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ESERCIZIO 1. Determinare, se esistono, massimo e minimo di f(x1, x2) = x1 + x2 in

D = {x = (x1, x2) ∈�
2 : 9x2

1 + x2
2 ≤ 1}

ESERCIZIO 2. Date due sfere γ1,γ2 ⊆�
3 disgiunte si classifichino tutti i punti critici della funzione f(p,q) = ∥p−q∥2

con p ∈ γ1 e q ∈ γ2.

ESERCIZIO 3. Determinare, se esistono, i punti dell’insieme

K = {x = (x1, x2, x3) ∈�
3 : x2

1 − x1x2 + x2
2− x3 = 1, x2

1 + x2
2 = 1}

che hanno massima e minima distanza dell’origine (0,0,0) ∈�
3.

ESERCIZIO 4. i. Si calcoli il massimo e il minimo assoluti della funzione f(x1, x2) = ax1 + bx2, con (a,b) , (0,0), per
(x1, x2) ∈ D = {x2

1 + x2
2 ≤ 1} ⊆�

2.
ii. Si generalizzi il punto precedente considerando la funzione f(x) = w ·x, con w ,O, e x ∈ Dn = {x ∈�

n : ∥x∥2 ≤ 1}.

ESERCIZIO 5. Dati, in �
3, i vincoli

S =
{
x2

1 + x2
2 + x2

3 = 1
}

e T =
{
x2

3 + x2
2 = x2

1 −4,x1 > 0
}

si calcoli il minimo assoluto della funzione f(p,q) = ∥p−q∥2 con p ∈ S e q ∈ T.

ESERCIZIO 6. Siano r = {x1 = x2, x3 = 0} e s = {x1 + x2 = 1,x3 = 1} due rette di �3 prive di punti comuni:
i. si determini p ∈ r e q ∈ s tali che ∥p−q∥2 ≤ ∥x− y∥ per ogni x ∈ r e y ∈ s,
ii. si verifichi che la retta per p e q è ortogonale alle due rette r ed s.

ESERCIZIO 7. Data la funzione f : �2 −→� di legge f(x1, x2) = x2
1 x2

2, si spieghi perché tale funzione è differenziabile
in tutto il piano e si scriva l’equazione del piano tangente al grafico della funzione nel punto (1, 1, f(1, 1))

ESERCIZIO 8. Data M ∈Mn(�) sia F : �n −→ � definita come F(x) := Mx · x. Si spieghi perché F è differenziabile,
poi si calcoli∇F(x), HF(x) e il polinomio di Taylor, di grado 1 e 2, con x0 = O.

ESERCIZIO 9. Sia E = {x2
1 + 4x2

2 + 9x2
3 = 1} ⊆�

3, si provi che
i. E è chiuso e limitato,
ii. che esistono su E un punto di massima distanza e un punto di minima distanza da O.
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ESERCIZIO 10. Siano fi : � −→�, per i = 1, ...,n, delle funzioni assegnate.
i. Provare che se fi ∈ C0(�), per i = 1, ...,n, allora la funzione

F(x) := f1(x1) + ... + fn(xn) x = (x1, ...xn) ∈�
n

è continua in tutto lo spazio,
ii. provare che se fi ∈ C1(�), per i = 1, ...,n, allora la funzione F (definita nel punto i.) è derivabile in ogni direzione e in
tutto lo spazio,
iii. si scriva l’espressione di ∂wf(x) con x,w ∈�

n.

ESERCIZIO 11. Sia F : �2 −→�
2 definita come F(x1, x2) = (x2

1 + x2
2, x2

1 − x2
2).

i. F è iniettiva? Si calcoli lo jacobiano dell’applicazione.
ii. Sia Cr = {x ∈�

2 : x2
1 + x2

2 = r2}, determinare, per r> 0, F(Cr), cioè l’immagine di Cr tramite F.
iii. Determinare F(�2), cioè l’immagine della funzione F.

ESERCIZIO 12. Determinare (se esiste) il massimo assoluto della funzione f(x2, x2, x3) = x1x2x3
3 nella regione dello

spazio D = {x2
1 + 4x2

2 + 2x6
3 ≤ 6}.

SVOLGIMENTI

ESERCIZIO 1. Determinare, se esistono, massimo e minimo di f(x1, x2) = x1 + x2 in
D = {x = (x1, x2) ∈�

2 : 9x2
1 + x2

2 ≤ 1}
DISCUSSIONE. L’esistenza del massimo e del minimo è conseguenza del teorema di Weierstrass. Infatti f,
essendo un polinomio, è in C0(D), inoltre D è un insieme chiuso dato che D = {g(x1, x2)≤ 0} = g−1((−∞,0]) e
g(x,y) = 9x2 + y2− 1 è una funzione continua, infine è limitato in quanto D ⊆ [−1/3, 1/3]× [−1, 1] come si vede
facilmente dal fatto che

9x2
1 ≤ 9x2

1 + x2
2 ≤ 1 x2

2 ≤ 9x2
1 + x2

2 ≤ 1
D è un’ellisse di centro l’origine e semiassi 1/3 e 1. Notiamo che non esistono punti di non derivabilità, dato che

