSxT (p.9)ESXT

2
= (2k2 — 4) —» +o00

2

Il fatto che T non sia compatto fa si che non possiamo appoggiarci al teorema di Weierstrass per lesistenza
del minimo assoluto, quindi dobbiamo ragionare in maniera leggermente diversa. Cominciamo notando che
S C[-1,113 C {xy <1}, visto che

2.2 .2 2 2 2 _
X1 X9, X3 <Xp +X5 + X3 =1

mentre T C {x; > 2} visto che

O§x§+x%=x1274
quindi SNT = (, inoltre & facile verificare che, perR > 2, S C [-R,R]" e TN[—R,R]" = (), quindi f, ristretta su
S x (TN [—R,R]") che & un insieme chiuso e limitato, possiede massimo e minimo assoluto per il teorema di

Wesierstrass. Poiché f(p,q) > V2R2 — 2R — 3 perognip € Se q € T\ [-R,R]" il minimo assoluto in S x (TN
[—R,R]") € il minimo assoluto di f su S x T e tale minimo, che abbiamo gia individuato, vale 1 ed & assunto nel
punto (p,.qn) = ((1,0,0),(2,0,0)) € Sx T. ™

ESERCIZIO 6. Sianor = {X; = X3,x3 = 0} s = {x; +X3 = 1,x3 = 1} due rette di R3 prive di punti comuni:
i.sideterminip € req € staliche ||p—qll; <|[x—Y| perognix creycs,
ii. si verifichi che la retta per p e q & ortogonale alle due rette r ed's.

DIScUSSIONE. Prima di iniziare lesercizio notiamo che la richiesta i consiste nel trovare il minimo assoluto
della funzione distanza tra due punti appartenenti alle due rette, quindi prima di cominciare dovremmo chie-
derci se e perché esiste tale minimo. Notiamo che r ha giacitura ((1,1,0)) mentre s ha ((1,—1,0)), quindi le due
rette sono sghembe e non parallele. Questo implica che se almeno uno tra ||p||; e ||q||; tende a +co, la di-
stanza tra i due punti diverge (equivalentemente la funzione distanza ||p — ql|, & coercitiva in questo caso).
Restringendo il problema alla porzione di rette contenute in una scatola [—2,2]3 il problema (per Weierstrass)
possiede un minimo assoluto e tale minimo sara un minimo assoluto per il problema sulle rette intere: questa
affermazione sara chirita nel primo approccio risolutivo proposto.

Con un certo intento didattico proponiamo e sviluppiamo due approcci differenti per risolvere il problema.
Poiché p € r e q € s possiamo sfruttare le equazioni cartesiane delle rette per scrivere che p = (py,p;, 0) e che
q=(gy,1—qy,1), il che significa che

Ip—allZ =t — ap)?+ (py —1+q)? + (1 - 0] = flpy.ap) (P, ) € R?
il problema di minimo si riconduce alla ricerca del minimo assoluto di f € C>°(IR2), quindi abbiamo

f(pr.cy) =2[p? +q? —py—aqy+11 e Vflpy,qy) =2(2p; — 1,29, 1)
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Si noti che

f(p.ap) = 2[p? +q? —py—aqy+ 11 > p?+q? +2=|(prq)ll3  perogni (py.qy) € R\ [0, 1]

quindi, come accennato sopra, f possiede un unico punto critico, che deve essere un punto di minimo assoluto,
tale punto e (1/2,1/2) e fornisce la seguente coppia di punti per il problema iniziale

