
A much better method uses the results of the previous Section. Indeed we know
that the variance of the sample mean f̄ is Cff (0)(2τint,f). Cff(0) is simply the static
variance and is estimated by

Cff (0) =
1

n

n
∑

i=1

(

fi − f̄
)2

(5.3)

Notice that this quantity depends uniquely on the model and not on the algorithm
used to simulate it. What instead depends on the algorithm is τint,f . To evaluate it
we must first estimate Cff (t). The natural estimator is

Ĉff(t) =
1

n− |t|

n−|t|
∑

i=1

(fi − f̄)(fi+|t| − f̄) (5.4)

This is a biased estimator of C(t) the bias being of order 1/n. The natural estimator
of ρff (t) = Cff (t)/Cff(0) is thus

ρ̂ff (t) =
Ĉff (t)

Ĉff(0)
(5.5)

Then the natural estimator of τint would seem to be

τ̂int,f =
1

2

n−1
∑

t=(1−n)

ρ̂ff (t) (5.6)

but this is wrong. Indeed this estimator has a variance that does not go to zero
as n → ∞. Roughly speaking this is because the sample autocorrelation ρ̂ff (t) for
|t| >> τint,f contains much noise but little signal (see the following exercise).

Exercise 1: Let fi be independent Gaussian variables of mean µ/n and variance
σ2/n. Compute the mean and the variance of

∑n
i=1 fi.

The solution is to cut off the sum defining

τ̂int,f =
1

2

M
∑

t=−M

ρ̂ff (t) (5.7)

Of course this cut off introduces a bias and in general this formula will underestimate
the correct value. However we can choose M in such a way that the bias is small.
This can be achieved using the authomatic windowing procedure by Madras and
Sokal: choose M self-consistently as the smallest integer such that M ≥ cτ̂int,f(M).
If ρff (t) were a pure exponential one could take for instance c = 4, in this case making
an error of the e−4 = 2%. However in many cases ρff(t) has a slower preasymptotic
decay and thus in these cases c must be larger, for instance c = 4 − 6 in order to
have an error of the same magnitude. In general the determination of c requires the
study of the behaviour of the autocorrelation function Cff(t). Indeed c must not be
too small, otherwise the bias would be too large, but neither too large otherwise we

26

would include some noise. What small and large mean, depends on the number of
iterations and in general, increasing the number of iterations one must at the same
time increase the value of c in order to keep the systematic error smaller than the
statistical one. Let us finally quote the variance of τ̂int,f :

Var(τ̂int,f) =
2(2M + 1)

n
τ 2int,f (5.8)

valid in the regime τint,f << n.
As a final remark, notice that this procedure works well only if n >> τint,f . Empiri-
cally one usually finds that the results are reliable if n ∼> 1000τint,f .

From what we have said it is clear that the performance of the algorithm is com-
pletely characterized by τint,f measured in CPU-time units. The higher τint,f the less
efficient is the algorithm. Now what is the behaviour of τint,f? Generically, away
from phase transitions (i.e. in the regions where the correlation length is small) τint,f
remains reasonably small. However near a critical point the autocorrelation time
diverges as

τ ∼ ξz(β) (5.9)

where ξ(β) is the correlation length of the infinite volume system at temperature
1/β and z is a dynamical critical exponent. This phenomenon is called dynamic
critical slowing down and it is the most severe limitation to Monte Carlo studies.
We will see in the next Section that for local Monte Carlo one usually have z ∼> 2
(overrelaxation is an exception with z ∼> 1) while using non-local methods (cluster
algorithms, Fourier acceleration, multigrid ...) one can achieve sensible improvements
(in many cases z ≈ 0).

Now, how can we determine z? First of all, as we have already remarked, z depends
on the type of autocorrelation time we are considering and thus we must distinguish
between zexp and zint,f and in many algorithms different quantities f have different
exponents (for instance in Wolff’s algorithms for RP n σ-models the exponent of
the susceptibility is ∼ 1 while the exponent of the energy is ∼ 0). Secondly, notice
that (5.9) is true only when L → ∞. In practice experience with two-dimensional
models shows that corrections to scaling are usually very strong. For instance, using
Wolff’s algorithm for the O(4) σ-model one finds for L = 32, β = 1.70 ξ = 3.54 and
τint,χ = 4.53(16) while for L = 32, β = 2.20 ξ = 11.59 and τint,χ = 10.61(70). Using
(5.9) and these two values we would get zint,χ ∼ 0.8 but this is wrong. Indeed for
this model one has zint,χ ∼< 0.1. The wrong result is due to the fact that we have
neglected the finite-size corrections. The correct way of performing the analysis uses
a finite-size scaling Ansatz of the form

τint,f (β, L) ∼ ξ(β, L)zint,f gf(ξ(β, L)/L) (5.10)

where gf is an unknown scaling function with gf(0) supposed to be finite and non-
zero. To determine zint,f one plots τint,f (β, L)/ξ(β, L)

zint,f as a function of ξ(β, L)/L
fixing zint,f so that all the points lie on a unique curve within error bars. In order
to have a reliable estimate many different values of L must be used and sufficiently
accurate estimates of τint,f are required.