∇f(x) = (1, 1) , (0,0)
quindi la funzione f non ha punti critici liberi. Per cui i punti di massimo e minimo cadono sulla frontiera di D:
∂D = {9x2

1 + x2
2 = 1}, cerchiamo di identificarli usando il metodo dei moltiplicatori di Lagrange. Gli estremi di f

sul vincolo g(x1, x2) = 0 sono tra le soluzioni del sistema

det
(
∂1f(x1, x2) ∂2f(x1, x2)
∂1g(x1, x2) ∂2g(x1, x2)

)
= det

(
1 1

18x1 2x2

)
= 0 e g(x1, x2) = 0

Ciò equivale a risolvere il sistema

x2 = 9x1 9x2
1 + x2

2 = 1

da cui ricaviamo le soluzioni (1/3
√

10,3/
√

10) e (−1/3
√

10,−3/
√

10), in conclusione vale

max
D

(f) = f
(

1
3
√

10
, 3√

10

)
=
√

10
3 min

D
(f) = f

(
−

1
3
√

10
,− 3√

10

)
=−
√

10
3

Essendo il dominio pari e la funzione obiettivo dispari non è sorprendente che il massimo e il minimo siano
uguali in valore assoluto...
Concludiamo l’esercizio osservando che la funzione f è una funzione affine, quindi gli insiemi di livello f(x1, x2) =
x1 +x2 = c sono delle rette nel piano e il vettore∇f è ortogonale a tali linee, quindi il problema di ottimizzazione
è risolto dal coefficiente angolare delle rette tangenti all’ellisse parallele alla bisettrice del secondo e quarto
quadrante.
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ESERCIZIO 2. Date due sfere γ1,γ2 ⊆�
3 disgiunte si classifichino tutti i punti critici della funzione f(p,q) = ∥p−q∥2

con p ∈ γ1 e q ∈ γ2.

DISCUSSIONE. Studiamo il problema in �
n, visto che non presenta particolari difficoltà rispetto al caso tri-

dimensionale. Senza perdita di generalità possiamo supporre che γ1 = Sn−1 = {x ∈ �
n : ∥x∥2 = 1}, questo è

sempre possibile operando una traslazione che porti il centro della sfera in O e successivamente un’omotetia
che scali il raggio ad uno.
Come risultato delle due precedenti operazioni e operando un’opportuna rotazione, abbiamo che γ2 = {x ∈
�

n : ∥x− ce1∥2 = r} con c> 0, inoltre deve valere che

o c> r + 1 oppure c + r< 1

a secondo che γ2 sia esterna o interna a γ1. Consideriamo il caso in cui γ2 è esterna e scriviamo la funzione di
Lagrange relativo al nostro problema di ottimizzazione

L(p,q,λ) = ∥p−q∥2
2−λ1

(
∥p∥2

2− 1
)
−λ2

(
∥q− ce1∥2

2− r2)
dove abbiamo usato la distanza al quadrato, visto che i punti estremali saranno gli stessi (la funzione s 7−→ s2

è iniettiva e crescente sulla semiretta [0,+∞)). Scriviamo il gradiente di L, poiché la funzione L per esteso è

L(p,q,λ) = (p1−q1)2 + ... + (pn−qn)2−λ1
(
p2

1 + ... + p2
n− 1

)
−λ2

(
(q1− c)2 + q2

2 + ... + q2
n− r2)

e le sue derivate parziali hanno la seguente espressione

∂iL(p,q,λ) = ∂pi L(p,q,λ) = 2(pi−qi)− 2λ1pi
∂n+iL(p,q,λ) = ∂qi L(p,q,λ) = 2(qi−pi)− 2λ2(qi− cδ1i)

per i = 1,2, ...,n

dove δ1i = 1 se i = 1 e δ1i = 0 se i = 2, ...,n. Allora abbiamo che

∇L(p,q,λ) = O se e solo se


(p−q)−λ1p = 0
(q−p)−λ2(q− ce1) = 0
1−p2

1 − ...−p2
n = 0

r2− (q1− c)2−q2
2− ...−q2

n = 0

Dalle prime due equazioni possiamo dedurre che

(1−λ1)p = q da cui (1−λ2)q−p = (1−λ2)q− 1
1−λ1

q = λ1λ2−λ1−λ2
1−λ1

q =−λ2ce1

questo implica che i vettori p e q sono entrambi multipli di e1, quindi p = (p1,0, ...,0) e q = (q1,0, ...,0). Poiché
p ∈ γ1 e q ∈ γ2 gli unici punti possibili sono i seguenti

p± = (±1,0, ...,0) e q± = (c± r,0, ...,0)

confrontando i valori della funzione distanza sulle sole quattro coppie di punti critici possibili

max(f) = f(p−,q+) = c + r + 1> f(p+,q+) = c + r− 1, f(p−,q−) = c− r + 1> f(p−,q−) = c− r− 1 = min(f)

otteniamo la risposta che cercavamo. Per completare la discussione inseriamo il seguente disegno

γ1
γ2

p− p+ q− q+cO x1

{x1 = 0}

l’asse verticale raccoglie tutte le direzioni ortogonali a e1, mentre le circonferenze sono le sezioni delle due
ipersfere descritte nel testo.
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ESERCIZIO 3. Determinare, se esistono, i punti dell’insieme

K = {x = (x1, x2, x3) ∈�
3 : x2

1 − x1x2 + x2
2− x3 = 1, x2

1 + x2
2 = 1}

che hanno massima e minima distanza dell’origine (0,0,0) ∈�
3.

