Radiation/Matter e.m. interactions Heavy Charged Particles Electrons and positrons Photons

AT -

http://www.roma1.infn.it/people/longo/fnsn/capitolo4.pdf

Rutherford scattering

RE LAB Hypothesys: UN <<1 ; M	Stenece En Pe Fluid
MITTAL STATE	I LIVAL STAYE
RBNueleon PH = PH + Pe -PH H, Ze INITIAL STATE	ve' s
solitari, saraper contra llare la qualità den accordente a quarte que	
$\vec{P}_e^N = \vec{P}_N^{N'} + \vec{P}_e^{N'}$	
RELATIONSHIP AHONG RS	
momentum $\overrightarrow{Pe'} = \overrightarrow{P_H} - \overrightarrow{P_H} = \overrightarrow{AP_H} =$ to e^-	$A \overrightarrow{P}_{H}^{M} = \overrightarrow{P}_{H}^{M}$
L'annote la realiza province by barry se congentionals me	

Rutherford scattering

- Projectile with velocity v and Q=ze on atomic electron
- Calculate in the projectile rest frame considering as negligible:
 - The Speed of electrons
 - The Loss of energy from projectile

Transferred energy

$$p_e = \int e \cdot \mathcal{E}_{\perp} dt = \frac{e}{v} \int \mathcal{E}_{\perp} dx.$$

ze

$$\Phi(\vec{\mathcal{E}}) = \int \vec{\mathcal{E}} \cdot \vec{n} dS = 2\pi b \int \mathcal{E}_{\perp} dx = \frac{ze}{\epsilon_0}.$$
$$T_e = \frac{p_e^2}{2m_e} = \left(\frac{ze^2}{4\pi\epsilon_0 b}\right)^2 \frac{2}{m_e v^2}.$$

2πbdb

Underlying hypothesis

• ∆p<<p

$$\frac{\Delta p}{p} = \frac{ze^2}{2\pi\varepsilon_0} \frac{\hbar c}{m_e c^2 \beta^2 b} = \frac{2z}{137} \frac{200 \,\text{MeVfm}}{0.5\beta^2 b} \approx \frac{5.8z}{\beta^2 b(\text{fm})}$$

• For a 100 MeV proton β =0.41, z=1

$$\frac{\Delta p}{p} << 1 \Longrightarrow b >> 30 \, fm$$

Numerical example II

K=300 MeV/u carbons

$$p = \sqrt{2MK} \sim 9011MeV \Rightarrow \beta = \frac{p}{E} = 0.61; \gamma = 1.3$$

$$p_t = \frac{Ze^2}{4\pi\varepsilon_0} \frac{1}{bv} = \frac{6}{137} \frac{1}{0.61b} [NU]$$

 $E_t = \frac{p_t^2}{2m} \sim 10^{-2} eV$

• Assuming
$$b \sim 1 \text{\AA} = 10^5 \text{ fm}$$

The transferred momentum is really small because MeV **←**>fm $p_t = \frac{6\hbar c}{137*0.61*10^5 fm} = \frac{1200 MeV fm}{137*0.61*10^5 fm} \sim 121 eV$

> Too low to ionize \rightarrow for I~10eV Et>I → b<0.04 Å

Distant and close collisions

→ Need to consider in LET only the collisions that are close enough to ionize

LET

- Linear Energy Transfer: mean energy released by ionization to the matter → note: dE/dX is the energy lost by the radiation > energy transferred locally
- Integrate between
 - Emin corresponding to b_M needed to allow for transition time < T $\rightarrow b_M/v=1/v=h/I$ $E_{min}=I^2/2m\gamma^2\beta^2$
 - Emax corresponding to max transferrable energy in elastic scattering
 Vf(e)=2v_i

Rappresentiamo la perdita di energia in funzione dell'energia della particella:

presenta un minimo, detto minimo di ionizzazione, e poi risale lentamente fino a raggiungere una saturazione

- 1) A basse energie domina il termine $1/\beta^2$
- 2) Minimo di Ionizzazione: 2-3 m_0c^2
- 3) Risalita relativistica

Il numero di coppie create per unità di lunghezza di percorso è proporzionale alla frazione dE/dx d'energia persa dalla particella. Quest'ultima aumenta man mano che l'energia della particella diminuisce passando per un massimo alla fine del percorso.