11 11
pnr(320) (32

Volendo usare il metodo dei moltiplicatori di Lagrange dobbiamo studiare i punti critici liberi della seguente
funzione di Lagrange dove & possibile riconoscere la distanza (al quadrato) trai punti p e q e le quattro equazioni
che individuano le due rette moltiplicate per il rispettivo moltiplicatore
L(p. ) = (py — 1) + (P2 — G2)* * (P3 — 43)” —c1(py —P3) — Cap3 — C3(dly + Az — 1) —cqld3 — 1)
calcoliamo le derivate parziali della funzione per cercare i punti critici
OLP.9d=2(p1—a) - OLp.qc)=2p—qp)+cr  G3LP.q.)=2(p3—a3) —
94Lp.q.c) =21 —py) —c3 I5L(p.q.0)=2(qp —pp) —c3 6L(p,q.,€) = 2(q3 —p3) —c4
GLp.acl=p;—pr  Gellp.ac)=p;  FLlp.qc)=1-q—d; Solp.q.c)=1-a;
Dal precedente sistema possiamo compiere subito le seguenti deduzioni
o7L(p,q.c)=0 implica P, = Py
OgL(p,q.c)=0 implica p3=0
OoL(p,q,c)=0 implica g3 =1
99L(p,q.,c)=0 implica qi*+qp =1
OL(p.q.0)+O5Lp,q.c)=0  implica  py+py =g+
04L(p.q,c) ~B5L(p.q,c) =0 implica  py—p;y =gy~

e le precedenti relazioni producono le seguenti catene di conseguenze

1
Pi=P2 €  P*Py=qi*qy=1 danno  pi=py=5

N| —

G —d2=p;—pP2=0 e q+qy=1 danno  qy=q;=

quindi otteniamo la coppia di punti critici

11 11
pn"(2:2:9) an=(77)

in perfetto accordo con il primo metodo! ]

ESERCIZIO 7. Data la funzione f : R — R di legge f(xq,x;) = xfx%, si spieghi perché tale funzione e differenziabile
in tutto il piano e si scriva lequazione del piano tangente al grafico della funzione nel punto (1,1,f(1,1))

DIScUSSIONE. La funzione € un polinomio e quindi, come visto a lezione, di classe C>(R2), in particolare €
derivabile con derivate parziali continue, conseguentemente differenziabile in tutto il piano per il teorema del
differenziale totale. Possiamo scrivere subito che

O f(xq,%9) = 2x1x% e Opf(x1,%7) = 2x12x2

e, ricordando che in generale lequazione del piano tangente é x3 = f(p) + Vf(p) - (x — p), ottenere lequazione
del piano tangente richiesta

x3=1+(2,2)- (xy —1,x; — 1) cioé 2X1+2%) —x3—3=0

visto che nel nostro caso p = (1,1). ]
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Esercizio 8. Data M € Mu(R)sia F: R" — R definita come F(x) := Mx - x. Si spieghi perché F é differenziabile,
poi si calcoli VF(x), HF(x) e il polinomio di Taylor, di grado 1e 2, con xqg = O.

DISCUSSIONE.  Osserviamo subito che, posto M = (m;), vale
n n n n
F(X) = Zm'JXI X = Z Zminin = Zminin
=1 =1 j=1 ij=1

quindi F & un polinomio composto di termini quadratici, cioé una funzione di classe C*°(IR"), quindi & differen-
ziabile in tutto lo spazio per il teorema del differenziale totale.
Procediamo con il calcolo del vettore gradiente e della martice hessiana della funzione F, in modo da ottenere

2mypxq + (Mg + Mag)Xg + .o+ (Mg + Mpyg)Xn

n n (m21 + m12)x1 + 2m22x2 +...+ (mzn + mnz)Xn
VF(X) = 81 Zminin;...;(an Zminin = . = (M + MT)X
i,j=1 i,j=1 :
(Mipg + Myp)%g + (Mg + MyR)Xg + o+ 2MpnXn
2my (Mmiz+my) .. (Myp+mpy)
(Myr+mpp)  2my; . (Mgn+mMp) T
HF(x) = ) =(M+M')
(Mpr+myp) (Mg +my,) .. 2Mnn
Dalle precedenti relazioni ricaviamo che
T1£(x,0) =F(O) + VF(O) -x=0
1 1
T2£(¢,0) = F(0) + VF(O) -x+ 2 [HF(O)X] - x = 5 [(M+MT)x]-x
2m11x1 + (m12 + m21)x2 + ...+ (m1n + mm)Xn X1
1 (Mg +mp)x+ 2mogpxg + .o+ (Mo +Mpp)xn || %2
= . . |=F()
2 -
(Mg + Myp)%g + (M2 + MoR)Xg + o+ 2MpnXn Xn
il che conclude lo svolgimento. n

ESERCIZIO 9. Sia E = {x12 + 4x% + 9x§ =1} C R3, si provi che
i. E é chiuso e limitato,
ii. che esistono su E un punto di massima distanza e un punto di minima distanza da O.