27

Let us now pass to a second subject: so far we have discussed how to compute
from the Monte Carlo data the mean values of the observables we are interested in
and their error bars. Now let us discuss how to use them in some practical problem.

In many cases we want to compute invariant ratios, i.e. quantities of the form

R =
〈A〉p

〈B〉q
(5.11)

where A and B are two different observables and p and q some exponents. Of course
we estimate this quantity from the sample means Ā and B̄:

Rest =
Āp

B̄q
(5.12)

But then, what is the error bar on Rest? The main problem in its estimation is that
Ā and B̄ come from the same run; consequently they are correlated and this must be
kept into account in setting the error bars. Let us compute the variance of Rest. By
definition

Var (Rest) = 〈
Ā2p

B̄2q
〉 − 〈Rest〉

2 (5.13)

Then introduce

∆A =
Ā− 〈A〉

〈A〉
(5.14)

∆B =
B̄ − 〈B〉

〈B〉
(5.15)

Expanding in ∆A and ∆B (valid in the large sample limit) we get

Var (Rest) =
〈A〉2p

〈B〉2q

(

p2〈∆A2〉+ q2〈∆B2〉 − 2pq〈∆A∆B〉
)

+ o(1/n) (5.16)

Notice that 〈∆A2〉 = σ2
A/〈A〉

2 and 〈∆B2〉 = σ2
B/〈B〉2 while the last term keeps

into account the correlation between the estimates of A and B. Using the fact that
(Schwartz inequality)

|〈∆A∆B〉| ≤ 〈∆A2〉1/2〈∆B2〉1/2 (5.17)

we obtain an upper bound in terms of the variances of A and B alone

Var (Rest) ≤
〈A〉2p

〈B〉2q

(

p
σA

〈A〉
+ q

σB

〈B〉

)2

(5.18)

This upper bound is usually very far from being sharp since A and B are strongly cor-
related (in some cases (5.18) is ten times larger than the correct formula (5.16)). For
this reason it is always convenient to use (5.16). However in this case we must com-
pute the covariance 〈∆A∆B〉. This can be avoided using a little trick, i.e. rewriting
(5.16) as

Var (Rest) =
〈A〉2p

〈B〉2q
Var (p∆A− q∆B) (5.19)

28

and this last variance can be computed applying the time-series methods we have
presented before to the time series

p
Ai − Ā

Ā
− q

Bi − B̄

B̄
(5.20)

In this way one usually gets smaller (but correct!) error bars. We want to emphasize
that these results are not connected with dynamic Monte Carlo, in the sense that the
important thing here is the static correlation of A and B (usually p∆A − q∆B has
an autocorrelation time which is of the order of the largest of τint,A and τint,B) and
thus it is important to keep it into account also in the case of independent sampling.

These formulas can easily be extended to generic functions of 〈A〉 and 〈B〉 and to
functions of more than two observables.

Exercise 2: In lattice gauge theories one usually defines the Creutz ratio

R(I, J) =
W (I, J)W (I − 1, J − 1)

W (I, J − 1)W (I − 1, J)
(5.21)

where W (I, J) denotes the expectation of a rectangular Wilson loop of lattice dimen-
sions I and J . Compute the variance of R(I, J) in the large sample limit expressing
the result in terms of variances of suitably defined observables for which the usual
time-series analysis can be applied.

Let us now present two applications of the previous results. The first one is
concerned with the so-called hystogram method introduced by Falcioni et al. and
Ferrenberg and Swendsen. Suppose you have made a simulation of the system at a
given value of β. Can this run be used to get some information on the mean values of
the various observables we have measured at a different temperature β0? The answer
is yes, and it is based on the following observation: if O is any observable we have

〈O〉β0
=

1

Z(β0)

∑

{σ}

O(σ) exp(−β0H(σ)) (5.22)

=

∑

{σ} O(σ) exp((β − β0)H(σ)) exp(−βH(σ))
∑

{σ} exp((β − β0)H(σ)) exp(−βH(σ))
(5.23)

=
〈exp((β − β0)H)O〉β
〈exp((β − β0)H)〉β

(5.24)

where 〈. . .〉β is the estimate at inverse temperature β. Thus an estimate of 〈O〉β0
is

obtained as a ratio of the sample means of exp((β−β0)H)O and exp((β−β0)H) and
the error bar is computed using (5.16).

One can also compute 〈O〉β0
using runs at different, but nearby, values βi. In this

case the estimates are independent and thus it is very simple to write down the final
estimate and its error bar. If Oi is the estimate of 〈O〉 obtained using the runs at
temperature 1/βi and σ2

i its variance we get the final estimate

Oest =
∑

i

Oi

σ2
i

(

∑

i

1

σ2
i

)−1

(5.25)

29