$1/\beta^2$ regime

Achieved for K<0.4M

- 200 keV electrons
- 370 MeV/u hadrons

Range

 Range in the path of a particle before stopping

$$R = \int_{K}^{0} \frac{dK}{-LET(K)}$$

$$R_{acqua} = \frac{1}{z^2 0.21 \frac{MeV}{mm}} \int \left(\frac{K}{Mc^2}\right)^{0.82} dK = \frac{1}{(425cm)} \frac{A}{z^2} \left(\frac{K}{Mc^2}\right)^{1.82}.$$

N

LET vs Range

From the previous relationship

$$LET = \frac{0.12}{L^*} z^2 \frac{keV}{\mu m} \frac{1}{\left(\frac{z^2}{A} \frac{R_{acqua}}{R^*}\right)^{\frac{0.82}{1.82}}} = L^* z^{1.1} A^{0.45} \left(\frac{R^*}{R_{acqua}}\right)^{0.45}$$

$$R^* = 425 \text{cm} \text{ (water)}$$

• $1/\beta^2$ does not hold indefinitely

K_{min}=5 MeV/u → LET_{max}(keV/µm)= 0.12 $z^2/0.005^{0.82}$ = 9.3 z^2

Exercises (Set 1)

- Graph the range in water vs energy for
 - Protons
 - Alpha (He-4 nuclei)
 - Carbon nuclei
- Fixing the entrance energy to the one required to have R=20cm, graph the LET in water vs x in 1mm steps

Numerical examples

Charged	E/A	р	p at inject.	LET [eV/nm] at va	rious r	esidual
particle	[MeV/A]	[MeV/c]	[MeV/c]	ranges in water [cm]				l]
${}^{M}N^{Z}$	range	range	<i>E</i> = 7	26.2	15	7	3	0.1
	26.2 cm	26.2 cm	MeV/u					
e ^{-*}	56.0	56.0	-	0.2	0.2	0.2	0.2	0.2
${}^{1}\mathrm{H}^{+1}$	200.0	645	115	0.5	0.6	0.8	1.1	4.9
${}^{2}D^{+1}$	136.0	1045	160	0.6	0.7	1.0	1.5	6.9
${}^{3}\text{T}^{+1}$	108.0	1385	345	0.7	0.9	1.2	1.8	8.3
$^{3}\text{He}^{+2}$	238.5	2125	345	1.6	2.0	2.7	3.9	17.8
⁴ He ⁺²	202.0	2580	457	1.8	2.2	3.1	4.4	19.6
⁷ Li ⁺³	234.1	4905	800	3.7	4.6	6.2	8.9	41.0
⁹ Be ⁺⁴	283.7	7050	1035	5.9	7.2	9.6	13.7	62.4
¹¹ B ⁺⁵	329.5	9350	1260	8.5	10.2	13.6	19.3	87.7
${}^{12}C^{+6}$	391.0	11260	1370	11.1	13.4	17.7	24.7	111.8
¹⁴ N ⁺⁷	430.5	13910	1600	14.5	17.3	22.6	31.6	142.2
¹⁶ O ⁺⁸	468.6	16710	1830	18.2	21.6	28.1	39.2	175.1
20 Ne ⁺¹⁰	540.8	22847	2297	26.8	31.5	40.6	55.9	248.7

DNA size ~2nm, Ionization ~50 eV → 25 eV/nm required to break DNA twice

Carbon therapy

Multiple scattering

- Particles can also scatter on nuclei:
 - No energy loss
 - Angular deviation
- When traversing a thick material multiple scatterings occur

Table 6.1 Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). See web pages for more detail about entries in this table including chemical formulae, and for several hundred other entries. Quantities in parentheses are for NTP (20° C and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 mm); values $\gg 1$ in brackets are for $(n - 1) \times 10^6$ (gases).