DISCUSSIONE. Osserviamo che i punti che massimizzano o minimizzano la distanza del punto x = (x1, x2, x3) ∈
K dall’origine cioè, la quantità ∥x∥2 =

√
x2

1 + x2
2 + x2

3 sono gli stessi che massimizzano o minimizzano la distanza
al quadrato cioè la funzione f(x1, x2, x3) = ∥x∥2

2 = x2
1 +x2

2 +x2
3. Consideriamo quindi i problemi dei seguenti estremi

vincolati
max

K
(f) min

K
(f)

Riscriviamo il vincolo in forma equivalente

K =
{
x ∈�

3 : x1x2 + x3 = 0,x2
1 + x2

2 = 1
}

e siano g1(x1, x2, x3) = x1x2 + x3 e g2(x1, x2, x3) = x2
1 + x2

2 − 1. K è un insieme chiuso perché g1 e g2 sono funzioni
continue e K è definito da vincoli di uguaglianza, inoltre è limitato dato che

K⊆ [−1, 1]× [−1, 1]× [−1, 1] = [−1, 1]3 ⊆�
3

e poichè f è continua in un insieme chiuso e limitato: il teorema di Weierstrass assicura l’esistenza del massimo
e del minimo assoluto in K. Dato che f,g1, g2 ∈ C1(�3) (anzi C∞(�3)) applichiamo il metodo dei moltiplicatori
di Lagrange.
Cerchiamo gli eventuali punti di non regolarità di K cercando i punti in cui la matrice jacobiana

Jg(x) =
(
∂1g1(x) ∂2g1(x) ∂3g1(x)
∂1g2(x) ∂2g2(x) ∂3g2(x)

)
=
(

x2 x1 1
2x1 2x2 0

)
ha rango minore di due. Si ha che rg(Jg(x)) = 1 se e solo se

x2
1 = x2

2
x2 = 0
x1 = 0

da cui x1 = x2 = x3 = 0

e dato che il punto O(0,0,0) non apparteiene a K segue che tutti i punti di K sono regolari.
Cerchiamo i punti di massimo e minimo vincolato tra le soluzioni del sistema

det


∂1f(x) ∂2f(x) ∂3f(x)
∂1g1(x) ∂2g1(x) ∂3g1(x)
∂1g2(x) ∂2g2(x) ∂3g2(x)

 = 0

g1(x1, x2, x3) = 0
g2(x1, x2, x3) = 0

ovvero


det




2x1 2x2 2x3
x2 x1 1
2x1 2x2 0


 = 4x3

(
x2

2− x2
1
)

= 0

x1x2 + x3 = 0
x2

1 + x2
2− 1 = 0

Partiamo dalla prima equazione: se x3 = 0 allora, dalla seconda e terza equazione, si trovano i punti
Q± = (0,±1,0) R± = (±1,0,0)

Invece se x2
2 = x2

1 si ottengono i punti

P± =
(
±

1√
2

,± 1√
2

,− 1
2

)
S± =

(
±

1√
2

,∓ 1√
2

, 1
2

)
Calcoliamo i valori che f assume in questi punti

f(Q±) = f(R±) = 1 f(P±) = f(S±) = 5
4

Concludiamo che

min
K

(f) = f(Q±) = f(R±) = 1 max
K

(f) = f(P±) = f(S±) = 5
4

per cui possiamo affermare che Q±,R± sono i punti cercati che realizzano la distanza minima, mentre P±,S±
sono i punti di distanza massima.



�� 5

ESERCIZIO 4. i. Si calcoli il massimo e il minimo assoluti della funzione

f(x1, x2) = ax1 + bx2 (a,b) , (0,0)

con (x1, x2) ∈ D = {x2
1 + x2

2 ≤ 1} ⊆�
2.

ii. Si generalizzi il punto i considerando la funzione f(x) = w · x, con w ,O e x ∈ Dn = {x ∈�
n : ∥x∥2 ≤ 1}.

DISCUSSIONE. i. Il nostro dominio D è un insieme chiuso e limitato del piano, quindi è compatto, siccome la
funzione f è continua (precisamente f è di classe C∞(�2)) il teorema di Weierstrass ci assicura che esistono
massimo e minimo assoluti.
Poiché∇f(x,y) = (a,b) , (0,0) non ci sono punti stazionari interni a D, quindi i valori di massimo e minimo sono
assunti sul bordo del nostro dominio. Tali valori estremali possono essere calcolati tramite parametrizzazione
del vincolo o ricorrendo al teorema dei moltiplicatori di Lagrange: percorreremo la seconda strada perché si
presta ad essere utilizzata anche in ii, cioè ad essere generalizzata in dimensione più alta.
Ponendo D =

{
g(x1, x2) = x2

1 + x2
2− 1 = 0

}
abbiamo che

∇g(x1, x2) = 2(x1, x2) = 2x , (0,0) per ogni (x,y) ∈ D

quindi D è un vincolo regolare e possiamo dire che i punti critici vincolati di f su D sono i punti x0 = (x0,1, x0,2) ∈ D
in cui si ha