DISCUSSIONE. i. Osserviamo subito che
E={xecR3: g(x1,X9,%3) = x12 + 4x% +9x§ =1} = g“({1})

e siccome g € C>°(RR3), E & chiuso perché controimmagine di un chiuso, tramite una funzione continua. Inoltre
possiamo scrivere che

se X € [R3:x12+4x%+9x§=1 allora x12 <1 cioé —1<x <1
se x € R3: x12 + 4x% + 9x§ =1 allora 4x% <1 cioé —1/2 <xy <1/2
se x € R3: X12 + 4x% + 9x§ =1 allora 9x§ <1 cioé —1/3<x3<1/3

quindi E é limitato visto che

22| 33
ii. Essendo E chiuso e limitato, cioé compatto, e la distanza da O una funzione continua il teorema di Weierstrass

garantisce lesistenza di punti di massimo e minimo assoluti: tali punti possono essere identificati tramite il me-
todo dei moltiplicatori di Lagrange. Osserviamo che la funzione distanza & una funzione non negativa, quindi i

Eg[—1,1]><[—1 1]x[ L 1]QB(O,Z)
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punti che realizzano massimi e minimi (locali e globali) sono gli stessi della funzione distanza al quadrato, per
cui consideriamo la distanza al quadrato, di piu facile trattazione.
Dunque la funzione di Lagrange &

L(xq,%2,X3,p) = x12 +x% +x§ - p(x12 +4x% + 9x§ - 1)
e le sue derivate parziali sono

O1L(x1,%7,X%3,p) = 2X1 — 2pxq = 2(1 — p)xq

O;L(x1,%2,X3,p) = 2X7 — 8px3 = 2(1— 4p)x;

O3L(x1,%2,X3,p) = 2x3 — 18pxq = 2(1 — 9p)x3

04L(xq,%2,X%3,p) =1— x12 - 4x% — 9x§

Per trovare i punti (xq,X;,x3,p) € R che annullano il vettore gradiente di L possiamo fare le seguenti conside-
razioni

se p=1 allora Xp=x3=0 e X1 = £1
se p=1/4 allora Xx1=x3=0 e Xq = £1/2
se p=1/9 allora X1=%3=0 e x3 = £1/3

quindi abbiamo ottenuto i seguenti punti critici vincolati
a+ = (£1,0,0) bt =(0,£1/2,0) ¢+ =(0,0,£1/3)

e poiché vale

1 1
2 _ 2 _ 2 _
lax3=1 Ibsl3=7  llexl3-g
possimo concludere che a4 sono due punti di massimo globale, c4+ due punti di minimo assoluto, mentre b
sono due punti di sella. ]

Esercizio 10. Siano f;: R — R, peri =1,...,n, delle funzioni assegnate.
i. Provare che se f; € C(R), peri=1,...,n, allora la funzione

F(x) := f1(x1) + ... + fa (xn) X = (Xq,..Xn) € R"

é continua in tutto lo spazio,

ii. provare che se f; € c'(R), peri=1,..,n, allora la funzione F (definita nel punto i) é derivabile in ogni direzione e in
tutto lo spazio,

iii. si scriva lespressione di 9 f(x) con x,w € R".

DiScUSSIONE. i. Lipotesi di continuita delle funzioni f; equivale a dire che se {p,} € R € una successione
convergente tale che p, — p, allora abbiamo che

fi(Pn)Hfi(po) perognii=1,..,n

allora consideriamo una successione di punti {x,} convergente in R" tale che x, — xq, siccome questo
equivale a dire che

n

1/2
Z(Xk,i — Xo,i)zl perognii=1,..n

i=1
possiamo affermare che x;; — X per ognii=1,...,n, allora otteniamo, grazie alla disuguaglianza triangolare,
che