Material	Z	A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{\rm m}$	in Density	Melting	Boiling	Refract.
				length λ_T	length λ_I	X_0	{ MeV	${\rm g \ cm^{-3}}$	point	point	index
				$\{g \ cm^{-2}\}$	$\{g \ cm^{-2}\}$	$\{g \ cm^{-2}\}$	$g^{-1}cm^2$	$\{ (\{g\ell^{-1}\}) \}$	(K)	(K)	(@ Na D)
H_2	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	0.40
C diamond	6	12.0107(8)	0.49955	59.2 50.2	85.8	42.70	1.725	3.520			2.42
C graphite	7	14.0067(2)	0.49955	61.1	89.7	42.70	(1.825)	0.807(1.165)	63 15	77 20	1 20[298]
02	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_2	9	18.9984032(5)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_2	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti D	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	03.040(3) 79.64(1)	0.43030	84.2	137.3	12.80	1.403	8.960	1358.	2835.	
Sn	50	118 710(7)	0.44000	08.2	146.0	8.82	1.370	7 310	505.1	2875	
Xe	54	131,293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	1.00[101.]
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
Air (dry, 1 a	tm)		0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding con	ncrete		0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate	glass (P	yrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass Standard roo	ck		0.42101 0.50000	95.9 66.8	158.0	26.54	1.255	6.220 2.650			
Methane (Cl	H_4)		0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane (C ₂ H	I6)		0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Propane (C3	H_8)		0.58962	55.3	76.7	45.37	(2.262)	0.493(1.868)	85.52	231.0	
Butane (C ₄ H	I10)		0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane (C ₈ F	I ₁₈)		0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin (CH	$I_3(CH_2)_r$	$_{1\approx 23}CH_3)$	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type	6, 6/6)		0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbona	te (Lexa	n)	0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene	terepht	halate (Mylar)	0.57034	58.0	18.0	20.05	2.079	0.89			
Polyimide fil	m (Kant	ton)	0.52037	50.9	85.5	40.58	1.820	1.40			
Polymethyln	nethacry	late (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropyler	1e	(del)(le)	0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene	([C ₆ H ₅ C	(HCH ₂] _n)	0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetraflue	proethyle	ene (Teflon)	0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltol	uene		0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum o	xide (sap	ophire)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flour	ride (Bal	$F_2)$	0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Bismuth ger	manate	(BGO)	0.42065	96.2	159.1	7.97	1.251	7.130	1317.		2.15
Carbon diox	ide gas (CO ₂)	0.49989	60.7	88.9	36.20	1.819	(1.842)	a 11	. 101 -	[449.]
Solid carbon	dioxide	(ary ice)	0.49989	60.7 100.6	88.9	36.20	1.787	1.563	Sublime 804.9	s at 194.7	1 50
Lithium fuo	ie (USI) rido (Lit	2)	0.41509	61.0	171.0	8.39 20.26	1.243	4.010	094.Z	1003.	1.79
Lithium hud	ride (Lif	D D	0.40202	50.8	68.1	39.20 70.62	1.014	2.030	065	1940.	1.39
Lead tunget	ate (PhV	VO ₄)	0.41915	100.6	168.3	7 30	1 990	8,300	1402		2.20
Silicon dioxi	de (SiO-	fused quartz)	0.49930	65.2	97.8	27.05	1.699	2,200	1986	3223	1.46
Sodium chlo	ride (Na	Cl)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodio	le (NaI)	,	0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water (H ₂ O)``		0.55509	58.5	83.3	36.08	1.992	1.000(0.756)	273.1	373.1	1.33
Silica aeroge	1		0.50093	65.0	97.3	27.25	1.740	0.200	(0.03 Ha	O, 0.97 Si	O ₂)
act of the									1	,	41

X₀ for selected materials

Hadrontherapy: straggling • Limit to narrowness of bragg peak

Kahoot!

Interazione delle particelle cariche leggere

Col termine particelle cariche leggere intendiamo gli elettroni (e⁻ ed β⁻) ed i positroni (e⁺ ed β⁺).

Per le particelle cariche leggere, gli **effetti relativistici** non possono essere trascurati, avendo queste una massa a riposo molto più piccola delle rispettive particelle cariche pesanti.

Le particelle cariche leggere sono soggette non solo alla collisione con gli elettroni atomici del mezzo in cui interagiscono, ma subiscono anche un secondo tipo di meccanismo di perdita di energia dovuto alla interazione coi nuclei atomici. Questo secondo tipo di interazione, importante per energie elevate dell'elettrone incidente, è detta **perdita di energia per irraggiamento**.

Perdita di energia per ionizzazione

La perdita di energia per unità di percorso è **più fluttuante** che nel caso delle particelle pesanti; la lunghezza della traiettoria subisce quindi una dispersione statistica più importante.