∇g(x0) = λ∇f(x0)

con λ ∈�, e siccome∇f(x0) = (a,b) per ogni x ∈�
2 abbiamo che

∇g(x0) = 2x0 = λ(a,b) con x2
0,1 + x2

0,2 = 1

Allora otteniamo che

x0 =±
 a√

a2 + b2
, b√

a2 + b2


ricordando che (a,b) , (0,0). Ovviamente i due punti trovati sono uno l’unico punto di massimo assoluto, e
l’altro l’unico minimo assoluto, infatti è facile verificare che

f
± a√

a2 + b2
,± b√

a2 + b2

 =±
√

a2 + b2

ii. Generalizzare la discussione precedente risulta, tutto sommato, abbastanza lineare, prima di tutto osservia-
mo che

∇f(x) =∇ (w · x) = w ,O per ogni x ∈�
n

quindi la funzione, come prima, non ha punti critici liberi. Però Dn è compatto (in quanto chiuso e limita-
to) dunque dobbiamo cercare massimo e minimo assoluti sulla frontiera ∂Dn = Sn−1 usando il metodo dei
moltiplicatori di Lagrange. Come prima abbiamo che

Sn−1 =
{
g(x) = ∥x∥2

2− 1 = 0
}

quindi ∇g(x) = 2x ,O

e il teorema di Lagrange ci suggerisce di cercare i punti della sfera Sn−1 in cui il gradiente delle funzioni g e f
risultano paralleli, cioè

x0 =± w
∥w∥2

∈ Sn−1

da cui

f
(
±

w
∥w∥2

)
=±w · w

∥w∥2
=±∥w∥2

Si noti che il risultato esprime analiticamente il fatto (già osservato a lezione) che il gradiente della funzione
indica la direzione di crescita/decrescita più rapida, quindi la direzione più ”diretta” per raggiungere il massimo
o il minimo della funzione.
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ESERCIZIO 5. Dati, in �
3, i vincoli

S =
{
x2

1 + x2
2 + x2

3 = 1
}

e T =
{
x2

3 + x2
2 = x2

1 −4,x1 > 0
}

si calcoli il minimo assoluto della funzione
f(p,q) = ∥p−q∥2 con p ∈ S e q ∈ T

DISCUSSIONE. Il problema consiste nel trovare due punti, uno su S e uno su T che realizzino il minimo della
distanza pensata come funzione di sei variabili (precisamente due terne reali appartenenti ai rispettivi vincoli).
Naturalmente non è affatto evidente che un tale minimo esista: la funzione distanza è inferiormente limitata,
ma non è garantita a priori l’esistenza di un punto di minimo assoluto (esercizio: si provi a costruire un esempio
esplicito in cui viene verificata tale affermazione). Scriviamo la funzione lagrangiana e il suo gradiente

L(p,q,c) = L(p1,p2,p3,q1,q2,q3, c1, c2)

= (p1−q1)2 + (p2−q2)2 + (p3−q3)2− c1(p2
1 + p2

2 + p2
3− 1)− c2(−q2

1 + q2
2 + q2

3 + 4)
∂1L(p,q,c) = 2(p1−q1)− 2c1p1 = 2[(p1−q1)− c1p1] = 0
∂2L(p,q,c) = 2(p2−q2)− 2c1p2 = 2[(p3−q3)− c1p2] = 0
∂3L(p,q,c) = 2(p3−q3)− 2c1p3 = 2[(p3−q3)− c1p3] = 0
∂4L(p,q,c) = 2(q1−p1) + 2c2q1 = 2[(q1−p1) + c2q1] = 0
∂5L(p,q,c) = 2(q2−p2) + 2c2q2 = 2[(q2−p2)− c2q2] = 0
∂6L(p,q,c) = 2(q3−p3) + 2c2q3 = 2[(q3−p3)− c2q3] = 0

∂7L(p,q,c) = 1−p2
1 −p2

2−p2
3 = 0

∂8L(p,q,c) = q2
1 −q2

2−q2
3−4 = 0

le precedenti equazioni sono equivalenti al seguente sistema

p1−q1 = c1p1 =−c2q1
p2−q2 = c1p2 = c2q2
p3−q3 = c1p3 = c2q3
p2

1 + p2
2 + p2

3 = 1
q2

1 −q2
2−q2

3 = 4
Se c1 = 0 o c2 = 0 il sistema si riduce alle relazioni p = q, ma T∩S = ∅, quindi nessuno dei due moltiplicatori può
essere nullo. Inoltre notiamo che dalle prime tre relazioni segue

p1 = (1− c2)q1 =−c1(1− c2)
c2

p1

p2 = (1 + c2)q2 = c1(1 + c2)
c2

p2

p3 = (1 + c2)q3 = c1(1 + c2)
c2

p3

e il sistema si riduce al seguente

p2
1 + p2

2 + p2
3 = 1

p2
1

(1− c2)2 −
1

(1 + c2)2 (x2
2 + x2

3) = 4

p1 =−c1(1− c2)
c2

p1

p2 = c1(1 + c2)
c2

p2

p3 = c1(1 + c2)
c2

p3

Concentriamoci sulla terza equazione e osserviamo che

p1 =−c1(1− c2)
c2

p1 implica p1 = 0 o c1(c2− 1)
c2

= 1
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se p1 = 0 segue, dalla prima equazione, che p2
2 + p2