0 < |y — %ol <

0 < [IFbq) — Fixo)ll < ) [filxi) — filxo,)| — O
i=1

dove i termini a destra sono tutti infinitesimi per la precedente osservazione.
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ii. & iii. Per mostrare la derivabilita della funzione F procediamo scrivendo il rapporto incrementale nella dire-
zione w € R" come segue

n

Fix+tw) —F(x) 1|v & fi(x; + tw;) — fi(x; &

# o Zfi(xi +tw;) — Zfi(xi) = ZM — ZWifi,(Xi) = OwF(x)
i=1 i=1 i=1 i=1

dove lultimo passaggio & conseguenza della derivabilita delle funzioni f;, passando al limite per t — O. Si noti

che abbiamo anche ottenuto che §;F(x) = f{(x;) e che VF(x) = (f{(x1),...,f§1(xn)). n

ESERCIZIO 1. Sia F:RZ — R? definita come F(x1,%7) = (xl2 + x%,xI2 - x%).

i. F é iniettiva? Si calcoli lo jacobiano dellapplicazione.

ii. SiaCy = {x € RZ: x12 + x% =r2 }. determinare, per r > O, F(C;), cioé immagine di C; tramite F.
jii. Determinare F(R2), cioé limmagine della funzione F.

DISCUSSIONE. i. F non & iniettiva essendo per esempio F(1,1) = F(—1,1), inoltre vale

2X1 2X2
JF(X1'X2) B ( 2X1 —2X2
ii. Chiaramente se (x4,X;) € C; la prima coordinata del punto F(x;,x;) & r. Inoltre la seconda coordinata &
compresa tra —r2er? poiché vale -2 < f(x12 + x%) < x12 - x% < x2 +y2 < r2, Riassumendo F(C,) &il segmento

verticale di ascissa x; = r2 e ordinate —r% < X < r2,

iii. Siccome al variare di r > O le circonferenze C; coprono tutto il piano IR?, ragionando per unioni possiamo
dedurrre che F(fRZ) = U F(C;) e daii. otteniamo che F(TRZ) ={x € R2 X1 >0e —x <Xy <x}. n
r>0

ESERCIZIO 12. Determinare (se esiste) il massimo assoluto della funzione f(x,,x,x3) = x1x2x§ nella regione dello
spazio D = {x12 + 4x% + ng <6}

DISCUSSIONE. D & uninsieme compatto in quanto & limitato, perché contenuto nel parallelepipedo [ /6, /6] x
[—v/3/2,v/3/2] x [—¥/3, ¥/3], ed é chiuso, in quanto D = F~([0, 6]), con F(xq,%7,X3) = x12 + 4x% + 2x§ funzione
continua e [0, 6] chiuso in R.
Quindi, per il Teorema di Weierstrass, applicato alla funzione continua f, f ammette massimo assoluto in D.
Per determinare il punto di massimo assoluto cerchiamo innanzitutto gli eventuali punti critici interni di f, cioeé
i punti in int(D) = {x2 + 4y2 +22% < 6} tali che Vf=(0,0,0).
Vi(xy,%7,%3) = (xzxg,x1x§,3x1x2x§)
quindi tutti i punti critici della funzione f sono del tipo (0,0,z), con z € R, e (x,y, 0), con (x,y) € RZ.
In corrispondenza di tali punti la funzione f siannnulla, percio, dato che la funzione assume anche valori positivi,

il massimo assoluto di f in D deve essere assunto sulla frontiera 0D = {F(x) = 6}. Per determinare i punti critici
di f ristretta a 0D utilizziamo il metodo dei moltiplicatori di Lagrange, risolviamo ciog il sistema

x2x§ =22\
Vi(x) = A\VF(x) or esteso X1X3 = 8x3
F(x)=6 P 3x1x2x§ =120
x12+4x2+2xg =6
Il massimo assoluto non & assunto in punti aventi una delle componenti nulla, quindi dal sistema otteniamo
G 43 xpg =44 xi=4v2
2% 8xy 4x§ ossia xg’ = 2x5 da cui Xy = +v2/2
x2+4x2+2x§ = 6 23 =1 X3 = +1

Confrontando i valori di f negli otto punti trovati deduciamo che il massimo assoluto di f vale 1ed & assunto nei

punti di coordinate (V2,v2/2,1), (—V2,—V2/2,1), V2, —V2/2,—1) e (—V2,v/2/2,—1). ]