La formula Bethe e Bloch è data per due domini di energia dell'elettrone incidente:

$$-\left(\frac{d\overline{E}}{dx}\right) = 0.306 \frac{N_A Z \rho}{A} \frac{1}{\beta^2} \ln\left(\frac{1.16 m_e c^2 \beta^2}{2 I}\right) \left(\frac{MeV}{cm}\right) (per \beta < 0.5)$$

$$-\left(\frac{d\overline{E}}{dx}\right) \approx 0.153 \frac{N_A Z \rho}{A} \frac{1}{\beta^2} \ln\left(\frac{E(E+m_e c^2)^2 \beta^2}{2 I^2 m_e c^2}\right) \left(\frac{MeV}{cm}\right) (per \beta \approx 1)$$

$$-\left(\frac{d\overline{E}}{dx}\right) \approx 0.153 \frac{N_A Z \rho}{A} \frac{1}{\beta^2} \ln\left(\frac{E(E+m_e c^2)^2 \beta^2}{2 I^2 m_e c^2}\right) \left(\frac{MeV}{cm}\right) (per \beta \approx 1)$$

$$+ \frac{Nel case non relativistic}{Nel case non relativistic} il potere di rallentamento decresce in funzione dell'energia E dell'elettrone come avveniva per le particelle cariche pesanti mentre nel caso relativistico il potere di rallentamento cresce lentamento cresce dell'energia termente di rallentamento cresce dell'energia termente con la E$$

This plot is valid for electrons In the case of protons the Brehmsstrahlung curve would be six orders of magnitude below

Energy release electrons

Brehmsstrahlung

Per grandi energie, gli elettroni possono subire grandi perdite di energia passando nelle vicinanze di un nucleo pesante; qui gli elettroni deviano dalla loro traiettoria incidente; tale cambiamento di direzione equivale ad una accelerazione, rilasciando una certa quantità della loro energia sotto forma di radiazione elettromagnetica. L'emissione di fotoni attraverso questo processo è chiamato **irraggiamento da frenamento** o *bremsstrahlung*.

Il fenomeno è descritto dalla formula di Larmor che si ricava a partire dal potenziale ritardato

$$\vec{A} = \frac{1}{4\pi\varepsilon_0 c^2} \frac{q\vec{v}(t-\frac{r}{c})}{r}$$

Con v diretto lungo l'asse z

Brehmsstrahlung cont.

Il modulo quadro del campo (dipendente dall'accelerazione) in coordinate polari vale

$$|B|^{2} = \frac{q^{2}}{16\pi^{2}\varepsilon^{2} \circ c^{4}} \left(\frac{a^{2}\sin^{2}\theta}{c^{2}r^{2}}\right)$$

Si trova così la densità di energia trasportata dal campo

$$U = \frac{|B|^2 \varepsilon_0 c^2}{2}$$

Da cui si ricava la potenza irradiata

$$W = \frac{dE}{dt} = \frac{q^2 a^2 \sin^2 \theta}{4\pi\varepsilon_0 c^3}$$

La distribuzione di energia irradiata sarà del tipo sin²0

Brehmsstrahlung III

La perdita di energia per unità di percorso da parte di un elettrone è data da:

$$-\frac{dE}{dx} = \frac{E}{X_0}$$

Dove X_o è la lunghezza di radiazione, proporzionale a

$$X_0 \propto \frac{A}{Z^2}$$

Dato che A≈2Z per tutti gli elementi eccetto l'idrogeno si ha

$$X_0 \propto \frac{1}{Z}$$

Per Z elevati l'irraggiamento è più intenso.

$$\begin{split} X_0 & \cong \frac{1}{4\alpha_{em} r_e^2 \log \left(\frac{184}{Z^{1/3}}\right)} \; \frac{A}{N_A Z^2 \; \rho} \\ r_e & = \frac{\alpha_{em}}{m_e} \\ N_A & = avogadro \end{split}$$

This plot is valid for electrons In the case of protons the Brehmsstrahlung curve would be six orders of magnitude below

Diffusion and range

 Projected range is shorter than CSDA (linear) range

http://www.nist.gov/pml/data/star/index.cfm

Stopping power and range tables

http://www.nist.gov/pml/data/star/index.cfm

Select a common material:	
1: Hy	/drogen 🗘
	or enter a <u>unique material</u>
 ⊙ Graph stopping power: ☑ Total Stopping Power □ Collision Stopping Power □ Radiative Stopping Power 	Additional Energies (optional): Use energies from a file* Sfoglia Nessun file selezionato.
O Graph density effect parameter	or
O Graph CSDA range	Use energies entered below (one per line)
O Graph radiation yield	
O No graph	✓ Include default energies
Note: Only stopping powers and the den	sity effect parameter will be calculated if additional energies are u

sed

Submit

Reset

electrons

Exercises (Set 2)