3 = 1, però la seconda equazione si riduce a

−
1

(1 + c2)2 (p2
2 + p2

3) = 4

il che è impossibile! Quindi abbiamo che c1 = c2/(c2 − 1) e sostituendo questa relazione nelle ultime due
equazioni si ottiene che p2 = p3 = 0 e, grazie alle equazioni dei vincoli, otteniamo la soluzione del nostro
problema

p = (±1,0,0) q = (2,0,0)
il punto (−1,0,0) può essere scartato, perché non da’ luogo al minimo assoluto della f, e otteniamo che

f ((1,0,0), (2,0,0)) = min
(p,q)∈S×T

(f(p,q)) = 1

Per concludere ritorniamo sulla questione iniziale e discutiamo l’esistenza del minimo assoluto di f. Innanzitutto
ricordiamo che S è chiuso e limitato, quindi compatto; invece T, pur essendo chiuso, non è limitato: infatti vale
che, per ogni k = 2,3,4...

qk =
(
k,
√

k2−4,0
)
∈ T e ∥qk∥2 =

∥∥∥∥∥∥
(
k,
√

k2−4,0
)∥∥∥∥∥∥2

2
= (2k2−4)−→ +∞

la successione di punti precedente mostra che
sup

(p,q)∈S×T
(f(p,q)) = sup

(p,q)∈S×T

(
∥p−q∥2

)
≥ lim

k−→+∞
∥qk− e3∥2 = +∞

Il fatto che T non sia compatto fa s̀ı che non possiamo appoggiarci al teorema di Weierstrass per l’esistenza
del minimo assoluto, quindi dobbiamo ragionare in maniera leggermente diversa. Cominciamo notando che
S⊆ [−1, 1]3 ⊆ {x1 ≤ 1}, visto che

x2
1 , x2

2, x2
3 ≤ x2

1 + x2
2 + x2

3 = 1
mentre T⊆ {x1 ≥ 2} visto che

0≤ x2
3 + x2

2 = x2
1 −4

quindi S∩ T = ∅, inoltre è facile verificare che, per R > 2, S ⊆ [−R,R]n e T∩ [−R,R]n , ∅, quindi f, ristretta su
S× (T∩ [−R,R]n) che è un insieme chiuso e limitato, possiede massimo e minimo assoluto per il teorema di
Weierstrass. Poiché f(p,q) ≥

√
2R2− 2R− 3 per ogni p ∈ S e q ∈ T \ [−R,R]n il minimo assoluto in S× (T ∩

[−R,R]n) è il minimo assoluto di f su S× T e tale minimo, che abbiamo già individuato, vale 1 ed è assunto nel
punto (pm,qm) = ((1,0,0), (2,0,0)) ∈ S× T.

ESERCIZIO 6. Siano r = {x1 = x2, x3 = 0} e s = {x1 + x2 = 1,x3 = 1} due rette di �3 prive di punti comuni:
i. si determini p ∈ r e q ∈ s tali che ∥p−q∥2 ≤ ∥x− y∥ per ogni x ∈ r e y ∈ s,
ii. si verifichi che la retta per p e q è ortogonale alle due rette r ed s.

DISCUSSIONE. Prima di iniziare l’esercizio notiamo che la richiesta i consiste nel trovare il minimo assoluto
della funzione distanza tra due punti appartenenti alle due rette, quindi prima di cominciare dovremmo chie-
derci se e perché esiste tale minimo. Notiamo che r ha giacitura ⟨(1, 1,0)⟩mentre s ha ⟨(1,−1,0)⟩, quindi le due
rette sono sghembe e non parallele. Questo implica che se almeno uno tra ∥p∥2 e ∥q∥2 tende a +∞, la di-
stanza tra i due punti diverge (equivalentemente la funzione distanza ∥p− q∥2 è coercitiva in questo caso).
Restringendo il problema alla porzione di rette contenute in una scatola [−2,2]3 il problema (per Weierstrass)
possiede un minimo assoluto e tale minimo sarà un minimo assoluto per il problema sulle rette intere: questa
affermazione sarà chirita nel primo approccio risolutivo proposto.
Con un certo intento didattico proponiamo e sviluppiamo due approcci differenti per risolvere il problema.
Poiché p ∈ r e q ∈ s possiamo sfruttare le equazioni cartesiane delle rette per scrivere che p = (p1,p1,0) e che
q = (q1, 1−q1, 1), il che significa che