 Determine the energy that a proton and an alpha must have to have a negligible multiple scattering
 In case of composite materials

 $1/X_0 = \sum w_j/X_j ,$

 ω_i =fraction by weight

<0> ≤0.01rad

In case of

- 20 cm of water
- 20cm of air
- Estimated CSDA and projected range in water for:
 - alpha particles of T=1,10 and 100 MeV
 - Protons of T=1,10,100 MeV
 - Electrons of 1,9,20 MeV
- Estimate the thickness of
 - Carbon
 - Lead

needed to stop 1,10,100 MeV alpha and protons

S	hi	ec	li	19	S
				J	

Range(mm)	WATER(proj/ CSDA)	CARBON (Proj.)	IRON (Proj.)	LEAD (Proj.)
P(1MeV)	24/24 10^-3	12 10^-3	6.6 10^-3	9.1 10^-3
P(10MeV)	1.2/1.2	0.61	0.26	0.30
P(100MeV)	77/77	38	14.5	14
α (1 MeV)	5.9/5.7 10^-3	2.6 10^-3	1.7 10^-3	2.2 10^-3
α (10 MeV)	112/112 10^-3	58 10^-3	26 10^-3	37 10^-3
lpha(100 MeV)	6.4/6.4	3.2	1.3	1.4
e(1 MeV)	~4.0/4.4			
e (9 MeV)	~40/45			,
e(20 MeV)	~91/93			

→ Utilizzo di particelle alpha per terapia radiometabolica

Application: XRF

- X-ray fluorescence (XRF) spectrometry is an elemental analysis technique with broad application in science and industry.
- XRF is routinely used for the simultaneous determination of elemental composition and film thickness.
- Modern XRF instruments are capable of analyzing solid, liquid, and thin-film samples for both major and trace (ppmlevel) components.
- The analysis is rapid and usually sample preparation is minimal or not required at all.

XRF Setup

- 1) X-ray irradiates specimen
- 2) Specimen emits characteristic X-rays
- 3) Analyzing crystal rotates to accurately reflect each wavelength and satisfy Bragg's Law $n\lambda$ =2dsin θ

4) Detector measures position and intensity of XRF peaks

5) XRF is diffracted by a crystal at different . To separate X-ray I and to identify elements

Excitation of the sample

Choice of the anode

Efficiency for the excitation of elements with atomic number Z, dependent on the photon energy E. The excitation can be performed by the continuum (100, 50, 25 kV) and by the K- and L-peaks of different X-ray tubes (Mo, Au, W, Cu, Cr, Sc). The upper two scales show the energetic position of the K- and the L-absorption edge of the analytes.

REPRODUCED COURTER OF KOMM WHER & SOME JTD THOM TOTAL REFLECTION IN ANY FLUCRESCHICE ANALYSIS" BY REPROLD RECORDINATES

Detection system

- No matter how the secondary X-ray radiation (X-Ray fluorescence) is produced in XRF machines there are TWO WAYS to detect this radiation:
 - 1. Wavelength Dispersive System (WDS)
 - 2. EnergyDispersive System (EDS).

WDS

- A wavelength dispersive detection system physically separates the X-Rays according to their wavelengths.
- The x-rays are directed to a crystal, which diffracts (according to Bragg's Law) the X-Rays in different directions according to their wavelengths (energies).

EDS

- EDS is an analytical technique used for the elemental analysis orchemical characterization of a sample.
- The secondary x-rays (XRF) are directed to a detector.
- A detector is used to convert X-ray energy into voltage signals; this information is sent to a pulse processor, which measures the energy of the signals and passes them onto an analyzer.
- The analyzer converts the analog into a digital signal which is proportional to the energy of the incoming pulse.
- Received pulses are actually amplified and converted into digital signals.
- They are sorted by energy with help of multi-channel analyzer and sent to data display and analysis.
- The most common detector now is Si(Li) detector cooled to cryogenic temperatures with liquid nitrogen.

X-ray tube

What can be analysed by X-Ray Fluorescence?