∥p−q∥2
2 =

[
(p1−q1)2 + (p1− 1 + q1)2 + (1−0)2] =: f(p1,q1) (p1,q1) ∈�

2

il problema di minimo si riconduce alla ricerca del minimo assoluto di f ∈ C∞(�2), quindi abbiamo

f(p1,q1) = 2[p2
1 + q2

1 −p1−q1 + 1] e ∇f(p1,q1) = 2(2p1− 1,2q1− 1)
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Si noti che

f(p1,q1) = 2[p2
1 + q2

1 −p1−q1 + 1]≥ p2
1 + q2

1 + 2 = ∥(p1,q1)∥2
2 per ogni (p1,q1) ∈�

2 \ [0, 1]2

quindi, come accennato sopra, f possiede un unico punto critico, che deve essere un punto di minimo assoluto,
tale punto è (1/2, 1/2) e fornisce la seguente coppia di punti per il problema iniziale

pm =
(

1
2 , 1

2 ,0
)

qm =
(

1
2 , 1

2 , 1
)

Volendo usare il metodo dei moltiplicatori di Lagrange dobbiamo studiare i punti critici liberi della seguente
funzione di Lagrange dove è possibile riconoscere la distanza (al quadrato) tra i punti p e q e le quattro equazioni
che individuano le due rette moltiplicate per il rispettivo moltiplicatore

L(p,q,c) = (p1−q1)2 + (p2−q2)2 + (p3−q3)2− c1(p1−p2)− c2p3− c3(q1 + q2− 1)− c4(q3− 1)

calcoliamo le derivate parziali della funzione per cercare i punti critici

∂1L(p,q,c) = 2(p1−q1)− c1 ∂2L(p,q,c) = 2(p2−q2) + c1 ∂3L(p,q,c) = 2(p3−q3)− c2
∂4L(p,q,c) = 2(q1−p1)− c3 ∂5L(p,q,c) = 2(q2−p2)− c3 ∂6L(p,q,c) = 2(q3−p3)− c4
∂7L(p,q,c) = p2−p1 ∂8L(p,q,c) = p3 ∂9L(p,q,c) = 1−q1−q2 ∂10L(p,q,c) = 1−q3

Dal precedente sistema possiamo compiere subito le seguenti deduzioni

∂7L(p,q,c) = 0 implica p2 = p1
∂8L(p,q,c) = 0 implica p3 = 0
∂10L(p,q,c) = 0 implica q3 = 1
∂9L(p,q,c) = 0 implica q1 + q2 = 1

∂1L(p,q,c) + ∂2L(p,q,c) = 0 implica p1 + p2 = q1 + q2
∂4L(p,q,c)− ∂5L(p,q,c) = 0 implica p1−p2 = q1−q2

e le precedenti relazioni producono le seguenti catene di conseguenze

p1 = p2 e p1 + p2 = q1 + q2 = 1 danno p1 = p2 = 1
2

q1−q2 = p1−p2 = 0 e q1 + q2 = 1 danno q1 = q2 = 1
2

quindi otteniamo la coppia di punti critici

pm =
(

1
2 , 1

2 ,0
)

qm =
(

1
2 , 1

2 , 1
)

in perfetto accordo con il primo metodo!

ESERCIZIO 7. Data la funzione f : �2 −→� di legge f(x1, x2) = x2
1 x2

2, si spieghi perché tale funzione è differenziabile
in tutto il piano e si scriva l’equazione del piano tangente al grafico della funzione nel punto (1, 1, f(1, 1))

DISCUSSIONE. La funzione è un polinomio e quindi, come visto a lezione, di classe C∞(�2), in particolare è
derivabile con derivate parziali continue, conseguentemente differenziabile in tutto il piano per il teorema del
differenziale totale. Possiamo scrivere subito che

∂1f(x1, x2) = 2x1x2
2 e ∂2f(x1, x2) = 2x2

1 x2

e, ricordando che in generale l’equazione del piano tangente è x3 = f(p) +∇f(p) · (x− p), ottenere l’equazione
del piano tangente richiesta

x3 = 1 + (2,2) · (x1− 1,x2− 1) cioè 2x1 + 2x2− x3− 3 = 0

visto che nel nostro caso p = (1, 1).
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ESERCIZIO 8. Data M ∈Mn(�) sia F : �n −→ � definita come F(x) := Mx · x. Si spieghi perché F è differenziabile,
poi si calcoli∇F(x), HF(x) e il polinomio di Taylor, di grado 1 e 2, con x0 = O.

DISCUSSIONE. Osserviamo subito che, posto M = (mij), vale

F(x) =
n¼
j=1

mijxj · x =
n¼
i=1

n¼
j=1

mijxjxi =
n¼

i,j=1
mijxjxi

quindi F è un polinomio composto di termini quadratici, cioè una funzione di classe C∞(�n), quindi è differen-
ziabile in tutto lo spazio per il teorema del differenziale totale.
Procediamo con il calcolo del vettore gradiente e della martice hessiana della funzione F, in modo da ottenere

∇F(x) =

∂1

n¼
i,j=1

mijxjxi; ...;∂n

n¼
i,j=1

mijxjxi

 =


2m11x1 + (m12 + m21)x2 + ... + (m1n + mn1)xn

(m21 + m12)x1 + 2m22x2 + ... + (m2n + mn2)xn
...

(mn1 + m1n)x1 + (mn2 + m2n)x2 + ... + 2mnnxn

 = (M + MT)x

HF(x) =


2m11 (m12 + m21) ... (m1n + mn1)

(m21 + m12) 2m22 ... (m2n + mn2)
...