Food Products

Adhesive (chromium) and gunpowder (Barium)

XRF advantages

- XRF is a versatile, rapid technique .
- It is non destructive method of chemical analysis. Important as in
- case of samples in limited amounts, or valuable or irreplaceable.
- It is precise and with skilled operations it is accurate.
- Applicable to a wide variety of samples from powders to liquids.
- It is convenient and economical to use.
- With the major input cost being the hardware itself, which averages around \$75,000 for a modern industrial-use spectrometer or \$125,000 for a research-quality instrument.

The instruments have few moving parts, tend to be lowmaintenance, and on a regular basis consume only liquid nitrogen and electricity

Energy	Extrapolated range (g/cm ²)						
(MeV)	Diethylether	Benzene	Ethanol	Glycerol	Water		
0.01	2.32 E-04	2.46 E-04	2.29 E-04	2.31 E-04	2.21 E-04		
0.02	6.98 E-04	7.43 E-04	6.97 E-04	7.22 E-04	6.98 E-04		
0.05	3.52 E-03	3.75 E-03	3.52 E-03	3.63 E-03	3.51 E-03		
0.1	1.18 E-02	1.25 E-02	1.18 E-02	1.21 E-02	1.17 E-02		
0.2	3.74 E-02	3.96 E-02	3.73 E-02	3.83 E-02	3.70 E-02		
0.5	1.50 E-01	1.59 E-01	1.49 E-01	1.53 E-01	1.48 E-01		
1	3.77 E-01	3.99 E-01	3.76 E-01	3.87 E-01	3.73 E-01		
2	8.63 E-01	9.13 E-01	8.62 E-01	8.86 E-01	8.57 E-01		
5	2.35 E+00	2.48 E+00	2.35 E+00	2.42 E+00	2.35 E+00		
10	4.84 E+00	5.11 E+00	4.85 E+00	5.01 E+00	4.87 E+00		
20	9.82 E+00	1.04 E+01	9.84 E+00	1.02 E+01	9.89 E+00		
50	2.40 E+01	2.52 E+01	2.40 E+01	2.46 E+01	2.39 E+01		
100	4.41 E+01	4.63 E+01	4.39 E+01	4.46 E+01	4.30 E+01		

Table 2. The extrapolated range of electrons in some commonly used solvents

Positron annihilation

A high energy positron will lose energy by collision and radiation → only 20% probability of annihilation in flight

 $e^+e^- \rightarrow \gamma\gamma$ (free electron) $e^+e^- N \rightarrow \gamma N$ (bound electron ~20%)

⁸F POSITRON TRACKS IN WATER

511 KeV photon Positron 511 KeV photon After it stops, positron binds with electrons → positronium

Decays of Positronium

Positronium is an e^+e^- atom with parity states:

$$P(e^+e^-) = P_{e^-}P_{e^+}(-1)^L = (-1)^{L+1}$$

Note this is the opposite parity to the Hydrogen atom states because of the intrinsic parities of the e^+ and e^-

Charge conjugation symmetry depends on the spin orientations:

 $C(\uparrow\downarrow) = (-1)^L$ $C(\uparrow\uparrow) = (-1)^{L+1}$

S=0 is ortho-positronium $\uparrow\downarrow$, S=1 is para-positronium $\uparrow\uparrow$

Photon has C = -1 from symmetry of electromagnetic fields

Ortho-positronium states with even(odd) L decay to 2(3) photons Para-positronium states with odd(even) L decay to 2(3) photons

C-parity is conserved in electromagnetic interactions

PET: spatial resolution

 The range of positrons is the main limiting factor to the resolution in PET

ISOTOPO	VITA MEDIA	PERCORSO RESIDUO	Emax
F ₁₈	110 min	0.64 mm	0.64 MeV
C_{11}	20.4 min	1.03 mm	0.96 MeV
N_{13}	9.97 min	1.32 mm	1.19 MeV
<i>O</i> ₁₅	122 s	2.01 mm	1.72 MeV

Escapes

If positron is create one or both the electrons can escape.

Figure 5.2. Americium Beryllium on paraffin spectrum acquired with the *LYSO1* detector crystal in *GSI* configuration. From the left (a) is the single escape of (b), the 2.22 MeV line, (c) is identified as the peak from the gammas of the interaction of neutrons with the iron of the steel capsule, (d) and (e) are respectively the double and single escape peaks of the 4.44 line (f), and (g) likely comes from the interaction of neutrons with the iron of the steel capsule, as well.