(mn1 + m1n) (mn2 + m2n) ... 2mnn

 = (M + MT)

Dalle precedenti relazioni ricaviamo che

T1,F(x,O) = F(O) +∇F(O) · x = 0

T2,F(x,O) = F(O) +∇F(O) · x + 1
2 [HF(O)x] · x = 1

2
[
(M + MT)x

]
· x

= 1
2


2m11x1 + (m12 + m21)x2 + ... + (m1n + mn1)xn

(m21 + m12)x1 + 2m22x2 + ... + (m2n + mn2)xn
...

(mn1 + m1n)x1 + (mn2 + m2n)x2 + ... + 2mnnxn




x1
x2
...

xn

 = F(x)

il che conclude lo svolgimento.

ESERCIZIO 9. Sia E = {x2
1 + 4x2

2 + 9x2
3 = 1} ⊆�

3, si provi che
i. E è chiuso e limitato,
ii. che esistono su E un punto di massima distanza e un punto di minima distanza da O.

DISCUSSIONE. i. Osserviamo subito che

E = {x ∈�
3 : g(x1, x2, x3) = x2

1 + 4x2
2 + 9x2

3 = 1} = g−1({1})

e siccome g ∈ C∞(�3), E è chiuso perché controimmagine di un chiuso, tramite una funzione continua. Inoltre
possiamo scrivere che

se x ∈�
3 : x2

1 + 4x2
2 + 9x2

3 = 1 allora x2
1 ≤ 1 cioè − 1≤ x1 ≤ 1

se x ∈�
3 : x2

1 + 4x2
2 + 9x2

3 = 1 allora 4x2
2 ≤ 1 cioè − 1/2≤ x2 ≤ 1/2

se x ∈�
3 : x2

1 + 4x2
2 + 9x2

3 = 1 allora 9x2
3 ≤ 1 cioè − 1/3≤ x3 ≤ 1/3

quindi E è limitato visto che

E⊆ [−1, 1]×
[
−

1
2 , 1

2

]
×

[
−

1
3 , 1

3

]
⊆ B(O,2)

ii. Essendo E chiuso e limitato, cioè compatto, e la distanza da O una funzione continua il teorema di Weierstrass
garantisce l’esistenza di punti di massimo e minimo assoluti: tali punti possono essere identificati tramite il me-
todo dei moltiplicatori di Lagrange. Osserviamo che la funzione distanza è una funzione non negativa, quindi i
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punti che realizzano massimi e minimi (locali e globali) sono gli stessi della funzione distanza al quadrato, per
cui consideriamo la distanza al quadrato, di più facile trattazione.
Dunque la funzione di Lagrange è

L(x1, x2, x3,p) = x2
1 + x2

2 + x2
3−p

(
x2

1 + 4x2
2 + 9x2

3− 1
)

e le sue derivate parziali sono
∂1L(x1, x2, x3,p) = 2x1− 2px1 = 2(1−p)x1
∂2L(x1, x2, x3,p) = 2x2−8px2 = 2(1−4p)x2
∂3L(x1, x2, x3,p) = 2x3− 18px1 = 2(1−9p)x3

∂4L(x1, x2, x3,p) = 1− x2
1 −4x2

2−9x2
3

Per trovare i punti (x1, x2, x3,p) ∈�
4 che annullano il vettore gradiente di L possiamo fare le seguenti conside-

razioni
se p = 1 allora x2 = x3 = 0 e x1 =±1
se p = 1/4 allora x1 = x3 = 0 e x2 =±1/2
se p = 1/9 allora x1 = x2 = 0 e x3 =±1/3

quindi abbiamo ottenuto i seguenti punti critici vincolati
a± = (±1,0,0) b± = (0,±1/2,0) c± = (0,0,±1/3)

e poiché vale

∥a±∥2
2 = 1 ∥b±∥2

2 = 1
4 ∥c±∥2

2 = 1
9

possimo concludere che a± sono due punti di massimo globale, c± due punti di minimo assoluto, mentre b±
sono due punti di sella.

ESERCIZIO 10. Siano fi : � −→�, per i = 1, ...,n, delle funzioni assegnate.
i. Provare che se fi ∈ C(�), per i = 1, ...,n, allora la funzione

F(x) := f1(x1) + ... + fn(xn) x = (x1, ...xn) ∈�
n

è continua in tutto lo spazio,
ii. provare che se fi ∈ C1(�), per i = 1, ...,n, allora la funzione F (definita nel punto i.) è derivabile in ogni direzione e in
tutto lo spazio,
iii. si scriva l’espressione di ∂wf(x) con x,w ∈�

n.

DISCUSSIONE. i. L’ipotesi di continuità delle funzioni fi equivale a dire che se {pn} ⊆ � è una successione
convergente tale che pn −→ p0 allora abbiamo che

fi
(pn

)
−→ fi

(
p0

)
per ogni i = 1, ...,n

allora consideriamo una successione di punti {xk} convergente in �
n tale che xk −→ x0, siccome questo

equivale a dire che

0≤ |xk,i− x0,i| ≤

 n¼
i=1

(
xk,i− x0,i

)2
1/2

per ogni i = 1, ...,n

possiamo affermare che xk,i −→ x0,i per ogni i = 1, ...,n, allora otteniamo, grazie alla disuguaglianza triangolare,
che

0≤ ∥F(xk)− F(x0)∥2 ≤
n¼
i=1

∣∣∣fi(xk,i)− fi(x0,i)
∣∣∣−→ 0

dove i termini a destra sono tutti infinitesimi per la precedente osservazione.
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ii. & iii. Per mostrare la derivabilità della funzione F procediamo scrivendo il rapporto incrementale nella dire-
zione w ∈�

n come segue

F(x + tw)− F(x)
t = 1

t

 n¼
i=1

fi(xi + twi)−
n¼
i=1

fi(xi)
 =

n¼
i=1

fi(xi + twi)− fi(xi)
t −→

n¼
i=1

wif′i (xi) = ∂wF(x)

dove l’ultimo passaggio è conseguenza della derivabilità delle funzioni fi, passando al limite per t−→ 0. Si noti
che abbiamo anche ottenuto che ∂iF(x) = f′i (xi) e che∇F(x) =

(
f′1(x1), ..., f′n(xn)

)
.

ESERCIZIO 11. Sia F : �2 −→�
2 definita come F(x1, x2) = (x2

1 + x2
2, x2

1 − x2
2).

i. F è iniettiva? Si calcoli lo jacobiano dell’applicazione.
ii. Sia Cr = {x ∈�

2 : x2
1 + x2

2 = r2}, determinare, per r> 0, F(Cr), cioè l’immagine di Cr tramite F.
iii. Determinare F(�2), cioè l’immagine della funzione F.

DISCUSSIONE. i. F non è iniettiva essendo per esempio F(1, 1) = F(−1, 1), inoltre vale

JF(x1, x2) =
(

2x1 2x2
2x1 −2x2

)
ii. Chiaramente se (x1, x2) ∈ Cr la prima coordinata del punto F(x1, x2) è r2. Inoltre la seconda coordinata è
compresa tra−r2 e r2 poiché vale−r2 ≤−(x2

1 + x2
2)≤ x2

1 − x2
2 ≤ x2 + y2 ≤ r2. Riassumendo F(Cr) è il segmento

verticale di ascissa x1 = r2 e ordinate−r2 ≤ x2 ≤ r2.
iii. Siccome al variare di r ≥ 0 le circonferenze Cr coprono tutto il piano �

2, ragionando per unioni possiamo
dedurrre che F(�2) =

⋃
r≥0

F(Cr) e da ii. otteniamo che F(�2) = {x ∈�
2 : x1 ≥ 0 e − x1 ≤ x2 ≤ x1}.

ESERCIZIO 12. Determinare (se esiste) il massimo assoluto della funzione f(x2, x2, x3) = x1x2x3
3 nella regione dello

spazio D = {x2
1 + 4x2

2 + 2x6
3 ≤ 6}.

DISCUSSIONE. D è un insieme compatto in quanto è limitato, perché contenuto nel parallelepipedo [−
√

6,
√

6]×
[−
√

3/2,
√

3/2]× [− 6√3, 6√3], ed è chiuso, in quanto D = F−1([0,6]), con F(x1, x2, x3) = x2
1 + 4x2

2 + 2x6
3 funzione

continua e [0,6] chiuso in �.
Quindi, per il Teorema di Weierstrass, applicato alla funzione continua f, f ammette massimo assoluto in D.
Per determinare il punto di massimo assoluto cerchiamo innanzitutto gli eventuali punti critici interni di f, cioè
i punti in int(D) = {x2 + 4y2 + 2z6 < 6} tali che∇f = (0,0,0).

∇f(x1, x2, x3) = (x2x3
3, x1x3

3,3x1x2x2
3)

quindi tutti i punti critici della funzione f sono del tipo (0,0,z), con z ∈�, e (x,y,0), con (x,y) ∈�
2.

In corrispondenza di tali punti la funzione f si annnulla, perciò, dato che la funzione assume anche valori positivi,
il massimo assoluto di f in D deve essere assunto sulla frontiera ∂D = {F(x) = 6}. Per determinare i punti critici
di f ristretta a ∂D utilizziamo il metodo dei moltiplicatori di Lagrange, risolviamo cioè il sistema

{
∇f(x) = λ∇F(x)
F(x) = 6 per esteso


x2x3

3 = 2λx1
x1x3

3 = 8λx2
3x1x2x2

3 = 12λx5
3

x2
1 + 4x2

2 + 2x6
3 = 6

Il massimo assoluto non è assunto in punti aventi una delle componenti nulla, quindi dal sistema otteniamo
x2x3

3
2x1

=
x1x3

3
8x2

= x1x2
4x3

3
x2

1 + 4x2
2 + 2x6

3 = 6
ossia


x2

1 = 4x2
2

x6
3 = 2x2

2
2x2

2 = 1
da cui


x1 =±

√
2

x2 =±
√

2/2
x3 =±1

Confrontando i valori di f negli otto punti trovati deduciamo che il massimo assoluto di f vale 1 ed è assunto nei
punti di coordinate (

√
2,
√

2/2, 1), (−
√

2,−
√

2/2, 1), (
√

2,−
√

2/2,−1) e (−
√

2,
√

2/2,−1).