Interazione della radiazione elettromagnetica

I fotoni nell'attraversare un mezzo assorbente possono interagire sia con gli elettroni degli atomi sia con il nucleo atomico:

Interazione con gli elettroni: Diffusione Compton Diffusione Rayleigh Effetto fotoelettrico Interazione col nucleo: Reazioni fotonucleari Produzione di coppie

A differenza delle particelle cariche i fotoni interagiscono con la materi in modo discontinuo e la loro intensità non viene mai ridotta a zero.

$$I(x) = I_0 e^{-\mu x}$$

dove μ è detto coefficiente di attenuazione (o di assorbimento) e dipende sia dall'energia del fotone sia dalle caratteristiche del mezzo attraversato.

La lunghezza di attenuazione λ è definita come l'inverso del $\lambda = \frac{1}{\mu}$ [cm] coefficiente di attenuazione μ :

Indichiamo con σ la sezione d'urto che esprimeremo in cm²:

$$\sigma = \frac{\mu}{n_A} = \frac{\mu}{\rho / m_A} \cong \frac{\mu A}{\rho [g / cm^3] N_A}$$

presenta la **probabilità** che una data collisione tra due particelle avvenga. Essa ha le dimensioni di una superficie e spesso viene misurata in barn (1 barn = 10⁻²⁴ cm²).

Effetto fotoelettrico

Interazione di un fotone con un elettrone atomico.

Durante l'interazione il fotone cede tutta la sua energia all'elettrone.

$$E_{e^-} = h v - E_b$$

L'effetto fotoelettrico è un <u>effetto a</u> <u>soglia</u>, potendosi verificare solo quando l'energia del fotone incidente è superiore all'energia di legame dell'elettrone.

La sezione d'urto per effetto fotoelettrico, che indicheremo con σ_{foto} risulta:

$$\sigma_{foto} \cong Z^5 \alpha \left(\frac{m_e c^2}{E_{\gamma}}\right)^n \qquad n = 3.5 \ per \ E_{\gamma} < m_e c^2 \qquad \text{costante di struttura fine} \\ n = 1 \ per \ E_{\gamma} >> m_e c^2 \qquad \alpha = \frac{e^2}{hc} \approx \frac{1}{137}$$

$$\mu_{foto} \approx \rho \frac{Z^5}{A}$$

Interazione di un fotone con un elettrone "libero"

La differenza di energia tra fotone incidente e fotone diffuso sarà impartita all'el

A differenza dell'effetto fotoelettrico il fotone non cede tutta la sua energia in una sola interazione, ma <u>rilascia solo</u> <u>una frazione della propria energia</u> deviando rispetto alla direzione incidente.

Per la conservazione dell'energia abbiamo:

$$E_{\gamma} + E_{e} = E_{\gamma'} + E_{e'}$$
ora
$$E_{\gamma} = hv$$

$$E_{e} = \sqrt{m_{e}^{2}c^{4} + p_{e}^{2}c^{2}} = m_{e}c^{2}$$

$$E_{e'} = \sqrt{m_{e}^{2}c^{4} + p_{e'}^{2}c^{2}}$$

$$E_{\gamma'} = hv'$$
Quindi $hv + m_{e}c^{2} = hv' + \sqrt{m_{e}^{2}c^{4} + p_{e'}^{2}c^{2}}$
esplicitando rispetto a
$$p_{e'}^{2} = \frac{(hv + m_{e}c^{2} - hv')^{2} - m_{e'}^{2}}{c^{2}}$$

С

Calcoliamo la perdita di energia del fotone incidente in funzione dell'angolo di distanone.

Sia y il fotone (di frequenza v) incidente su un elettrone a riposo Sia y' il fotone diffuso (di frequenza v') Sia e' l'elettrone dopo l'urto Indichiamo ⊖ l'angolo di diffusione

Per la conservazione della *quantità di moto* abbiamo:

ma $p_{\gamma} = \frac{E_{\gamma}}{c} = \frac{hv}{c}$ $p_{\gamma'} = \frac{E_{\gamma'}}{c} = \frac{hv'}{c}$

Quindi $p_{e'}^2 = \left(\frac{hv}{c}\right)^2 + \left(\frac{hv'}{c}\right)^2 - 2\frac{hv}{c}\frac{hv'}{c}\cos\theta$

$$p_{\gamma} = p_{\gamma'} + p_{e'}$$

$$p_{e'}^{2} = (p_{\gamma} - p_{\gamma'})^{2} = p_{\gamma}^{2} + p_{\gamma'}^{2} - 2p_{\gamma}p_{\gamma'}\cos\theta$$

Combinando le 2 equazioni si ottiene: $\frac{(hv + mc^2 - hv')^2 - m_e^2 c^4}{c^2} = \left(\frac{hv}{c}\right)^2 + \left(\frac{hv'}{c}\right)^2 - 2\frac{hv}{c}\frac{hv'}{c}\cos\theta'$ Sviluppando e ricordando che $v = \frac{c}{2}$ si ottiene $h \frac{c}{\lambda} \frac{c}{\lambda'} (1 - \cos \theta) = m_e c^2 \left(\frac{c}{\lambda} - \frac{c}{\lambda'} \right)$ $\lambda_c = \frac{h}{m_e^c}$ è detta lunghezza d'onda dell'elettrone e $\lambda' - \lambda = \frac{n}{m_c c} (1 - \cos \theta)$ e quindi vale 2.426 10⁻¹² m.

La conoscenza della lunghezza d'onda λ del fotone incidente (e quindi la sua energia E=hv) e l'angolo di diffusione θ permettono di calcolare il valore dell'energia cinetica impressa all'elettrone:

 $E_{cinetica} = h\nu - h\nu' = \frac{(h\nu)^2(1 - \cos\theta)}{m_e c^2 + h\nu(1 - \cos\theta)}$

•Per θ =0° l'energia trasferita è nulla, e quindi l'energia del fotone è conservata. •Per θ =180° il fotone è rimbalzato all'indietro ed l'energia trasferita è massimale e vale . $\frac{2(hv)^2}{m_ec^2 + 2(hv)}$

CONFION The y'se' e gre-y' Ane" + Ane" + 27E - 2 2'0 - 18'8 => A t = t-noist & to 2 7 t Pords of give Ken Z Co (E, + Ken) -> is the starting and Extra contrat 51) 541 - destablished del and and del des in the the p (inthe Ka

DATABASE:

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

Photon attenuation

 Typically reported in terms of the mass attenuation coefficient

$$\sigma \frac{N_A}{A} = \frac{\mu}{\rho} \left[g / cm^2 \right]$$

Produzione di coppie

Un fotone si materializza creando una coppia elettrone-positrone:

Tale processo può verificarsi solo se il fotone possiede un'energia maggiore della somma delle masse delle due particelle prodotte; ossia deve avere un'<u>energia $E_{y} \ge 1.022 \text{ MeV}$ </u>

L'eccesso di energia del fotone incidente verrà trasformato in energia cinetica del positrone e dell'elettrone:

$$E_{cinetica} = \frac{E_{\gamma}(MeV) - 1.022}{2}$$

La sezione d'urto per produzione di coppie vale:

 $\sigma_{pp} \cong \frac{Z^2 \,\alpha^3}{(m_{_e}c^2)^2}$

Attenuazione dei fotoni

Il coefficiente di attenuazione totale μ_{tot} , è la somma dei coefficienti dei tre processi considerati, e cioè:

 $\mu_{tot} = \mu_{foto} + \mu_{Compton} + \mu_{pp}$

Il numero di fotoni diffusi o assorbiti in uno spessore dx é proporzionale al flusso di fotoni incidenti $\Phi(x)$ e alla probabilità totale d'interazione μ_{tot} :

$$-d\phi(x) = \phi(x) \cdot \mu_{tot} \cdot dx$$

Dopo aver attraversato uno spessore x, l'intensità del fascio é:

 $\phi(x) = \phi(0) \cdot e^{-\mu_{tot} \cdot x}$

Esempio: <u>v del ²⁰⁸ TI (2.61 MeV).</u> Nel piombo μ_{tot} = 0.477 1/cm quindi N = 2.1 cm

Relative importance of processes

Photons LET

Build-up/Skin-Sparing effect

Databases with mass attenuation coefficients

- <u>http://physics.nist.gov/PhysRefData/</u> <u>XrayMassCoef/tab3.html</u>
- http://www.wolframalpha.com/input/ ?i=mass+attenuation+coefficient+lead +140+keV+photon

Exercise Nr. 3

Estimate the amount of

- Lead
- plastic (Poly(methyl methacrylate-PMMA, C₅O₂H₈, ρ=1.2 g/cm³),
- paraffin ($C_{31}H_{64}$, ρ =0.9 g/cm³)
- iron

needed to attenuate by 10⁻⁴ photons of

- -100 keV
- 1 MeV

10 MeV